Initializing a Struct's variable const char* const* with C++ - c++

I am trying to solve a coding question that requires the results be returned using a given struct. The struct is defined as:
struct Answer
{
const char* const* lastNames;
unsigned numberOfPeople;
}
Where the lastNames is a pointer to last names that are each terminated by a non-alpha char. I can not seem to find any way to convert the vector of strings that I am using to compile all the last names into a variable that I can assign to lastNames. I have tried making a single string with all the last names and assigning it with c_str() like so:
Ans->lastName = allNames.c_str(); but this gives me an error. Due to the limitations of the question I am unable to change the struct variable to anything else. How can I assign a string to a const char* const*

The structure being used effectively uses a C-style approach to defining a variable sized array of pointers to char (with const sprinkled over it). You’ll need storage for both the array of char const* as well as the entities pointed to. Here is how you could build it from a std::vector<std::string>:
std::vector<std::string> strings = somehow_compute_the_strings();
std::vector<char const*> array;
for (std::string const& s: strings) {
array.push_back(s.c_str());
}
Answer answer = { array.data(), array.size() };
Of course, you can’t return answer without the pointer inside pointing to stale data: you’d need to keep the two std::vectors alive. Potentially these two objects could be made members of an object the function is called on. To actually return an object of type Answer without a place to hold on to the std::vectors you could allocate the relevant entities and accept that the result will yield a memory leak unless the caller can clean the result up.

You can't just cast stuff. struct Answer is expecting a char**, so you are going to have to build it and keep it valid as long as the struct Answer is in use. At least they were kind enough to let us know they don't intend to modify it or mess with cleaning up the memory, since it takes "const char * const *".
#include <iostream>
#include <vector>
#include <string>
#include <assert.h>
typedef std::vector<std::string> VectorOfStrings_type;
struct Answer
{
const char* const* lastNames;
unsigned numberOfPeople;
};
class AnswerWrapper
{
private:
// construct and maintain memory so the pointers in the Answer struct will be valid
char ** lastNames;
unsigned int numberOfPeople;
public:
AnswerWrapper(const VectorOfStrings_type &input){
numberOfPeople = input.size();
// create the array of pointers
lastNames = static_cast<char**>(
malloc(numberOfPeople * sizeof(char*))
);
// create each string
for (unsigned int i = 0; i < numberOfPeople; ++i){
const std::string &name = input[i];
// allocate space
lastNames[i] = static_cast<char*>(
malloc(name.size() + 1)
);
// copy string
strncpy(lastNames[i], name.data(), name.size());
// add null terminator
lastNames[i][name.size()] = '\0';
}
}
operator Answer (){
return Answer{ lastNames, numberOfPeople };
}
~AnswerWrapper(){
// critcally important, left as an exercise
assert(0);
}
};
void SomeFunctionWhichUsesAnswer(Answer a){
// presumably you have some legacy C code here
// but here's a quick and easy demo
for (unsigned int i = 0; i < a.numberOfPeople; ++i)
std::cout << a.lastNames[i] << std::endl;
}
int main() {
// Here is your vector of strings
VectorOfStrings_type myData { "custom formatted data goes here", "and more here", "and again" };
// You must construct a buffer for the "Answer" type, which must remain in scope
AnswerWrapper temp{ myData };
// AnswerWrapper is currently in scope, so inside this function, the pointers will be valid
SomeFunctionWhichUsesAnswer(temp);
}
Also, I noticed that the strings in Answer are not referred to as null terminated. That is a separate issue you can take care of.

A const member variable can only be assigned in the constructor.
if you can add to the struct, define a constructor, and use the : lastname(value) syntax; or use the struct Answer myVar{value,number}; initialization, right where you declare your instance.
Another - ugly, dangerous, and frowned upon - alternative is a cast: (char**) lastname = value;, or in C++ syntax reinterpret_cast<char**>(lastname) = value.
If someone is teaching you either of those approaches, change the teacher.

Related

Inheritance from Vector::Vector base class

I am trying to learn about inheritance in C++. I am trying to make a subclass of vector::vector that only takes string pointers.
My grip on pointers and references is admittedly weak, but I can't for the life of me work out why the following code is setting each string to the same address:
#include <iostream>
#include <vector>
using namespace std;
class StringVector : public vector<void*> {
public:
void push_back(const string* str) {
vector::push_back(&str);
}
string* operator[](int pos) {
return (string*)vector::operator[](pos);
}
};
main() {
StringVector sv;
string str1 = "hello";
string str2 = "world";
sv.push_back(&str1);
sv.push_back(&str2);
for (int i = 0; i < 2; i++)
cout << sv[i] << " ";
}
When I run as is, I get:
0xffffcb68 0xffffcb68
i.e. same address.
When I try to deference the sv[i] (i.e. *sv[i]); I get an exception. Can anyone tell me where I am going wrong?
You're pushing &str which takes the address of the pointer, so the type you're pushing is string**. What's more, you're storing address of a short-lived variable (pointer) - it gets destroyed as soon as you leave your overloaded push_back.
The immediate fix is to simply change the push_back method (remove const on string and pass the pointer to vector::push_back):
void push_back(string* str) {
vector::push_back(str);
}
which is as good as simply removing the method altogether and using the inherited one.
That being said, it's a bad idea to inherit from most standard containers. You can have a vector of string pointers just by typing vector<string*>.
And if you want to print the string values instead of pointers, you need to dereference them:
for (int i = 0; i < 2; i++)
cout << *sv[i] << " ";
In this function
void push_back(const string* str) {
vector::push_back(&str);
}
you didn't push the address of the string - you pushed the address of the pointer to string. And in successive calls, the two different pointers were likely stored in the same place (albeit at different times).
Because your vector takes a void* and any pointer can convert to void*, your compiler didn't have a chance to alert you to your error. What you probably want is to use a std::vector<std::string*> or std::vector<const std::string*>. You shouldn't inherit from the standard collections; prefer to use them as members instead.
Consider this a lesson in the dangers of void* and of casts!

function that returns an array of objects

I have got a structure
class pyatno {
int pyatnoNumber;
int locX, locY;
bool possible;
char *number;
char pyatnoView[4][4];
}
the idea is to make a function, that would return an array of pyatno.pyatnoView objects, but there is a mess. I don't understand how exactly I can get access to this "property". I am not strong in c++, so if it isn't real, or i am talking something wrong, explain please, cause I am really stacked in this question.
As you mentioned that you are not very strong with c++, and your question is rather unclear, here are several suggestions.
To get access to a class's attributes, c++ has the notion of visibility; The default visibility is private, that is, attributes and functions will not be visible outside of the class:
class Foo {
int some_value;
};
There are several ways you can retrieve data from an object, however to put it simply, you should either make the attribute public:
class Foo {
public:
int some_value;
};
or expose it via accessors/mutators:
class Foo {
int some_value;
public:
int get_some_value() { return some_value; }
void set_some_value(int v) { some_value = v; }
};
Another thing to note is that you can not return arrays! In c++, when an array passes a function boundary (that is to say, passed as a parameter to, or returned from), and in a lot of other cases, an array will 'decay' in to a pointer. For example, the following is how I would pass an array of characters (otherwise known as a c-string) to a function:
#include <iostream>
using namespace std;
void print_cstr(const char *cstr) {
cout << cstr << endl;
}
int main() {
const char my_cstr[20] = "foo bar baz qux";
print_cstr(my_cstr);
return 0;
}
So what happens for N-dimensional arrays? Well, if char[1] decays to char*, then char[1][1] will decay to char**, and so on. You might have noticed this with the older main signature in C programs, which is used to pass an array of strings representing arguments passed to the program:
int main(int argc, char **argv) { ... }
It is very important that you realise that this really is no longer an array. C style strings are a bit special, in that they are conventionally terminated with a null byte \0, which means that you can usually tell where the end of the string is, or how long it is. However, you no longer have any information on how long the array is! For example, this is completely legal:
#include <iostream>
using namespace std;
void bad_fn(const int *nums) {
for (unsigned i = 0; i < 20; ++i) {
cout << "num " << i << " = " << nums[i] << endl;
}
}
int main() {
const int my_nums[5] = { 1, 2, 3, 4, 5, };
bad_fn(my_nums);
return 0;
}
Your function will end up reading memory beyond the bounds of the array, as it has no way of knowing where the array begins or ends (after all, array indexes are just pointer arithmetic). If you do not want to have to worry about keeping track of, and passing around the length of your array (and I would suggest that you do not!), please look at using one of the C++ standard library's containers. std::vector and std::array are two examples that would fit in the use case you have provided, and you can find decent documentation for them here.

C++ Passing pointer constant as parameter from main to method

I am attempting to initialize variables within my object, using a function with const pointers as parameters.
I keep getting errors in many of the ways i attempted, here is my code:
class Molecule
{
private:
char s[21];
char d[21];
double w= 0;
public:
Molecule();
void set(const char*, const char*, double);
void display() const;
};
int main() {
int n;
cout << "Molecular Information\n";
cout << "=====================" << endl;
cout << "Number of Molecules : ";
cin >> n;
Molecule *molecule = new Molecule[n];
for (int i = 0; i < n; i++) {
char symbol[21];
char description[21];
double weight;
molecule[i].set(&symbol,&discription,weight);
//...
}
//implementation of class
#include "Molecule.h"
#include <iostream>
#include <cstring>
void Molecule::set(const char*, const char*, double)
{
s = &symbol;
d = &discription;
w = &weigth;
}
My question is: How would i correctly call the member function from an array of objects, using constant chars as parameter, and what is the correct way to set them to my variables in my class.
P.S: I have been trying to figure this out for a long time, and posting here is a last resort.
There are multiple errors in your code
&symbol (where symbol is char[21]) yields char(*)[21], use symbol directly and let it decay to char* or use explicitly &symbol[0]
double weight; is uninitialized local variable, using it results in undefined behavior - you should initialize it: double weight = 0.0;
double w= 0; used to declare a member of class Molecule is invalid, you could use constructor's initializer list:
Molecule() : w(0.0) { } // initializes `w` to `0.0`
s = symbol; where s is char[21] and symbol is char* will not copy strings, for C-style copying strcpy could be used (note that C and C++ are different languages)
you have called new[] so it would be nice and appropriate to call delete[] as well and instead of relying on OS cleaning it up after the program terminates: (otherwise follow the point 6)
Molecule *molecule = new Molecule[n];
...
delete[] molecule;
If you are allowed to use vectors, replace Molecule *molecule = new Molecule[n]; with std::vector<Molecule> molecules(n);
If you are allowed to use std::string1) objects, replace char[21] / char* with std::string objects
Other suggestions:
use meaningful names for variables, if you want to explicitly distinguish private members from other local variables, good convention is to use _ at the end of the name:
class Molecule {
private:
std::string symbol_;
std::string description_;
double weight_;
1) Basically what you need to know about std::string is that it is a template that wraps raw char* and it already contains well-defined copying, concatenation using operator + and most important: you don't need to bother with memory management. Just #include <string>
In the call
molecule[i].set(&symbol,&discription,weight);
you are passing a pointer to a char array. This does not match the char* that set expects.
The easiest/best fix is to change this to
molecule[i].set(symbol,description,weight);
relying on the symbol and description char arrays automatically decaying to pointers.
Alternatively, you could also write
molecule[i].set(&symbol[0],&description[0],weight);
to explicitly pass char*
[Note that there are many other errors in the code posted. Based on the question, I'm guessing they are just typos. Please update your question if you'd like more info onn any of the other errors.]

How to make char array and std::string "in a relationship"?

I'm looking for a way to associate a char array with a string so that whenever the char array changes, the string also changes. I tried to put both char array and string variables in a union but that didn't worked as the compiler complained...
Any ideas are welcome...
class Observable_CharArray
{
char* arr;
std::function<void(char*)> change_callback;
public:
Observable_CharArray(int size, std::function<void(char*)> callback)
: arr(new char[size]), change_callback(callback){}
~Observable_CharArray()/*as mentioned by Hulk*/
{
delete[] arr;
}
void SetCallback(std::function<void(char*)> callback)
{
change_callback = callback;
}
/*other member function to give access to array*/
void change_function()
{
//change the array here
change_callback(arr);
}
};
class Observer_String
{
std::string rep;
void callback(char* cc)
{
rep = std::string(cc);
}
public:
Observer_String(Observable_CharArray* och)
{
och->SetCallback(std::bind(&callback, this, _1));
}
/*other member functions to access rep*/
};
The design can definitely be improved.
There can be other ways to solve your actual problem rather than observing char arrays.
The problem is that the std::string may change the string array inside (especially when it resizes). For instance, c_str returns the address of the current string - documentation says that "The pointer returned may be invalidated by further calls to other member functions that modify the object.".
If you're sure you won't call string methods (hence the string will stay at the same memory location), you could try accessing the c_str pointer (your char array) directly and modify its content.
std::string str = "test";
char* arr = (char*)str.c_str();
arr[3] = 'a';
NOTE: I strongly advice against this unless in a testing context.
In other words, the string class doesn't guarantee it's going to stay in the same place in memory - meaning trying to access it through a char array is impossible.
The best is to create another string class that enforces the char array to always stay the same size (and so can stay in the same memory position all the time). You could also create a bigger array (max size string for instance) to cope with any string size changes - but that should be enforced in your wrapper class.
Well you can do this, but you shouldn't
#include <iostream>
#include <string>
int main()
{
std::string test("123456789");
std::cout << test << "\n";
char* data = &test.front(); // use &(*test.begin()) for pre-C++11 code
for ( size_t i(0); i < test.size(); ++i )
{
data[i] = 57 - i;
}
std::cout << test << "\n";
}
Output will be
123456789
987654321
This however goes again everything std::string is trying to facilitate for you. If you use data, you risk causing UB and changes to test may make data point to garbage.
You should not do this!
However, there are many (dangerous) ways to achieve it:
char* cStr = const_cast<char*>(cppStr.c_str());
or
char* cStr = const_cast<char*>(cppStr.data());
or
char* cStr = &cppStr[0];
But beware that the cppStr might be reallocated whenever you touch it, hence invalidating your cStr. That would crash at some point in time, although maybe not immediately (which is even worse).
Therefore, if you are going to do this anyway. Make sure to cppStr.reserve(SOMETHING) *before* you get the cStr out of it. This way, you will at least stabilise the pointer for a while.

deprecated conversion from string constant to 'char*' [duplicate]

This question already has answers here:
Closed 11 years ago.
Possible Duplicate:
C++ deprecated conversion from string constant to 'char*'
I want to pass a string via char* to a function.
char *Type = new char[10];
Type = "Access"; // ERROR
However I get this error:
error: deprecated conversion from string constant to 'char*'
How can I fix that?
If you really want to modify Type:
char *Type = new char[10];
strcpy( Type, "Access" );
If you don't want to modify access:
const char *Type = "Access";
Please note, that, however, arrays of char in C and in C++ come with a lot of problems. For example, you don't really know if the call to new has been successful, or whether it is going to throw an exception. Also, strcpy() could surpass the limit of 10 chars.
So you can consider, if you want to modify type later:
std::string Type = "Access";
And if you don't want to modify it:
const std::string Type = "Access";
... the benefit of using std::string is that it is able to cope with all these issues.
There are a couple of things going on here.
char *Type = new char[10];
This create a char* pointer named Type and initializes it to point to the first element of a newly allocated 10-element array.
Type = "Access"; // ERROR
This assignment doesn't do what you think it does. It doesn't copy the 6-character string "Access" (7 characters including the terminating '\0') to the array you just created. Instead, it assigns a pointer to the first element of that array into your pointer Type. There are two problems with that.
First, it clobbers the previous value of Type. That 10-character array you just allocated now has nothing pointing to it; you can no longer access it or even deallocate it. This is a memory leak.
This isn't what the compiler is complaining about.
Second, a string literal creates a statically allocated const array ("statically allocated" meaning it exists for the entire execution of your program). Type is not declared with a const qualifier. If the compiler allowed you to point Type to the string "Access", you could use that pointer to (attempt to) modify it:
Type = "Access";
Type[0] = 'a'; // try to change the string to "access"
The purpose of const is to prevent you from modifying, or even attempting to modify, things that are read-only. That's why you're not allowed to assign a non-const pointer value to a const pointer object.
Since you're programming in C++, you're probably better off using std::string.
I want to pass a string via char* to a function.
Here is how you can pass a string via char* to a function (note the required const keyword in the function signature.)
#include <iostream>
void f(const char* p) {
std::cout << p << "\n";
}
int main() {
f("Access");
}
But, what if you are invoking an existing function, and cannot modify its signature?
If you have some external guarantee that the function will not write through its argument pointer,
#include <iostream>
void f(char* p) {
std::cout << p << "\n";
}
int main() {
f(const_cast<char*>("Access"));
}
If, on the other hand, the function might write to the string, then you'll need to allocate space for the string:
#include <iostream>
void f(char* p) {
*++p;
std::cout << p << "\n";
}
int main() {
// Allocate read-write space on the heap
char *p = new char[strlen("Access"+1)];
// Copy string to allocated space
strcpy(p, "Access");
f(p);
delete p;
}
or,
#include <iostream>
void f(char* p) {
*++p;
std::cout << p << "\n";
}
int main() {
// Allocate read-write space on the stack
char arr[] = "Access";
f(arr);
}
But, the best course by far is to avoid the whole pointer mishegas:
#include <iostream>
void f(const std::string& p) {
std::cout << p << "\n";
}
int main() {
f("Access");
}
You've got a basic operations problem here, not a coding issue.
When you want to change the contents of a C char array, you do not use the assignment operator. That will instead change the value of the underlying pointer. Ick.
Instead you are supposed to use the C string library routines. For instance, strcpy (Type, "Access"); will copy the string literal "Access" into your character array, with its all-important trailing nul character.
If you are using C++ (as your tags indicate), you should probably be using std::string instead of arrays of char. Assignment works they way you are expecting there.