How to find the difference of all consecutive sub-sequences? - c++

I need to get an effective algorithm, which can find sum of the difference of all consecutive sub-sequences, but I don't know how to do it.
For example, all consecutive sub-sequences for 12345:
12 (Dif = 1)
23 (Dif = 1)
34 (Dif = 1)
45 (Dif = 1)
123 (Dif = 2)
234 (Dif = 2)
345 (Dif = 2)
1234 (Dif = 3)
2345 (Dif = 3)
12345 (Dif = 4)
Sum of the difference = 20
Count of sequence elements >= 2 <= 300000.
Each element >= 1 <= 10^7.
Time limit: 1s.
I wrote the code, but it's too slow:
#include <bits/stdc++.h>
using namespace std;
int main() {
cin.tie(0);
iostream::sync_with_stdio(false);
int count;
cin >> count;
int elem;
vector<int> vec;
int sum = 0;
for (int i = 0; i < count; i++) {
cin >> elem;
if (vec.size() > 0) {
sum += abs(vec.back() - elem);
}
vec.push_back(elem);
if (vec.size() > 2) {
sum += abs(*max_element(vec.begin(), vec.end()) - *min_element(vec.begin(), vec.end()));
}
for (int z = 3; z < count; z++) {
if (vec.size() > z) {
sum += abs(*max_element(vec.begin() + i - z + 1, vec.end()) - *min_element(vec.begin() + i - z + 1, vec.end()));
}
}
}
cout << sum;
return 0;
}
I found that the count of sub-sequences can be found by the triangle numbers formula (Where is n - length of sequence):
count = 1/2 * n * (n - 1);
For n = 300000, count of sub-sequence is 45 billion.
How to do it faster? I need algorithm.

My first thoughts were to build a tree in order to remember sub answers (i.e. dynamic-programming) and just combine the answers together. However, each higher branch isn't strictly speaking the sum of the nodes below it. Consider for example:
I noticed, however, that the nodes were predictable. Namely:
And when expanded to 6 consecutive nodes:
Which, summarily expressed is
SUM( i * (n - i) ) with i = [1 .. n) where n >=2
This of course runs in O(N) time and doesn't require anything other than add + multiply.
However, it bothered me that perhaps this summation formula could be reduced to a simple equation. So I looked up the properties of summation formulas and worked through to get a simple equation:
Which means that (n^3 - n) / 6 should execute in O(1) time. I tested it for the first 6 and it gave the right answers...

Related

Unable to figure out why my solution for Codechef problem MXEVNSUB is failing

Question: https://www.codechef.com/problems/MXEVNSUB
The following is my understanding of the problem.
This problem is asking for the maximum length of its contiguous subsequence with an even sum.
For
N = 1, Sum = 1 (odd sum but we need not bother about N = 1, since 2 <= N <= 10000)
N = 2, Sum = 3 (odd sum)
N = 3, Sum = 6 (even sum)
N = 4, Sum = 10 (even sum)
N = 5, Sum = 15 (odd sum)
N = 6, Sum = 21 (odd sum)
.
.
.
N = k- 1, Sum = ((k - 1) * k) / 2 (I assume it’s sum is odd)
N = k, Sum = (k * (k + 1)) / 2 (Worst case, this one might be odd too)
So I used the following logic in my code.
If the sum of numbers up to N is even, I can simply print the value of N and break out of the loop, else I reduce N by 1 and repeat the process.
The inner while loop in my code is a O(1) operation since in the worst case it runs 3 times (2 times for odd sum and the third time when sum is even)
Here is the code which is giving me WA
#include<bits/stdc++.h>
using namespace std;
int main(){
int tc; cin >> tc;
while(tc--){
int n; cin >> n;
if(n == 2) {
cout<<-1<<endl;
continue;
}
while(n){
if( ( (n * (n + 1) ) / 2 ) % 2 == 0){
cout << n << endl;
break;
}
n--;
}
}
}
I tried to submit the solution and it works for the sample test cases but is giving me Wrong Answer on submitting.

Optimization. How to speed up the given C ++ code?

This is my code. 1<=i<=j<=n j-i<=a 1<=n<=1000000 0<=a<=1000000
#include <iostream>
using namespace std;
int main(){
int n, a, r = 0;
cin>>n>>a;
for(int i = 1; i <= n; i++){
int j = i;
for(j; j <= n; j++){
if(j-i<=a){
r++;
}
}
}
cout<<r;
}
Instead of loops, I changed it to a simple check of variables, which greatly accelerated the code. there is no need to calculate thousands of options.
My final, optimized code is:
#include <iostream>
using namespace std;
int main(){
unsigned long long n, a, r = 0;
cin>>n>>a;
if(a==0){
r = n;
}
if(n<=a){
r = (n*(n+1))/2;
}
if(n>a){
r += (n-a)*(a+1) + (a*(a+1))/2;
}
cout<<r;
}
After accounting for both positive numbers, negative numbers, and zeros, your double-nested for-loop can be simplified into this:
if (n < 1)
{
r = 0;
}
else if (a == 0)
{
r = n;
}
else if (a < 0)
{
r = 0;
}
else if (n <= a)
{
r = (n * (n + 1)) / 2;
}
else
{
r = (n-a)*(a + 1) + (a * (a + 1)) / 2;
}
Recall that summing a sequence of digits from 1..N is:
N*(N+1)
-------
2
If n <= a (positive numbers), r is incremented n times in the inner loop on the first iteration of the outer loop. Then n-1 times, then n-2 times... all the way down to 1.
For cases where n > a, then there are n-a summations of a+1 followed by a decrementing summation from a down to 1
This strikes me as something to speed up by doing a bit of math, not by massaging the code.
Basically, we can think of the loops as defining a square matrix of the values of i and j. So let's assume n = 9, and a = 3. I'll draw in a + for each place we increment r, a blank for the values we don't generate, and a 0 for the places we generate values, but don't increment r.
i\j 1 2 3 4 5 6 7 8 9
1 + + + + 0 0 0 0 0
2 + + + + 0 0 0 0
3 + + + + 0 0 0
4 + + + + 0 0
5 + + + + 0
6 + + + +
7 + + +
8 + +
9 +
So, ignoring the last a rows (i.e., for the first n-a rows), in each row we have a band a + 1 elements wide where we do an increment. Then at the end, we have a triangle, where we're basically summing a + a-1 + a-2 ... 0.
So, the first piece is (a+1) * (n-a) and the second piece is a * (a+1) / 2. Add those together, and we get the final answer.
Seems like
for(j; j <= n; j++){
if(j-i<=a){
r++;
}
}
could be replaced by
r += f(i,n,a);
Where f() is some simple expression involving those 3 values, probably including the equivalent of min(..,..)
If you want to speed up your code, instead of just tuning your algorithm, you can also try to use some parallel api.
Parallel computing api such as OpenMP enables you take advantage of your cpu resources.
If you uses OpenMP, you can try to use it to parallel your loop.

C++ - Code Optimization

I have a problem:
You are given a sequence, in the form of a string with characters ‘0’, ‘1’, and ‘?’ only. Suppose there are k ‘?’s. Then there are 2^k ways to replace each ‘?’ by a ‘0’ or a ‘1’, giving 2^k different 0-1 sequences (0-1 sequences are sequences with only zeroes and ones).
For each 0-1 sequence, define its number of inversions as the minimum number of adjacent swaps required to sort the sequence in non-decreasing order. In this problem, the sequence is sorted in non-decreasing order precisely when all the zeroes occur before all the ones. For example, the sequence 11010 has 5 inversions. We can sort it by the following moves: 11010 →→ 11001 →→ 10101 →→ 01101 →→ 01011 →→ 00111.
Find the sum of the number of inversions of the 2^k sequences, modulo 1000000007 (10^9+7).
For example:
Input: ??01
-> Output: 5
Input: ?0?
-> Output: 3
Here's my code:
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <string>
#include <string.h>
#include <math.h>
using namespace std;
void ProcessSequences(char *input)
{
int c = 0;
/* Count the number of '?' in input sequence
* 1??0 -> 2
*/
for(int i=0;i<strlen(input);i++)
{
if(*(input+i) == '?')
{
c++;
}
}
/* Get all possible combination of '?'
* 1??0
* -> ??
* -> 00, 01, 10, 11
*/
int seqLength = pow(2,c);
// Initialize 2D array of integer
int **sequencelist, **allSequences;
sequencelist = new int*[seqLength];
allSequences = new int*[seqLength];
for(int i=0; i<seqLength; i++){
sequencelist[i] = new int[c];
allSequences[i] = new int[500000];
}
//end initialize
for(int count = 0; count < seqLength; count++)
{
int n = 0;
for(int offset = c-1; offset >= 0; offset--)
{
sequencelist[count][n] = ((count & (1 << offset)) >> offset);
// cout << sequencelist[count][n];
n++;
}
// cout << std::endl;
}
/* Change '?' in former sequence into all possible bits
* 1??0
* ?? -> 00, 01, 10, 11
* -> 1000, 1010, 1100, 1110
*/
for(int d = 0; d<seqLength; d++)
{
int seqCount = 0;
for(int e = 0; e<strlen(input); e++)
{
if(*(input+e) == '1')
{
allSequences[d][e] = 1;
}
else if(*(input+e) == '0')
{
allSequences[d][e] = 0;
}
else
{
allSequences[d][e] = sequencelist[d][seqCount];
seqCount++;
}
}
}
/*
* Sort each sequences to increasing mode
*
*/
// cout<<endl;
int totalNum[seqLength];
for(int i=0; i<seqLength; i++){
int num = 0;
for(int j=0; j<strlen(input); j++){
if(j==strlen(input)-1){
break;
}
if(allSequences[i][j] > allSequences[i][j+1]){
int temp = allSequences[i][j];
allSequences[i][j] = allSequences[i][j+1];
allSequences[i][j+1] = temp;
num++;
j = -1;
}//endif
}//endfor
totalNum[i] = num;
}//endfor
/*
* Sum of all Num of Inversions
*/
int sum = 0;
for(int i=0;i<seqLength;i++){
sum = sum + totalNum[i];
}
// cout<<"Output: "<<endl;
int out = sum%1000000007;
cout<< out <<endl;
} //end of ProcessSequences method
int main()
{
// Get Input
char seq[500000];
// cout << "Input: "<<endl;
cin >> seq;
char *p = &seq[0];
ProcessSequences(p);
return 0;
}
the results were right for small size input, but for bigger size input I got time CPU time limit > 1 second. I also got exceeded memory size. How to make it faster and optimal memory use? What algorithm should I use and what better data structure should I use?, Thank you.
Dynamic programming is the way to go. Imagine You are adding the last character to all sequences.
If it is 1 then You get XXXXXX1. Number of swaps is obviously the same as it was for every sequence so far.
If it is 0 then You need to know number of ones already in every sequence. Number of swaps would increase by the amount of ones for every sequence.
If it is ? You just add two previous cases together
You need to calculate how many sequences are there. For every length and for every number of ones (number of ones in the sequence can not be greater than length of the sequence, naturally). You start with length 1, which is trivial, and continue with longer. You can get really big numbers, so You should calculate modulo 1000000007 all the time. The program is not in C++, but should be easy to rewrite (array should be initialized to 0, int is 32bit, long in 64bit).
long Mod(long x)
{
return x % 1000000007;
}
long Calc(string s)
{
int len = s.Length;
long[,] nums = new long[len + 1, len + 1];
long sum = 0;
nums[0, 0] = 1;
for (int i = 0; i < len; ++i)
{
if(s[i] == '?')
{
sum = Mod(sum * 2);
}
for (int j = 0; j <= i; ++j)
{
if (s[i] == '0' || s[i] == '?')
{
nums[i + 1, j] = Mod(nums[i + 1, j] + nums[i, j]);
sum = Mod(sum + j * nums[i, j]);
}
if (s[i] == '1' || s[i] == '?')
{
nums[i + 1, j + 1] = nums[i, j];
}
}
}
return sum;
}
Optimalization
The code above is written to be as clear as possible and to show dynamic programming approach. You do not actually need array [len+1, len+1]. You calculate column i+1 from column i and never go back, so two columns are enough - old and new. If You dig more into it, You find out that row j of new column depends only on row j and j-1 of the old column. So You can go with one column if You actualize the values in the right direction (and do not overwrite values You would need).
The code above uses 64bit integers. You really need that only in j * nums[i, j]. The nums array contain numbers less than 1000000007 and 32bit integer is enough. Even 2*1000000007 can fit into 32bit signed int, we can make use of it.
We can optimize the code by nesting loop into conditions instead of conditions in the loop. Maybe it is even more natural approach, the only downside is repeating the code.
The % operator is, as every dividing, quite expensive. j * nums[i, j] is typically far smaller that capacity of 64bit integer, so we do not have to do modulo in every step. Just watch the actual value and apply when needed. The Mod(nums[i + 1, j] + nums[i, j]) can also be optimized, as nums[i + 1, j] + nums[i, j] would always be smaller than 2*1000000007.
And finally the optimized code. I switched to C++, I realized there are differences what int and long means, so rather make it clear:
long CalcOpt(string s)
{
long len = s.length();
vector<long> nums(len + 1);
long long sum = 0;
nums[0] = 1;
const long mod = 1000000007;
for (long i = 0; i < len; ++i)
{
if (s[i] == '1')
{
for (long j = i + 1; j > 0; --j)
{
nums[j] = nums[j - 1];
}
nums[0] = 0;
}
else if (s[i] == '0')
{
for (long j = 1; j <= i; ++j)
{
sum += (long long)j * nums[j];
if (sum > std::numeric_limits<long long>::max() / 2) { sum %= mod; }
}
}
else
{
sum *= 2;
if (sum > std::numeric_limits<long long>::max() / 2) { sum %= mod; }
for (long j = i + 1; j > 0; --j)
{
sum += (long long)j * nums[j];
if (sum > std::numeric_limits<long long>::max() / 2) { sum %= mod; }
long add = nums[j] + nums[j - 1];
if (add >= mod) { add -= mod; }
nums[j] = add;
}
}
}
return (long)(sum % mod);
}
Simplification
Time limit still exceeded? There is probably better way to do it. You can either
get back to the beginning and find out mathematically different way to calculate the result
or simplify actual solution using math
I went the second way. What we are doing in the loop is in fact convolution of two sequences, for example:
0, 0, 0, 1, 4, 6, 4, 1, 0, 0,... and 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,...
0*0 + 0*1 + 0*2 + 1*3 + 4*4 + 6*5 + 4*6 + 1*7 + 0*8...= 80
The first sequence is symmetric and the second is linear. It this case, the sum of convolution can be calculated from sum of the first sequence which is = 16 (numSum) and number from second sequence corresponding to the center of the first sequence, which is 5 (numMult). numSum*numMult = 16*5 = 80. We replace the whole loop with one multiplication if we are able to update those numbers in each step, which fortulately seems the case.
If s[i] == '0' then numSum does not change and numMult does not change.
If s[i] == '1' then numSum does not change, only numMult increments by 1, as we shift the whole sequence by one position.
If s[i] == '?' we add original and shiftet sequence together. numSum is multiplied by 2 and numMult increments by 0.5.
The 0.5 means a bit problem, as it is not the whole number. But we know, that the result would be whole number. Fortunately in modular arithmetics in this case exists inversion of two (=1/2) as a whole number. It is h = (mod+1)/2. As a reminder, inversion of 2 is such a number, that h*2=1 modulo mod. Implementation wisely it is easier to multiply numMult by 2 and divide numSum by 2, but it is just a detail, we would need 0.5 anyway. The code:
long CalcOptSimpl(string s)
{
long len = s.length();
long long sum = 0;
const long mod = 1000000007;
long numSum = (mod + 1) / 2;
long long numMult = 0;
for (long i = 0; i < len; ++i)
{
if (s[i] == '1')
{
numMult += 2;
}
else if (s[i] == '0')
{
sum += numSum * numMult;
if (sum > std::numeric_limits<long long>::max() / 4) { sum %= mod; }
}
else
{
sum = sum * 2 + numSum * numMult;
if (sum > std::numeric_limits<long long>::max() / 4) { sum %= mod; }
numSum = (numSum * 2) % mod;
numMult++;
}
}
return (long)(sum % mod);
}
I am pretty sure there exists some simple way to get this code, yet I am still unable to see it. But sometimes path is the goal :-)
If a sequence has N zeros with indexes zero[0], zero[1], ... zero[N - 1], the number of inversions for it would be (zero[0] + zero[1] + ... + zero[N - 1]) - (N - 1) * N / 2. (you should be able to prove it)
For example, 11010 has two zeros with indexes 2 and 4, so the number of inversions would be 2 + 4 - 1 * 2 / 2 = 5.
For all 2^k sequences, you can calculate the sum of two parts separately and then add them up.
1) The first part is zero[0] + zero[1] + ... + zero[N - 1]. Each 0 in the the given sequence contributes index * 2^k and each ? contributes index * 2^(k-1)
2) The second part is (N - 1) * N / 2. You can calculate this using a dynamic programming (maybe you should google and learn this first). In short, use f[i][j] to present the number of sequence with j zeros using the first i characters of the given sequence.

How to find divisor to maximise remainder?

Given two numbers n and k, find x, 1 <= x <= k that maximises the remainder n % x.
For example, n = 20 and k = 10 the solution is x = 7 because the remainder 20 % 7 = 6 is maximum.
My solution to this is :
int n, k;
cin >> n >> k;
int max = 0;
for(int i = 1; i <= k; ++i)
{
int xx = n - (n / i) * i; // or int xx = n % i;
if(max < xx)
max = xx;
}
cout << max << endl;
But my solution is O(k). Is there any more efficient solution to this?
Not asymptotically faster, but faster, simply by going backwards and stopping when you know that you cannot do better.
Assume k is less than n (otherwise just output k).
int max = 0;
for(int i = k; i > 0 ; --i)
{
int xx = n - (n / i) * i; // or int xx = n % i;
if(max < xx)
max = xx;
if (i < max)
break; // all remaining values will be smaller than max, so break out!
}
cout << max << endl;
(This can be further improved by doing the for loop as long as i > max, thus eliminating one conditional statement, but I wrote it this way to make it more obvious)
Also, check Garey and Johnson's Computers and Intractability book to make sure this is not NP-Complete (I am sure I remember some problem in that book that looks a lot like this). I'd do that before investing too much effort on trying to come up with better solutions.
This problem is equivalent to finding maximum of function f(x)=n%x in given range. Let's see how this function looks like:
It is obvious that we could get the maximum sooner if we start with x=k and then decrease x while it makes any sense (until x=max+1). Also this diagram shows that for x larger than sqrt(n) we don't need to decrease x sequentially. Instead we could jump immediately to preceding local maximum.
int maxmod(const int n, int k)
{
int max = 0;
while (k > max + 1 && k > 4.0 * std::sqrt(n))
{
max = std::max(max, n % k);
k = std::min(k - 1, 1 + n / (1 + n / k));
}
for (; k > max + 1; --k)
max = std::max(max, n % k);
return max;
}
Magic constant 4.0 allows to improve performance by decreasing number of iterations of the first (expensive) loop.
Worst case time complexity could be estimated as O(min(k, sqrt(n))). But for large enough k this estimation is probably too pessimistic: we could find maximum much sooner, and if k is significantly greater than sqrt(n) we need only 1 or 2 iterations to find it.
I did some tests to determine how many iterations are needed in the worst case for different values of n:
n max.iterations (both/loop1/loop2)
10^1..10^2 11 2 11
10^2..10^3 20 3 20
10^3..10^4 42 5 42
10^4..10^5 94 11 94
10^5..10^6 196 23 196
up to 10^7 379 43 379
up to 10^8 722 83 722
up to 10^9 1269 157 1269
Growth rate is noticeably better than O(sqrt(n)).
For k > n the problem is trivial (take x = n+1).
For k < n, think about the graph of remainders n % x. It looks the same for all n: the remainders fall to zero at the harmonics of n: n/2, n/3, n/4, after which they jump up, then smoothly decrease towards the next harmonic.
The solution is the rightmost local maximum below k. As a formula x = n//((n//k)+1)+1 (where // is integer division).
waves hands around
No value of x which is a factor of n can produce the maximum n%x, since if x is a factor of n then n%x=0.
Therefore, you would like a procedure which avoids considering any x that is a factor of n. But this means you want an easy way to know if x is a factor. If that were possible you would be able to do an easy prime factorization.
Since there is not a known easy way to do prime factorization there cannot be an "easy" way to solve your problem (I don't think you're going to find a single formula, some kind of search will be necessary).
That said, the prime factorization literature has cunning ways of getting factors quickly relative to a naive search, so perhaps it can be leveraged to answer your question.
Nice little puzzle!
Starting with the two trivial cases.
for n < k: any x s.t. n < x <= k solves.
for n = k: x = floor(k / 2) + 1 solves.
My attempts.
for n > k:
x = n
while (x > k) {
x = ceil(n / 2)
}
^---- Did not work.
x = floor(float(n) / (floor(float(n) / k) + 1)) + 1
x = ceil(float(n) / (floor(float(n) / k) + 1)) - 1
^---- "Close" (whatever that means), but did not work.
My pride inclines me to mention that I was first to utilize the greatest k-bounded harmonic, given by 1.
Solution.
Inline with other answers I simply check harmonics (term courtesy of #ColonelPanic) of n less than k, limiting by the present maximum value (courtesy of #TheGreatContini). This is the best of both worlds and I've tested with random integers between 0 and 10000000 with success.
int maximalModulus(int n, int k) {
if (n < k) {
return n;
}
else if (n == k) {
return n % (k / 2 + 1);
}
else {
int max = -1;
int i = (n / k) + 1;
int x = 1;
while (x > max + 1) {
x = (n / i) + 1;
if (n%x > max) {
max = n%x;
}
++i;
}
return max;
}
}
Performance tests:
http://cpp.sh/72q6
Sample output:
Average number of loops:
bruteForce: 516
theGreatContini: 242.8
evgenyKluev: 2.28
maximalModulus: 1.36 // My solution
I'm wrong for sure, but it looks to me that it depends on if n < k or not.
I mean, if n < k, n%(n+1) gives you the maximum, so x = (n+1).
Well, on the other hand, you can start from j = k and go back evaluating n%j until it's equal to n, thus x = j is what you are looking for and you'll get it in max k steps... Too much, is it?
Okay, we want to know divisor that gives maximum remainder;
let n be a number to be divided and i be the divisor.
we are interested to find the maximum remainder when n is divided by i, for all i<n.
we know that, remainder = n - (n/i) * i //equivalent to n%i
If we observe the above equation to get maximum remainder we have to minimize (n/i)*i
minimum of n/i for any i<n is 1.
Note that, n/i == 1, for i<n, if and only if i>n/2
now we have, i>n/2.
The least possible value greater than n/2 is n/2+1.
Therefore, the divisor that gives maximum remainder, i = n/2+1
Here is the code in C++
#include <iostream>
using namespace std;
int maxRemainderDivisor(int n){
n = n>>1;
return n+1;
}
int main(){
int n;
cin>>n;
cout<<maxRemainderDivisor(n)<<endl;
return 0;
}
Time complexity: O(1)

Triangle numbers problem....show within 4 seconds

The sequence of triangle numbers is
generated by adding the natural
numbers. So the 7th triangle number
would be 1 + 2 + 3 + 4 + 5 + 6 + 7 =
28. The first ten terms would be:
1, 3, 6, 10, 15, 21, 28, 36, 45, 55,
...
Let us list the factors of the first
seven triangle numbers:
1: 1
3: 1,3
6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28
We can see that 28 is the first
triangle number to have over five
divisors.
Given an integer n, display the first
triangle number having at least n
divisors.
Sample Input: 5
Output 28
Input Constraints: 1<=n<=320
I was obviously able to do this question, but I used a naive algorithm:
Get n.
Find triangle numbers and check their number of factors using the mod operator.
But the challenge was to show the output within 4 seconds of input. On high inputs like 190 and above it took almost 15-16 seconds. Then I tried to put the triangle numbers and their number of factors in a 2d array first and then get the input from the user and search the array. But somehow I couldn't do it: I got a lot of processor faults. Please try doing it with this method and paste the code. Or if there are any better ways, please tell me.
Here's a hint:
The number of divisors according to the Divisor function is the product of the power of each prime factor plus 1. For example, let's consider the exponential prime representation of 28:
28 = 22 * 30 * 50 * 71 * 110...
The product of each exponent plus one is: (2+1)*(0+1)*(0+1)*(1+1)*(0+1)... = 6, and sure enough, 28 has 6 divisors.
Now, consider that the nth triangular number can be computed in closed form as n(n+1)/2. We can multiply numbers written in the exponential prime form simply by adding up the exponents at each position. Dividing by two just means decrementing the exponent on the two's place.
Do you see where I'm going with this?
Well, you don't go into a lot of detail about what you did, but I can give you an optimization that can be used, if you didn't think of it...
If you're using the straightforward method of trying to find factors of a number n, by using the mod operator, you don't need to check all the numbers < n. That obviously would take n comparisons...you can just go up to floor(sqrt(n)). For each factor you find, just divide n by that number, and you'll get the conjugate value, and not need to find it manually.
For example: say n is 15.
We loop, and try 1 first. Yep, the mod checks out, so it's a factor. We divide n by the factor to get the conjugate value, so we do (15 / 1) = 15...so 15 is a factor.
We try 2 next. Nope. Then 3. Yep, which also gives us (15 / 3) = 5.
And we're done, because 4 is > floor(sqrt(n)). Quick!
If you didn't think of it, that might be something you could leverage to improve your times...overall you go from O(n) to O(sqrt (n)) which is pretty good (though for numbers this small, constants may still weigh heavily.)
I was in a programming competition way back in school where there was some similar question with a run time limit. the team that "solved" it did as follows:
1) solve it with a brute force slow method.
2) write a program to just print out the answer (you found using the slow method), which will run sub second.
I thought this was bogus, but they won.
see Triangular numbers: a(n) = C(n+1,2) = n(n+1)/2 = 0+1+2+...+n. (Formerly M2535 N1002)
then pick the language you want implement it in, see this:
"... Python
import math
def diminishing_returns(val, scale):
if val < 0:
return -diminishing_returns(-val, scale)
mult = val / float(scale)
trinum = (math.sqrt(8.0 * mult + 1.0) - 1.0) / 2.0
return trinum * scale
..."
First, create table with two columns: Triangle_Number Count_of_Factors.
Second, derive from this a table with the same columns, but consisting only of the 320 rows of the lowest triangle number with a distinct number of factors.
Perform your speedy lookup to the second table.
If you solved the problem, you should be able to access the thread on Project Euler in which people post their (some very efficient) solutions.
If you're going to copy and paste a problem, please cite the source (unless it was your teacher who stole it); and I second Wouter van Niferick's comment.
Well, at least you got a good professor. Performance is important.
Since you have a program that can do the job, you can precalculate all of the answers for 1 .. 320.
Store them in an array, then simply subscript into the array to get the answer. That will be very fast.
Compile with care, winner of worst code of the year :D
#include <iostream>
bool isPrime( unsigned long long number ){
if( number != 2 && number % 2 == 0 )
return false;
for( int i = 3;
i < static_cast<unsigned long long>
( sqrt(static_cast<double>(number)) + 1 )
; i += 2 ){
if( number % i == 0 )
return false;
}
return true;
}
unsigned int p;
unsigned long long primes[1024];
void initPrimes(){
primes[0] = 2;
primes[1] = 3;
unsigned long long number = 5;
for( unsigned int i = 2; i < 1024; i++ ){
while( !isPrime(number) )
number += 2;
primes[i] = number;
number += 2;
}
return;
}
unsigned long long nextPrime(){
unsigned int ret = p;
p++;
return primes[ret];
}
unsigned long long numOfDivs( unsigned long long number ){
p = 0;
std::vector<unsigned long long> v;
unsigned long long prime = nextPrime(), divs = 1, i = 0;
while( number >= prime ){
i = 0;
while( number % prime == 0 ){
number /= prime;
i++;
}
if( i )
v.push_back( i );
prime = nextPrime();
}
for( unsigned n = 0; n < v.size(); n++ )
divs *= (v[n] + 1);
return divs;
}
unsigned long long nextTriNumber(){
static unsigned long long triNumber = 1, next = 2;
unsigned long long retTri = triNumber;
triNumber += next;
next++;
return retTri;
}
int main()
{
initPrimes();
unsigned long long n = nextTriNumber();
unsigned long long divs = 500;
while( numOfDivs(n) <= divs )
n = nextTriNumber();
std::cout << n;
std::cin.get();
}
def first_triangle_number_with_over_N_divisors(N):
n = 4
primes = [2, 3]
fact = [None, None, {2:1}, {3:1}]
def num_divisors (x):
num = 1
for mul in fact[x].values():
num *= (mul+1)
return num
while True:
factn = {}
for p in primes:
if p > n//2: break
r = n // p
if r * p == n:
factn = fact[r].copy()
factn[p] = factn.get(p,0) + 1
if len(factn)==0:
primes.append(n)
factn[n] = 1
fact.append(factn)
(x, y) = (n-1, n//2) if n % 2 == 0 else (n, (n-1)//2)
numdiv = num_divisors(x) * num_divisors(y)
if numdiv >= N:
print('Triangle number %d: %d divisors'
%(x*y, numdiv))
break
n += 1
>>> first_triangle_number_with_over_N_divisors(500)
Triangle number 76576500: 576 divisors
Dude here is ur code, go have a look. It calculates the first number that has divisors greater than 500.
void main() {
long long divisors = 0;
long long nat_num = 0;
long long tri_num = 0;
int tri_sqrt = 0;
while (1) {
divisors = 0;
nat_num++;
tri_num = nat_num + tri_num;
tri_sqrt = floor(sqrt((double)tri_num));
long long i = 0;
for ( i=tri_sqrt; i>=1; i--) {
long long remainder = tri_num % i;
if ( remainder == 0 && tri_num == 1 ) {
divisors++;
}
else if (remainder == 0 && tri_num != 1) {
divisors++;
divisors++;
}
}
if (divisors >100) {
cout <<"No. of divisors: "<<divisors<<endl<<tri_num<<endl;
}
if (divisors > 500)
break;
}
cout<<"Final Result: "<<tri_num<<endl;
system("pause");
}
Boojum's answer motivated me to write this little program. It seems to work well, although it does use a brute force method of computing primes. It's neat how all the natural numbers can be broken down into prime number components.
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <iomanip>
#include <vector>
//////////////////////////////////////////////////////////////////////////////
typedef std::vector<size_t> uint_vector;
//////////////////////////////////////////////////////////////////////////////
// add a prime number to primes[]
void
primeAdd(uint_vector& primes)
{
size_t n;
if (primes.empty())
{
primes.push_back(2);
return;
}
for (n = *(--primes.end()) + 1; ; ++n)
{
// n is even -> not prime
if ((n & 1) == 0) continue;
// look for a divisor in [2,n)
for (size_t i = 2; i < n; ++i)
{
if ((n % i) == 0) continue;
}
// found a prime
break;
}
primes.push_back(n);
}
//////////////////////////////////////////////////////////////////////////////
void
primeFactorize(size_t n, uint_vector& primes, uint_vector& f)
{
f.clear();
for (size_t i = 0; n > 1; ++i)
{
while (primes.size() <= i) primeAdd(primes);
while (f.size() <= i) f.push_back(0);
while ((n % primes[i]) == 0)
{
++f[i];
n /= primes[i];
}
}
}
//////////////////////////////////////////////////////////////////////////////
int
main(int argc, char** argv)
{
// allow specifying number of TN's to be evaluated
size_t lim = 1000;
if (argc > 1)
{
lim = atoi(argv[1]);
}
if (lim == 0) lim = 1000;
// prime numbers
uint_vector primes;
// factors of (n), (n + 1)
uint_vector* f = new uint_vector();
uint_vector* f1 = new uint_vector();
// sum vector
uint_vector sum;
// prime factorize (n)
size_t n = 1;
primeFactorize(n, primes, *f);
// iterate over triangle-numbers
for (; n <= lim; ++n)
{
// prime factorize (n + 1)
primeFactorize(n + 1, primes, *f1);
while (f->size() < f1->size()) f->push_back(0);
while (f1->size() < f->size()) f1->push_back(0);
size_t numTerms = f->size();
// compute prime factors for (n * (n + 1) / 2)
sum.clear();
size_t i;
for (i = 0; i < numTerms; ++i)
{
sum.push_back((*f)[i] + (*f1)[i]);
}
--sum[0];
size_t numFactors = 1, tn = 1;
for (i = 0; i < numTerms; ++i)
{
size_t exp = sum[i];
numFactors *= (exp + 1);
while (exp-- != 0) tn *= primes[i];
}
std::cout
<< n << ". Triangle number "
<< tn << " has " << numFactors << " factors."
<< std::endl;
// prepare for next iteration
f->clear();
uint_vector* tmp = f;
f = f1;
f1 = tmp;
}
delete f;
delete f1;
return 0;
}