c++ parse two bytes to int - c++

I have two bytes read from a sensor over I2C, these are stored as unsigned char. I do know which is the most significant byte, and which is the least significant byte.
unsigned char yawMSB;
unsigned char yawLSB;
How would I go about converting these two bytes of data, into a single int?
I've had this implemented properly in C# using
BitConverter.ToInt16(new byte[] { yawLSB, yawMSB }, 0)

In a 16-bit integer, the top 8 bits are the most significant byte, and the low 8 bits are the least significant byte.
To make the most significant byte occupy the top bits, you need to shift its value up (by 8 bits), which is done with the left-shift bitwise operator <<.
Then to get the least significant byte you just add the low 8 bits using bitwise or |.
Put together it will be something like yawMSB << 8 | yawLSB.

I do know which is the most significant byte, and which is the least significant byte.
MSB means Most Significant byte.
LSB means Least Significant byte.
How would I go about converting these two bytes of data, into a single float?
You can then build a float whose value is:
const float yaw = yawMSB << 8 + yawLSB;
Actually, the value yawMSB << 8 + yawLSB is probably on a scale defined by your implementation. If it is true, and if it is a linear scale from 0 to MAX_YAW, you should define your value as:
const float yaw = float(yawMSB << 8 + yawLSB) / MAX_YAW; // gives yaw in [0.f, 1.f].

Related

c++ combining 2 uint8_t into one uint16_t not working?

So I have a little piece of code that takes 2 uint8_t's and places then next to each other, and then returns a uint16_t. The point is not adding the 2 variables, but putting them next to each other and creating a uint16_t from them.
The way I expect this to work is that when the first uint8_t is 0, and the second uint8_t is 1, I expect the uint16_t to also be one.
However, this is in my code not the case.
This is my code:
uint8_t *bytes = new uint8_t[2];
bytes[0] = 0;
bytes[1] = 1;
uint16_t out = *((uint16_t*)bytes);
It is supposed to make the bytes uint8_t pointer into a uint16_t pointer, and then take the value. I expect that value to be 1 since x86 is little endian. However it returns 256.
Setting the first byte to 1 and the second byte to 0 makes it work as expected. But I am wondering why I need to switch the bytes around in order for it to work.
Can anyone explain that to me?
Thanks!
There is no uint16_t or compatible object at that address, and so the behaviour of *((uint16_t*)bytes) is undefined.
I expect that value to be 1 since x86 is little endian. However it returns 256.
Even if the program was fixed to have well defined behaviour, your expectation is backwards. In little endian, the least significant byte is stored in the lowest address. Thus 2 byte value 1 is stored as 1, 0 and not 0, 1.
Does endianess also affect the order of the bit's in the byte or not?
There is no way to access a bit by "address"1, so there is no concept of endianness. When converting to text, bits are conventionally shown most significant on left and least on right; just like digits of decimal numbers. I don't know if this is true in right to left writing systems.
1 You can sort of create "virtual addresses" for bits using bitfields. The order of bitfields i.e. whether the first bitfield is most or least significant is implementation defined and not necessarily related to byte endianness at all.
Here is a correct way to set two octets as uint16_t. The result will depend on endianness of the system:
// no need to complicate a simple example with dynamic allocation
uint16_t out;
// note that there is an exception in language rules that
// allows accessing any object through narrow (unsigned) char
// or std::byte pointers; thus following is well defined
std::byte* data = reinterpret_cast<std::byte*>(&out);
data[0] = 1;
data[1] = 0;
Note that assuming that input is in native endianness is usually not a good choice, especially when compatibility across multiple systems is required, such as when communicating through network, or accessing files that may be shared to other systems.
In these cases, the communication protocol, or the file format typically specify that the data is in specific endianness which may or may not be the same as the native endianness of your target system. De facto standard in network communication is to use big endian. Data in particular endianness can be converted to native endianness using bit shifts, as shown in Frodyne's answer for example.
In a little endian system the small bytes are placed first. In other words: The low byte is placed on offset 0, and the high byte on offset 1 (and so on). So this:
uint8_t* bytes = new uint8_t[2];
bytes[0] = 1;
bytes[1] = 0;
uint16_t out = *((uint16_t*)bytes);
Produces the out = 1 result you want.
However, as you can see this is easy to get wrong, so in general I would recommend that instead of trying to place stuff correctly in memory and then cast it around, you do something like this:
uint16_t out = lowByte + (highByte << 8);
That will work on any machine, regardless of endianness.
Edit: Bit shifting explanation added.
x << y means to shift the bits in x y places to the left (>> moves them to the right instead).
If X contains the bit-pattern xxxxxxxx, and Y contains the bit-pattern yyyyyyyy, then (X << 8) produces the pattern: xxxxxxxx00000000, and Y + (X << 8) produces: xxxxxxxxyyyyyyyy.
(And Y + (X<<8) + (Z<<16) produces zzzzzzzzxxxxxxxxyyyyyyyy, etc.)
A single shift to the left is the same as multiplying by 2, so X << 8 is the same as X * 2^8 = X * 256. That means that you can also do: Y + (X*256) + (Z*65536), but I think the shifts are clearer and show the intent better.
Note that again: Endianness does not matter. Shifting 8 bits to the left will always clear the low 8 bits.
You can read more here: https://en.wikipedia.org/wiki/Bitwise_operation. Note the difference between Arithmetic and Logical shifts - in C/C++ unsigned values use logical shifts, and signed use arithmetic shifts.
If p is a pointer to some multi-byte value, then:
"Little-endian" means that the byte at p is the least-significant byte, in other words, it contains bits 0-7 of the value.
"Big-endian" means that the byte at p is the most-significant byte, which for a 16-bit value would be bits 8-15.
Since the Intel is little-endian, bytes[0] contains bits 0-7 of the uint16_t value and bytes[1] contains bits 8-15. Since you are trying to set bit 0, you need:
bytes[0] = 1; // Bits 0-7
bytes[1] = 0; // Bits 8-15
Your code works but your misinterpreted how to read "bytes"
#include <cstdint>
#include <cstddef>
#include <iostream>
int main()
{
uint8_t *in = new uint8_t[2];
in[0] = 3;
in[1] = 1;
uint16_t out = *((uint16_t*)in);
std::cout << "out: " << out << "\n in: " << in[1]*256 + in[0]<< std::endl;
return 0;
}
By the way, you should take care of alignment when casting this way.
One way to think in numbers is to use MSB and LSB order
which is MSB is the highest Bit and LSB ist lowest Bit for
Little Endian machines.
For ex.
(u)int32: MSB:Bit 31 ... LSB: Bit 0
(u)int16: MSB:Bit 15 ... LSB: Bit 0
(u)int8 : MSB:Bit 7 ... LSB: Bit 0
with your cast to a 16Bit value the Bytes will arrange like this
16Bit <= 8Bit 8Bit
MSB ... LSB BYTE[1] BYTE[0]
Bit15 Bit0 Bit7 .. 0 Bit7 .. 0
0000 0001 0000 0000 0000 0001 0000 0000
which is 256 -> correct value.

16-bit to 10-bit conversion code explanation

I came across the following code to convert 16-bit numbers to 10-bit numbers and store it inside an integer. Could anyone maybe explain to me what exactly is happening with the AND 0x03?
// Convert the data to 10-bits
int xAccl = (((data[1] & 0x03) * 256) + data[0]);
if(xAccl > 511) {
xAccl -= 1024;
}
Link to where I got the code: https://www.instructables.com/id/Measurement-of-Acceleration-Using-ADXL345-and-Ardu/
The bitwise operator & will make a mask, so in this case, it voids the 6 highest bits of the integer.
Basically, this code does a modulo % 1024 (for unsigned values).
data[1] takes the 2nd byte; & 0x03 masks that byte with binary 11 - so: takes 2 bits; * 256 is the same as << 8 - i.e. pushes those 2 bits into the 9th and 10th positions; adding data[0] to data combines these two bytes (personally I'd have used |, not +).
So; xAccl is now the first 10 bits, using big-endian ordering.
The > 511 seems to be a sign check; essentially, it is saying "if the 10th bit is set, treat the entire thing as a negative integer as though we'd used 10-bit twos complement rules".

Why does masking a negative number produce a positive number?

in c++, I have the following code:
int x = -3;
x &= 0xffff;
cout << x;
This produces
65533
But if I remove the negative, so I have this:
int x = 3;
x &= 0xffff;
cout << x;
I simply get 3 as a result
Why does the first result not produce a negative number? I would expect that -3 would be sign extended to 16 bits, which should still give a twos complement negative number, considering all those extended bits would be 1. Consequently the most significant bit would be 1 too.
It looks like your system uses 32-bit ints with two's complement representation of negatives.
Constant 0xFFFF covers the least significant two bytes, with the upper two bytes are zero.
The value of -3 is 0xFFFFFFFD, so masking it with 0x0000FFFF you get 0x0000FFFD, or 65533 in decimal.
Positive 3 is 0x00000003, so masking with 0x0000FFFF gives you 3 back.
You would get the result that you expect if you specify 16-bit data type, e.g.
int16_t x = -3;
x &= 0xffff;
cout << x;
In your case int is more than 2 bytes. You probably run on modern CPU where usually these days integer is 4 bytes (or 32 bits)
If you take a look the way system stores negative numbers you will see that its a complementary number. And if you take only last 2 bytes as your mask is 0xFFFF then you will get only a part of it.
your 2 options:
use short intstead of int. Usually its a half of integer and will be only 2 bites
use bigger mask like 0xFFFFFFFF that it covers all the bits of your integer
NOTE: I use "usually" because the amount of bits in your int and short depends on your CPU and compiler.

Shifting syntax error

I have a byte array:
byte data[2]
I want to to keep the 7 less significant bits from the first and the 3 most significant bits from the second.
I do this:
unsigned int the=((data[0]<<8 | data[1])<<1)>>6;
Can you give me a hint why this does not work?
If I do it in different lines it works fine.
Can you give me a hint why this does not work?
Hint:
You have two bytes and want to preserve 7 less significant bits from the first and the 3 most significant bits from the second:
data[0]: -xxxxxxx data[1]: xxx-----
-'s represent bits to remove, x's represent bits to preserve.
After this
(data[0]<<8 | data[1])<<1
you have:
the: 00000000 0000000- xxxxxxxx xx-----0
Then you make >>6 and result is:
the: 00000000 00000000 00000-xx xxxxxxxx
See, you did not remove high bit from data[0].
Keep the 7 less significant bits from the first and the 3 most significant bits from the second.
Assuming the 10 bits to be preserved should be the LSB of the unsigned int value, and should be contiguous, and that the 3 bits should be the LSB of the result, this should do the job:
unsigned int value = ((data[0] & 0x7F) << 3) | ((data[1] & 0xE0) >> 5);
You might not need all the masking operands; it depends in part on the definition of byte (probably unsigned char, or perhaps plain char on a machine where char is unsigned), but what's written should work anywhere (16-bit, 32-bit or 64-bit int; signed or unsigned 8-bit (or 16-bit, or 32-bit, or 64-bit) values for byte).
Your code does not remove the high bit from data[0] at any point — unless, perhaps, you're on a platform where unsigned int is a 16-bit value, but if that's the case, it is unusual enough these days to warrant a comment.

PIC Bit Masking and Shifting for 4 Bit LCD Control

I have a question regarding both masking and bit shifting.
I have the following code:
void WriteLCD(unsigned char word, unsigned commandType, unsigned usDelay)
{
// Most Significant Bits
// Need to do bit masking for upper nibble, and shift left by 8.
LCD_D = (LCD & 0x0FFF) | (word << 8);
EnableLCD(commandType, usDelay); // Send Data
// Least Significant Bits
// Need to do bit masking for lower nibble, and shift left by 12.
LCD_D = (LCD & 0x0FFF) | (word << 12);
EnableLCD(commandType, usDelay); // Send Data
}
The "word" is 8 bits, and is being put through a 4 bit LCD interface. Meaning I have to break the most significant bits and least significant bits apart before I send the data.
LCD_D is a 16 bit number, in which only the most significant bits I pass to it I want to actually "do" something. I want the previous 12 bits preserved in case they were doing something else.
Is my logic in terms of bit masking and shifting the "word" correct in terms of passing the upper and lower nibbles appropriately to the LCD_D?
Thanks for the help!
Looks ok apart from needing to cast "word" to an unsigned short (16 bit) before the shift, in both cases, so that the shift is not performed on a char and looses the data. eg:
LCD_D = (LCD & 0x0FFF) | ((unsigned short) word << 8);