I'm trying to solve an inheritance problem, where a derived class Snake inherits from LivingThing -> Animal -> Reptile, however, when I don't add virtual void crawl() to class LivingThing, the compiler says error: no member named 'crawl' in 'LivingThing'. Now I don't want to have to implement a virtual void in LivingThing which is specific for Snakes.
#include <iostream>
class LivingThing
{
public:
void breathe()
{
std::cout << "I'm breathing as a living thing." << std::endl;
}
virtual void crawl() {} //dont' want this
};
class Animal : virtual public LivingThing
{
public:
void breathe()
{
std::cout << "I'm breathing as an animal." << std::endl;
}
};
class Reptile : virtual public LivingThing
{
public:
void crawl()
{
std::cout << "I'm crawling as a reptile." << std::endl;
}
void breathe()
{
std::cout << "I'm breathing as a reptile." << std::endl;
}
};
class Snake : public Animal, public Reptile
{
public:
void breathe()
{
std::cout << "I'm breathing as a snake." << std::endl;
}
void crawl()
{
std::cout << "I'm crawling as a snake." << std::endl;
}
};
int main()
{
LivingThing *snake = new Snake();
snake->breathe();
snake->crawl();
system("pause");
return 0;
}
snake->crawl(); tries to access crawl through a LivingThing*, without a v-table reference, LivingThing* cannot call Snake::crawl.
In your current example you could just change the LivingThing pointer to be a Snake pointer.
In a more complex situation:
If you know that the pointer you're calling crawl on points to an object that is infact a Snake then you can static_cast the pointer.
if(Snake* snake = static_cast<Snake*>(livingThing))
snake->crawl();
If you have no guarantee that the living thing is actually a Snake and you have rtti available then you can use dynamic_cast.
if(Snake* snake = dynamic_cast<Snake*>(livingThing))
snake->crawl();
When you upcast object to it's base type, you can only use methods which are declared in this base class. So if you don't want to declare crawl method in your base type, you've to downcast your object before using this method:
LivingThing *creature = new Snake();
creature->breathe();
if(Snake* snake = dynamic_cast<Snake*>(creature)) snake->crawl();
Related
I have some code I'm trying to get to work, I'm open to other suggestions on how to do this. Basically, I have some base class that I want a bunch of subclasses to inherit. I then have a function that needs to call the subclass version of this method.
#include <iostream>
using namespace std;
//my base class
class BaseClass {
public:
void myMethod(){
std::cout << "Base class?" << std::endl;
}
};
/my subclass
class SubClass1: public BaseClass{
public:
void myMethod(){
std::cout << "Subclass?" << std::endl;
}
};
//method that I want to call SubClass.myMethod(). I cannot declare this as
//SubClass1 because there will be multiple of these.
void call_method(BaseClass object){
return object.myMethod();
}
int main()
{
BaseClass bc;
SubClass1 sb1;
//works how I expect it to
sb1.myMethod();
//I want this to also print "Subclass?"
//but it prints "Base class?".
call_method(sb1);
return 0;
}
Thanks for your help
You need to declare the member function in the base class as virtual. For example
virtual void myMethod() const {
std::cout << "Base class?" << std::endl;
}
And in the derived class to override it
void myMethod() const override {
std::cout << "Subclass?" << std::endl;
}
And the function call_method must have a parameter that represents a reference to base class object
void call_method( const BaseClass &object){
object.myMethod();
}
I have a component in a software that can be described by an interface / virtual class.
Which non-virtual subclass is needed is decided by a GUI selection at runtime.
Those subclasses have unique methods, for which is makes no sense to give them a shared interface (e.g. collection of different data types and hardware access).
A minimal code example looks like this:
#include <iostream>
#include <memory>
using namespace std;
// interface base class
class Base
{
public:
virtual void shared()=0;
};
// some subclasses with shared and unique methods
class A : public Base
{
public:
void shared()
{
cout << "do A stuff\n";
}
void methodUniqueToA()
{
cout << "stuff unique to A\n";
}
};
class B : public Base
{
public:
void shared()
{
cout << "do B stuff\n";
}
void methodUniqueToB()
{
cout << "stuff unique to B\n";
}
};
// main
int main()
{
// it is not known at compile time, which subtype will be needed. Therefore: pointer has base class type:
shared_ptr<Base> basePtr;
// choose which object subtype is needed by GUI - in this case e.g. now A is required. Could also have been B!
basePtr = make_shared<A>();
// do some stuff which needs interface functionality... so far so good
basePtr->shared();
// now I want to do methodUniqueToA() only if basePtr contains type A object
// this won't compile obviously:
basePtr->methodUniqueToA(); // COMPILE ERROR
// I could check the type using dynamic_pointer_cast, however this ist not very elegant!
if(dynamic_pointer_cast<A>(basePtr))
{
dynamic_pointer_cast<A>(basePtr)->methodUniqueToA();
}
else
if(dynamic_pointer_cast<B>(basePtr))
{
dynamic_pointer_cast<B>(basePtr)->methodUniqueToB();
}
else
{
// throw some exception
}
return 0;
}
Methods methodUniqueTo*() could have different argument lists and return data which is omitted here for clarity.
I suspect that this problem isn't a rare case. E.g. for accessing different hardware by the different subclasses while also needing the polymorphic functionality of their container.
How does one generally do this?
For the sake of completeness: the output (with compiler error fixed):
do A stuff
stuff unique to A
You can have an enum which will represent the derived class. For example this:
#include <iostream>
#include <memory>
using namespace std;
enum class DerivedType
{
NONE = 0,
AType,
BType
};
class Base
{
public:
Base()
{
mType = DerivedType::NONE;
}
virtual ~Base() = default; //You should have a virtual destructor :)
virtual void shared() = 0;
DerivedType GetType() const { return mType; };
protected:
DerivedType mType;
};
// some subclasses with shared and unique methods
class A : public Base
{
public:
A()
{
mType = DerivedType::AType;
}
void shared()
{
cout << "do A stuff\n";
}
void methodUniqueToA()
{
cout << "stuff unique to A\n";
}
};
class B : public Base
{
public:
B()
{
mType = DerivedType::BType;
}
void shared()
{
cout << "do B stuff\n";
}
void methodUniqueToB()
{
cout << "stuff unique to B\n";
}
};
// main
int main()
{
shared_ptr<Base> basePtr;
basePtr = make_shared<B>();
basePtr->shared();
// Here :)
if(basePtr->GetType() == DerivedType::AType)
static_cast<A*>(basePtr.get())->methodUniqueToA();
else if(basePtr->GetType() == DerivedType::BType)
static_cast<B*>(basePtr.get())->methodUniqueToB();
return 0;
}
You can store an enum and initialize it at the constructor. Then have a Getter for that, which will give you the Type. Then a simple static cast after getting the type would do your job!
The goal of using polymorphism for the client is to control different objects with a single way. In other words, the client do not have to pay any attention to the difference of each object. That way, checking the type of each object violates the basic goal.
To achieve the goal, you will have to :
write the concrete method(methodUniqueToX()).
write a wrapper of the concrete method.
name the wrapper method abstract.
make the method public and interface/abstract.
class Base
{
public:
virtual void shared()=0;
virtual void onEvent1()=0;
virtual void onEvent2()=0;
};
// some subclasses with shared and unique methods
class A : public Base
{
private:
void methodUniqueToA()
{
cout << "stuff unique to A\n";
}
public:
void shared()
{
cout << "do A stuff\n";
}
void onEvent1()
{
this.methodUniqueToA()
}
void onEvent2()
{
}
};
class B : public Base
{
private:
void methodUniqueToB()
{
cout << "stuff unique to B\n";
}
public:
void shared()
{
cout << "do B stuff\n";
}
void onEvent1()
{
}
void onEvent2()
{
methodUniqueToB()
}
};
I'm using multiple inheritance in C++ and extending base methods by calling their base explicitly. Assume the following hierarchy:
Creature
/ \
Swimmer Flier
\ /
Duck
Which corresponds to
class Creature
{
public:
virtual void print()
{
std::cout << "I'm a creature" << std::endl;
}
};
class Swimmer : public virtual Creature
{
public:
void print()
{
Creature::print();
std::cout << "I can swim" << std::endl;
}
};
class Flier : public virtual Creature
{
public:
void print()
{
Creature::print();
std::cout << "I can fly" << std::endl;
}
};
class Duck : public Flier, public Swimmer
{
public:
void print()
{
Flier::print();
Swimmer::print();
std::cout << "I'm a duck" << std::endl;
}
};
Now this presents a problem - calling the duck's print method calls its respective base methods, all of which in turn call the Creature::print() method, so it ends up being called twice-
I'm a creature
I can fly
I'm a creature
I can swim
I'm a duck
I would like to find a way to make sure the base method is called only once. Something similar to the way virtual inheritance works (calling the base constructor on the first call, then only assigning a pointer to it on successive calls from other derived classes).
Is there some built-in way to do this or do we need to resort to implementing one ourselves?
If so, how would you approach this?
The question isn't specific to printing. I wondered if there's a mechanism for extending base methods and functionality while keeping the call order and avoiding the diamond problem.
I understand now that the most prominent solution would be to add helper methods, but I just wondered if there's a "cleaner" way.
Most likely this is a XY problem. But ... just don't call it twice.
#include <iostream>
class Creature
{
public:
virtual void identify()
{
std::cout << "I'm a creature" << std::endl;
}
};
class Swimmer : public virtual Creature
{
public:
virtual void identify() override
{
Creature::identify();
tell_ability();
std::cout << "I'm a swimmer\n";
}
virtual void tell_ability()
{
std::cout << "I can swim\n";
}
};
class Flier : public virtual Creature
{
public:
virtual void identify() override
{
Creature::identify();
tell_ability();
std::cout << "I'm a flier\n";
}
virtual void tell_ability()
{
std::cout << "I can fly\n";
}
};
class Duck : public Flier, public Swimmer
{
public:
virtual void tell_ability() override
{
Flier::tell_ability();
Swimmer::tell_ability();
}
virtual void identify() override
{
Creature::identify();
tell_ability();
std::cout << "I'm a duck\n";
}
};
int main()
{
Creature c;
c.identify();
std::cout << "------------------\n";
Swimmer s;
s.identify();
std::cout << "------------------\n";
Flier f;
f.identify();
std::cout << "------------------\n";
Duck d;
d.identify();
std::cout << "------------------\n";
}
Output:
I'm a creature
------------------
I'm a creature
I can swim
I'm a swimmer
------------------
I'm a creature
I can fly
I'm a flier
------------------
I'm a creature
I can fly
I can swim
I'm a duck
------------------
We can let the base class keep track of the attributes:
#include <iostream>
#include <string>
#include <vector>
using namespace std::string_literals;
class Creature
{
public:
std::string const attribute{"I'm a creature"s};
std::vector<std::string> attributes{attribute};
virtual void print()
{
for (auto& i : attributes)
std::cout << i << std::endl;
}
};
class Swimmer : public virtual Creature
{
public:
Swimmer() { attributes.push_back(attribute); }
std::string const attribute{"I can swim"s};
};
class Flier : public virtual Creature
{
public:
Flier() { attributes.push_back(attribute); }
std::string const attribute{"I can fly"s};
};
class Duck : public Flier, public Swimmer
{
public:
Duck() { attributes.push_back(attribute); }
std::string const attribute{"I'm a duck"s};
};
int main()
{
Duck d;
d.print();
}
Likewise, if it is not just printing we're after, but rather the function calls, then we could let the base class keep track of the functions:
#include <iostream>
#include <functional>
#include <vector>
class Creature
{
public:
std::vector<std::function<void()>> print_functions{[this] {Creature::print_this(); }};
virtual void print_this()
{
std::cout << "I'm a creature" << std::endl;
}
void print()
{
for (auto& f : print_functions)
f();
}
};
class Swimmer : public virtual Creature
{
public:
Swimmer() { print_functions.push_back([this] {Swimmer::print_this(); }); }
void print_this()
{
std::cout << "I can swim" << std::endl;
}
};
class Flier : public virtual Creature
{
public:
Flier() { print_functions.push_back([this] {Flier::print_this(); }); }
void print_this()
{
std::cout << "I can fly" << std::endl;
}
};
class Duck : public Flier, public Swimmer
{
public:
Duck() { print_functions.push_back([this] {Duck::print_this(); }); }
void print_this()
{
std::cout << "I'm a duck" << std::endl;
}
};
int main()
{
Duck d;
d.print();
}
An easy way is to create a bunch of helper classes that mimick the inheritance structure of your main hierarchy and do all the printing in their constructors.
struct CreaturePrinter {
CreaturePrinter() {
std::cout << "I'm a creature\n";
}
};
struct FlierPrinter: virtual CreaturePrinter ...
struct SwimmerPrinter: virtual CreaturePrinter ...
struct DuckPrinter: FlierPrinter, SwimmerPrinter ...
Then each print method in the main hierarchy just creates the corresponding helper class. No manual chaining.
For maintainability you can make each printer class nested in its corresponding main class.
Naturally in most real world cases you want to pass a reference to the main object as an argument to the constructor of its helper.
Your explicit calls to the print methods form the crux of the issue.
One way round this would be to drop the print calls, and replace them with say
void queue(std::set<std::string>& data)
and you accumulate the print messages into the set. Then it doesn't matter those functions in the hierarchy get called more than once.
You then implement the printing of the set in a single method in Creature.
If you want to preserve the order of printing, then you'd need to replace the set with another container that respects the order of insertion and rejects duplicates.
If you want that middle class method, do not call the base class method. The easiest and simplest way is to extract extra methods, and then reimplementing Print is easy.
class Creature
{
public:
virtual void print()
{
std::cout << "I'm a creature" << std::endl;
}
};
class Swimmer : public virtual Creature
{
public:
void print()
{
Creature::print();
detailPrint();
}
void detailPrint()
{
std::cout << "I can swim" << std::endl;
}
};
class Flier : public virtual Creature
{
public:
void print()
{
Creature::print();
detailPrint();
}
void detailPrint()
{
std::cout << "I can fly" << std::endl;
}
};
class Duck : public Flier, public Swimmer
{
public:
void print()
{
Creature::Print();
Flier::detailPrint();
Swimmer::detailPrint();
detailPrint();
}
void detailPrint()
{
std::cout << "I'm a duck" << std::endl;
}
};
Without details what is your actual problem is, it hard to come up with a better solution.
Use:
template<typename Base, typename Derived>
bool is_dominant_descendant(Derived * x) {
return std::abs(
std::distance(
static_cast<char*>(static_cast<void*>(x)),
static_cast<char*>(static_cast<void*>(dynamic_cast<Base*>(x)))
)
) <= sizeof(Derived);
};
class Creature
{
public:
virtual void print()
{
std::cout << "I'm a creature" << std::endl;
}
};
class Walker : public virtual Creature
{
public:
void print()
{
if (is_dominant_descendant<Creature>(this))
Creature::print();
std::cout << "I can walk" << std::endl;
}
};
class Swimmer : public virtual Creature
{
public:
void print()
{
if (is_dominant_descendant<Creature>(this))
Creature::print();
std::cout << "I can swim" << std::endl;
}
};
class Flier : public virtual Creature
{
public:
void print()
{
if (is_dominant_descendant<Creature>(this))
Creature::print();
std::cout << "I can fly" << std::endl;
}
};
class Duck : public Flier, public Swimmer, public Walker
{
public:
void print()
{
Walker::print();
Swimmer::print();
Flier::print();
std::cout << "I'm a duck" << std::endl;
}
};
And with Visual Studio 2015 the output is:
I'm a creature
I can walk
I can swim
I can fly
I'm a duck
But is_dominant_descendant does not have a portable definition. I wish it were a standard concept.
You are asking for something like inheritance on a function level that automatically calls the inherited function and just adds more code. Also you want it to be done in a virtual way just like class inheritance. Pseudo syntax:
class Swimmer : public virtual Creature
{
public:
// Virtually inherit from Creature::print and extend it by another line of code
void print() : virtual Creature::print()
{
std::cout << "I can swim" << std::endl;
}
};
class Flier : public virtual Creature
{
public:
// Virtually inherit from Creature::print and extend it by another line of code
void print() : virtual Creature::print()
{
std::cout << "I can fly" << std::endl;
}
};
class Duck : public Flier, public Swimmer
{
public:
// Inherit from both prints. As they were created using "virtual function inheritance",
// this will "mix" them just like in virtual class inheritance
void print() : Flier::print(), Swimmer::print()
{
std::cout << "I'm a duck" << std::endl;
}
};
So the answer to your question
Is there some built-in way to do this?
is no. Something like this does not exist in C++. Also, I'm not aware of any other language that has something like this. But it is an interesting idea...
Imagine if I have class hierachy like this (Inheritance Hierarchy A):
Vehicle
MotorVehicle
Automobile
Motorcycle
WaterCraft
Sailboat
Canoe
If the Vehicle class contains functions named get_retail_price() and get_description(), and the get_description() function is overridden by every subclass in the hierarchy, without a virtual function in the base class, which get_description() function is executed by the following code?
void display_vehicle(const Vehicle& v)
{
std::cout << "Description: " << v.get_description() << ā\nā
<< "Retail price: " << v.get_retail_price() << "\n\n";
}
int main()
{
Motorcycle motorcycle("Harley-Davidson FXDR 114", 21349.0);
display_vehicle(motorcycle);
return 0;
}
I think it is the one in the Vehicle class because every subclass is redefining the get_descritption() function. But it the Vehicle class that calls it. Am I right to assume this?
And last question, what would happen if display_vehicle(const Vechicle& v) had a return type of any class? Something like Automobile display_vehicle(const Vehicle& v). Will it still call get_description() in the Vehicle class?
For member functions that are not virtual, it's the function of the known type that is invoked.
Here, the only known type is Vehicle:
void display_vehicle(const Vehicle& v)
{
std::cout << "Description: " << v.get_description() << ā\nā
<< "Retail price: " << v.get_retail_price() << "\n\n";
}
Note by the way that in such a case, you don't override the funcions. But you define a new function which hides the function of the base class.
If the function would be virtual, it would be the function of the object's real type that would be called.
Here a small snippet to show the different cases:
class Vehicle {
public:
virtual void show() { cout<<"I'm a vehicle"<<endl; } // virtual
void print() { cout <<"I'm a vehicle"<<endl; } // not virtual
void invokeshow() { show(); } // not virtual but invoking virtual
void invokespecificshow() { Vehicle::show(); } // not virtual invoking specific
~Vehicle() {} //at least one virtual ? then virtual destructor
};
class Motorcycle: public Vehicle {
public:
void show() override { cout<<"I'm a motorcycle"<<endl; }
void print() { cout <<"I'm a motorcycle"<<endl; }
};
void test(Vehicle &v) {
v.show();
v.print();
v.invokeshow();
v.invokespecificshow();
}
Online demo
I am expecting "My Game" to print out but I am getting "Base"
This only happens when using methods internally inside the class.
#include <iostream>
namespace Monster { class App {
public:
App(){}
~App(){}
void run(){
this->speak();
}
void speak(){
std::cout << "Base" << "\n";
};
};}; // class / namespace
class MyGame : public Monster::App {
public:
MyGame(){}
~MyGame(){}
void speak(){
std::cout << "My Game" << "\n";
};
};
int main(){
MyGame *child = new MyGame;
child->run();
return 0;
}
In C++ you need to specifically declare a function to be virtual:
class BaseClass {
virtual void speak () {
...
}
};
In C++ a method can only be overridden if it was marked virtual. You can think of virtual as a synonym for "overridable".
The virtual keyword has to appear in the base class. It may also appear optionally in the subclasses at the point of override, but it does not have to.
If you are using a compiler that supports C++11 (and you should if you are learning C++), I recommend that you always use the new override keyword when you mean to override:
class Base {
public:
virtual void speak() {
std::cout << "Base";
}
};
class Derived : public Base {
public:
void speak() override { // <---
std::cout << "Derived";
}
};
If the method isn't actually an override, the compiler will tell you so by giving an error.
It is not always obvious on the first read whether a method is an override. For example the following is correct thanks to return type covariance:
class A {};
class B : public A {};
class Base {
public:
virtual A* foo() {
return nullptr;
}
};
class Derived : public Base {
public:
B* foo() override {
return nullptr;
}
};
This might not be useful very often, but override makes it clear in case someone has to read it.
Also, if you have at least one virtual method in your class, also make its destructor virtual. This will assure that all the destructors will run when needed and things get cleaned up properly:
class App {
public:
App() {}
virtual ~App() {} // <---
void run() {
this->speak();
}
virtual void speak() {
std::cout << "Base\n";
};
};