How can I factor the following code, so that I can do loop through T = double and T = float? I have read about variadic templates but I
don't understand how to apply it in this case:
int main(int argc, char* argv[])
{
ofstream writeDat;
vector<int> nValues = {26,51,101,201};
for(int i = 0; i< 4; i++){
int N = nValues[i];
typedef float T ;
Matrix<T> a(N,N);
Matrix<T> b(N,3);
Matrix<T> x = Problem2<T>(N);
string sFloat = "2/" + to_string(N) + "Float"+".dat";
writeDat.open(sFloat);
for(int i =1; i<N ; i++)
writeDat << i << " " << x(i,1)<<endl;
writeDat << N <<" "<< x(N,1)<< endl;
writeDat.close();
}
for(int i = 0; i< 4; i++){
int N = nValues[i];
typedef double T ;
Matrix<T> a(N,N);
Matrix<T> b(N,3);
Matrix<T> x = Problem2<T>(N);
string s = "2/" + to_string(N) + "Double"+".dat";
writeDat.open(s);
for(int i =1; i<N ; i++)
writeDat << i << " " << x(i,1)<<endl;
writeDat << N <<" "<< x(N,1)<< endl;
writeDat.close();
}
return 0;
}
Use variadic expansion to call a template function (or variadic lambda) containing your duplicated logic:
#include<fstream>
#include<vector>
// the concept of a type wrapper
template<class T> struct type_wrapper;
// a model of type_wrapper for floats
template<>
struct type_wrapper<float> {
using type = float;
constexpr const char* name() const { return "Float"; }
};
// a model of type_wrapper for doubles
template<>
struct type_wrapper<double> {
using type = double;
constexpr const char* name() const { return "Double"; }
};
// call a template function once for each type wrapper in Ts...
template<class...Ts, class F>
auto for_each_type(F&& f)
{
(f(type_wrapper<Ts>()),...);
}
template<class T>
struct Matrix
{
Matrix(int, int);
T& operator()(int, int);
};
template<class T> Matrix<T> Problem2(int);
int main()
{
auto process = [](auto twrap) {
using T = typename decltype(twrap)::type;
std::ofstream writeDat;
std::vector<int> nValues = {26,51,101,201};
for(int i = 0; i< 4; i++){
int N = nValues[i];
Matrix<T> a(N,N);
Matrix<T> b(N,3);
Matrix<T> x = Problem2<T>(N);
std::string sFloat = "2/" + std::to_string(N) + twrap.name() + ".dat";
writeDat.open(sFloat);
for(int i =1; i<N ; i++)
writeDat << i << " " << x(i,1)<<std::endl;
writeDat << N <<" "<< x(N,1)<< std::endl;
writeDat.close();
}
};
for_each_type<double, float>(process);
}
https://godbolt.org/z/w6g6AC
Note:
You can make for_each_type more portable (i.e. work on c++14) like this:
template<class...Ts, class F>
auto for_each_type(F&& f)
{
#if __cplusplus >= 201703L
(f(type_wrapper<Ts>()),...);
#else
using expand = int[];
expand {
0,
(f(type_wrapper<Ts>()), 0)...
};
#endif
}
I have read about variadic templates but I don't understand how to
apply it in this case:
I believe what you are asking is answered most adequately by #RichardHodges. For reference sake, in case you want to be able to compare doing this the variadic template (since C++11) or fold expression (since C++17) way with doing this the function template only way (not that there's a special reason to do so), then you could use this snippet for example:
#include <vector>
#include <fstream>
using namespace std;
// Undefined struct
template <typename T> struct not_available;
// Non-specialized instantiations are not allowed, by using the undefined struct
template <typename T>
constexpr const char* type_string(){ return not_available<T>{}; }
// Specializing for `float`
template <>
constexpr const char* type_string<float>(){ return "Float"; }
// Specializing for `Double`
template <>
constexpr const char* type_string<double>(){ return "Double"; }
// Your classes
template<class T>
struct Matrix
{
Matrix(int, int);
T& operator()(int, int);
};
template<class T> Matrix<T> Problem2(int);
ofstream writeDat;
vector<int> nValues = {26,51,101,201};
// Your routine
template <typename T>
void func()
{
for(int i = 0; i< 4; i++){
int N = nValues[i];
Matrix<T> a(N,N);
Matrix<T> b(N,3);
Matrix<T> x = Problem2<T>(N);
string s = "2/" + to_string(N) + type_string<T>() +".dat";
writeDat.open(s);
for(int i =1; i<N ; i++)
writeDat << i << " " << x(i,1)<<endl;
writeDat << N <<" "<< x(N,1)<< endl;
writeDat.close();
}
}
int main(int argc, char* argv[])
{
func<float>();
func<double>();
return 0;
}
Note: This snippet tries to stick as much as possible to your original, but the absence of good enough reason I wouldn't necessarily advise using global variables, neither opting for using namespace std instead of referring to names with std::.
Related
So i'm making a sorting function and i want it to sort my elements depending on the getter i give it.
The problem is my getter is const and thats why my current code doesn't work. If i remove const it works just fine.
struct User {
string name;
string getX() const { return name; } //// doesnt work with this
string getX() { return name; } //// this works fine. but i need my getter to be const
};
template <typename ElemType, typename MemberType>
void _sort(std::vector<ElemType>& vec, MemberType(ElemType::* member)(), bool ascending = true)
{
for (int j = 0; j < vec.size() - 1; ++j)
for (int i = 0; i < vec.size() - j - 1; ++i)
if (((vec[i].*member)() < (vec[i + 1].*member)()) ^ ascending)
swap(vec[i], vec[i + 1]);
}
int main()
{
vector<User> a{ User{"Z"}, User{"E"}, User{"B"}, User{"R"}, User{"A"} };
for (auto e : a)
cout << e.name << " ";
cout << endl;
_sort(a, &User::getX);
for (auto e : a)
cout << e.name << " ";
cout << endl;
return 0;
}
What do i do to make it work with const getter
Just make the parameter const as well:
template <typename ElemType, typename MemberType>
void _sort(std::vector<ElemType>& vec, MemberType(ElemType::* member)() const, bool ascending = true)
________________________________________________________________________^^^^^
Or don't make the parameter that specific:
template <typename ElemType, typename MemberType>
void _sort(std::vector<ElemType>& vec, MemberType member, bool ascending = true)
The former won't work if the getter isn't const, while the latter will work with anything. If you pass the latter a function that cannot be called like (vec[i].*member)(), then the compilation error will be there instead of in the signature of _sort.
I have an integer N which I know at compile time. I also have an std::array holding integers describing the shape of an N-dimensional array. I want to generate nested loops, as described bellow, at compile time, using metaprogramming techniques.
constexpr int N {4};
constexpr std::array<int, N> shape {{1,3,5,2}};
auto f = [/* accept object which uses coords */] (auto... coords) {
// do sth with coords
};
// This is what I want to generate.
for(int i = 0; i < shape[0]; i++) {
for(int j = 0; j < shape[1]; j++) {
for(int k = 0; k < shape[2]; k++) {
for(int l = 0; l < shape[3]; l++) {
f(i,j,k,l) // object is modified via the lambda function.
}
}
}
}
Note the parameter N is known at compile time but might change unpredictably between compilations, hence I can't hard code the loops as above. Ideally the loop generation mechanism will provide an interface which accepts the lambda function, generates the loops and calls the function producing the equivalent code as above. I am aware that one can write an equivalent loop at runtime with a single while loop and an array of indices, and there are answers to this question already. I am, however, not interested in this solution. I am also not interested in solutions involving preprocessor magic.
Something like this (NOTE: I take the "shape" as a variadic template argument set..)
#include <iostream>
template <int I, int ...N>
struct Looper{
template <typename F, typename ...X>
constexpr void operator()(F& f, X... x) {
for (int i = 0; i < I; ++i) {
Looper<N...>()(f, x..., i);
}
}
};
template <int I>
struct Looper<I>{
template <typename F, typename ...X>
constexpr void operator()(F& f, X... x) {
for (int i = 0; i < I; ++i) {
f(x..., i);
}
}
};
int main()
{
int v = 0;
auto f = [&](int i, int j, int k, int l) {
v += i + j + k + l;
};
Looper<1, 3, 5, 2>()(f);
auto g = [&](int i) {
v += i;
};
Looper<5>()(g);
std::cout << v << std::endl;
}
Assuming you don't want total loop unrolling, just generation of i, j, k etc. argument tuples for f:
#include <stdio.h>
#include <utility> // std::integer_sequence
template< int dim >
constexpr auto item_size_at()
-> int
{ return ::shape[dim + 1]*item_size_at<dim + 1>(); }
template<> constexpr auto item_size_at<::N-1>() -> int { return 1; }
template< size_t... dim >
void call_f( int i, std::index_sequence<dim...> )
{
f( (i/item_size_at<dim>() % ::shape[dim])... );
}
auto main()
-> int
{
int const n_items = ::shape[0]*item_size_at<0>();
for( int i = 0; i < n_items; ++i )
{
call_f( i, std::make_index_sequence<::N>() );
}
}
I suppose this is exactly what you asked for:
#include <array>
#include <iostream>
constexpr int N{4};
constexpr std::array<int, N> shape {{1,3,5,2}};
// Diagnositcs
template<typename V, typename ...Vals>
struct TPrintf {
constexpr static void call(V v, Vals ...vals) {
std::cout << v << " ";
TPrintf<Vals...>::call(vals...);
}
};
template<typename V>
struct TPrintf<V> {
constexpr static void call(V v) {
std::cout << v << std::endl;
}
};
template<typename ...Vals>
constexpr void t_printf(Vals ...vals) {
TPrintf<Vals...>::call(vals...);
}
// Unroll
template<int CtIdx, typename F>
struct NestedLoops {
template<typename ...RtIdx>
constexpr static void call(const F& f, RtIdx ...idx) {
for(int i = 0; i < shape[CtIdx]; ++i) {
NestedLoops<CtIdx + 1, F>::call(f, idx..., i);
}
}
};
template<typename F>
struct NestedLoops<N-1, F> {
template<typename ...RtIdx>
constexpr static void call(const F& f, RtIdx ...idx) {
for(int i = 0; i < shape[N-1]; ++i) {
f(idx..., i);
}
}
};
template<typename F>
void nested_loops(const F& f) {
NestedLoops<0, F>::call(f);
}
int main()
{
auto lf = [](int i, int j, int k, int l) {
t_printf(i,j,k,l);
};
nested_loops(lf);
return 0;
}
Another variant of the same thing:
template <size_t shape_index, size_t shape_size>
struct Looper
{
template <typename Functor>
void operator()(const std::array<int, shape_size>& shape, Functor functor)
{
for (int index = 0; index < shape[shape_index]; ++index)
{
Looper<shape_index + 1, shape_size>()
(
shape,
[index, &functor](auto... tail){ functor(index, tail...); }
);
}
}
};
template <size_t shape_size>
struct Looper<shape_size, shape_size>
{
template <typename Functor>
void operator()(const std::array<int, shape_size>&, Functor functor)
{
functor();
}
};
template <size_t shape_size, typename Functor>
void loop(const std::array<int, shape_size>& shape, Functor functor)
{
Looper<0, shape_size>()(shape, functor);
}
Example of use:
constexpr size_t N {4};
constexpr std::array<int, N> shape {{1,3,5,2}};
void f(int i, int j, int k, int l)
{
std::cout
<< std::setw(5) << i
<< std::setw(5) << j
<< std::setw(5) << k
<< std::setw(5) << l
<< std::endl;
}
// ...
loop(shape, f);
Live demo
I need to store the array of first N Fibonacci numbers.
const int N = 100;
long long int fib[N] = {0};
fib[0] = 1;
fib[1] = 1;
for(int i = 2; i < N; ++i)
fib[i] = fib[i-2] + fib[i-1];
return 0;
Is it possible to make fib[] constexpr, and evaluate it at compilation time somehow ?
First of all you have to write Fibonacci algorithm in compile time version, so consider following:
template <size_t N>
struct Fibo {
static constexpr const size_t value {Fibo<N-2>::value + Fibo<N-1>::value};
};
template <>
struct Fibo<0> {
static constexpr const size_t value {1};
};
template <>
struct Fibo<1> {
static constexpr const size_t value {1};
};
and you can use this as simply as that:
std::cout << Fibo<0>::value << std::endl;
std::cout << Fibo<1>::value << std::endl;
std::cout << Fibo<2>::value << std::endl;
std::cout << Fibo<3>::value << std::endl;
std::cout << Fibo<10>::value << std::endl;
std::cout << Fibo<50>::value << std::endl;
and output values are:
1
1
2
3
89
20365011074
But this is still not you are looking for.
I do not know if you can make constexpr array (but probably there is a possibility), but you can do it slightly different. Consider:
template <size_t N>
struct Storage {
static size_t data[N+1];
};
template <size_t N> size_t Storage<N>::data[N+1] {};
template <size_t N, size_t F>
struct Filler {
static constexpr void fill () {
Storage<N>::data[F] = Fibo<F>::value;
Filler<N, F-1>::fill ();
}
};
template <size_t N>
struct Filler<N, 0> {
static constexpr void fill () {
Storage<N>::data[0] = Fibo<0>::value;
}
};
template <size_t N>
struct Calc {
static constexpr void calc () {
Filler<N, N>::fill ();
}
};
and the usage would be like this:
constexpr const size_t N = 12;
Calc<N>::calc ();
size_t* ptr = Storage<N>::data;
for (int i = 0; i <= N; ++i) {
std::cout << ptr[i] << std::endl;
}
and output:
1
1
2
3
5
8
13
21
34
55
89
144
233
What is important here is the Storage class which stores our array with appropriate number of elements.
General Filler class (with two template parameters) is used for any F value that can be passed, except value of 0. Because if we reach the 0 index, we don't want to call once again fill() member function, because we are done. So that's the reason why partial specialization of Filler class exists.
Hope I can help with this.
There is a way (ugly one), but I can't think of anything else.
#include <iostream>
#include <cmath>
constexpr unsigned long long f(int x)
{
return 1/sqrt(5)*pow(((1+sqrt(5))/2),x) - 1/sqrt(5)*pow(((1-sqrt(5))/2),x);
}
#define FIBB1(x) 1
#define FIBB2(x) FIBB1(x-1),1
#define FIBB3(x) FIBB2(x-1),f(x)
#define FIBB4(x) FIBB3(x-1),f(x)
#define FIBB5(x) FIBB4(x-1),f(x)
#define FIBB6(x) FIBB5(x-1),f(x)
#define FIBB7(x) FIBB6(x-1),f(x)
#define FIBB8(x) FIBB7(x-1),f(x)
#define FIBB9(x) FIBB8(x-1),f(x)
#define FIBB10(x) FIBB9(x-1),f(x)
#define FIBB11(x) FIBB10(x-1),f(x)
#define FIBB12(x) FIBB11(x-1),f(x)
#define FIBB13(x) FIBB12(x-1),f(x)
#define FIBB14(x) FIBB13(x-1),f(x)
#define FIBB15(x) FIBB14(x-1),f(x)
#define FIBB16(x) FIBB15(x-1),f(x)
#define FIBB17(x) FIBB16(x-1),f(x)
#define FIBB18(x) FIBB17(x-1),f(x)
#define FIBB19(x) FIBB18(x-1),f(x)
#define FIBB20(x) FIBB19(x-1),f(x)
// ...
#define FIBB93(x) FIBB92(x-1),f(x)
//#define FIBB94(x) FIBB93(x-1),f(x) //unsigned long long overflow, can't calculate more
#define FIBB(x) {FIBB##x(x)}
constexpr unsigned long long fib[93] = FIBB(93);
int main()
{
// all possible fibbonacci numbers for unsigned long long implementation
for(int i=0; i<93; ++i)
std::cout << fib[i] << std::endl;
}
I think it's the only way for C++ built-in array.
Here's a C++14 solution (GCC >= 5.0.0, Clang >= 3.5.0) using a template argument for the length. You write an imperative loop (identical to your original post) in a constexpr function. Using a disassembler, you can see the sequence is embedded into the program as raw data, even with no optimizations (-O0).
#include <array>
#include <cstddef>
#include <iostream>
#include <type_traits>
#include <utility>
namespace {
// Create an std::array from a C array (internal) via an
// std::index_sequence.
template <typename T, typename TSequence> struct MakeArrayImpl;
template <typename T, std::size_t... TIndices>
struct MakeArrayImpl<T, std::index_sequence<TIndices...>> {
static constexpr std::array<T, sizeof...(TIndices)>
make_array(T values[sizeof...(TIndices)]) {
return std::array<T, sizeof...(TIndices)>{{values[TIndices]...}};
}
};
// Create an std::array from a C array.
template <typename T, std::size_t TLength>
constexpr std::array<T, TLength> make_array(T values[TLength]) {
return MakeArrayImpl<T, std::make_index_sequence<TLength>>::make_array(
values);
}
// Return an std::array of the first numbers in the Fibonacci sequence.
template <std::size_t TLength>
constexpr std::array<long long int, TLength> fibs() {
// Original algorithm.
long long int fib[TLength] = {0};
fib[0] = 1;
fib[1] = 1;
for (std::size_t i = 2; i < TLength; ++i) {
fib[i] = fib[i - 2] + fib[i - 1];
}
return make_array<long long int, TLength>(fib);
}
}
int main() {
// Original algorithm.
const int N = 92;
long long int fib[N] = {0};
fib[0] = 1;
fib[1] = 1;
for (int i = 2; i < N; ++i)
fib[i] = fib[i - 2] + fib[i - 1];
// Test constexpr algorithm against original algorithm.
static constexpr auto values = fibs<N>();
static_assert(values.size() == N, "Expected N values in Fibs");
for (int i = 0; i < N; ++i) {
if (fib[i] != values[i]) {
std::cerr << "Mismatch at index " << i << "\n";
std::cerr << "Expected: " << fib[i] << "\n";
std::cerr << "Actual : " << values[i] << "\n";
}
}
}
In the code sample you posted, there is a decent chance that the compiler may unroll the loop, or at least part of it, on its own, if -O3 optimizations are used. Playing around on godbolt, it appears that this doesn't happen at N=100 but does at N up to about 40. In this case it does happen at compile time, whether or not it is constexpr.
Which also points out -- on many machines, long long int is not large enough to hold the 100'th fibonacci number. Fibonacci numbers grow exponentially, you should expect the 100th number to require about 100 bits or so. Your code as written will exhibit undefined behavior due to integer overflow, on a typical machine.
Using a template you can do it like this:
// Fibonacci recurrence
template <long int n>
struct fib_pair {
typedef fib_pair<n-1> prev;
static constexpr long int fib_n = prev::fib_n_plus_one;
static constexpr long int fib_n_plus_one = prev::fib_n + prev::fib_n_plus_one;
};
template <>
struct fib_pair<0> {
static constexpr long int fib_n = 0;
static constexpr long int fib_n_plus_one = 1;
};
// List structure
template <long int ... > struct list {};
// Concat metafunction
template <typename A, typename B> struct concat;
template <long int... As, long int... Bs> struct concat<list<As...>, list<Bs...>> {
typedef list<As..., Bs...> type;
};
// Get a sequence from the fib_pairs
template <long int n>
struct fib_seq {
typedef typename fib_seq<n-1>::type prev;
typedef typename concat<prev, list<fib_pair<n>::fib_n>>::type type;
};
template <>
struct fib_seq<0> {
typedef list<0> type;
};
// Make an array from pack expansion
#include <array>
template <typename T> struct helper;
template <long int ... nums>
struct helper <list<nums...>> {
typedef std::array<const long int, sizeof...(nums)> array_type;
static constexpr array_type get_array() {
return {{ nums... }};
}
};
// Easy access
template <long int n>
constexpr std::array<const long int, n + 1> get_fib_array() {
return helper<typename fib_seq<n>::type>::get_array();
}
#include <iostream>
int main () {
for (const long int x : get_fib_array<15>()) {
std::cout << x << std::endl;
}
}
Here's a C++11 solution using C++14 library features [1] (GCC >= 4.9.0, Clang >= 3.5.0) using a template argument for the length. You write a loop using recursion. Using a disassembler, you can see the sequence is embedded into the program as raw data, even with no optimizations (-O0).
[1] std::index_sequence can be implemented yourself in C++11 if it is not available in your standard library.
#include <array>
#include <cstddef>
#include <iostream>
#include <type_traits>
#include <utility>
namespace {
// Create an std::array from a C array (internal) via an
// std::index_sequence.
template <typename T, typename TSequence> struct MakeArrayImpl;
template <typename T, std::size_t... TIndices>
struct MakeArrayImpl<T, std::index_sequence<TIndices...>> {
static constexpr std::array<T, sizeof...(TIndices)>
make_array(T values[sizeof...(TIndices)]) {
return std::array<T, sizeof...(TIndices)>{{values[TIndices]...}};
}
};
// Create an std::array from a C array.
template <typename T, std::size_t TLength>
constexpr std::array<T, TLength> make_array(T values[TLength]) {
return MakeArrayImpl<T, std::make_index_sequence<TLength>>::make_array(
values);
}
// Return an std::array of the first numbers in the Fibonacci sequence.
template <std::size_t TLength>
constexpr std::array<long long int, TLength> fibs() {
// Original algorithm.
long long int fib[TLength] = {0};
fib[0] = 1;
fib[1] = 1;
for (std::size_t i = 2; i < TLength; ++i) {
fib[i] = fib[i - 2] + fib[i - 1];
}
return make_array<long long int, TLength>(fib);
}
}
int main() {
// Original algorithm.
const int N = 92;
long long int fib[N] = {0};
fib[0] = 1;
fib[1] = 1;
for (int i = 2; i < N; ++i)
fib[i] = fib[i - 2] + fib[i - 1];
// Test constexpr algorithm against original algorithm.
static constexpr auto values = fibs<N>();
static_assert(values.size() == N, "Expected N values in Fibs");
for (int i = 0; i < N; ++i) {
if (fib[i] != values[i]) {
std::cerr << "Mismatch at index " << i << "\n";
std::cerr << "Expected: " << fib[i] << "\n";
std::cerr << "Actual : " << values[i] << "\n";
}
}
}
I'm coding in C++, and I have the following code:
int array[30];
array[9] = 1;
array[5] = 1;
array[14] = 1;
array[8] = 2;
array[15] = 2;
array[23] = 2;
array[12] = 2;
//...
Is there a way to initialize the array similar to the following?
int array[30];
array[9,5,14] = 1;
array[8,15,23,12] = 2;
//...
Note: In the actual code, there can be up to 30 slots that need to be set to one value.
This function will help make it less painful.
void initialize(int * arr, std::initializer_list<std::size_t> list, int value) {
for (auto i : list) {
arr[i] = value;
}
}
Call it like this.
initialize(array,{9,5,14},2);
A variant of aaronman's answer:
template <typename T>
void initialize(T array[], const T& value)
{
}
template <size_t index, size_t... indices, typename T>
void initialize(T array[], const T& value)
{
array[index] = value;
initialize<indices...>(array, value);
}
int main()
{
int array[10];
initialize<0,3,6>(array, 99);
std::cout << array[0] << " " << array[3] << " " << array[6] << std::endl;
}
Example: Click here
Just for the fun of it I created a somewhat different approach which needs a bit of infrastructure allowing initialization like so:
double array[40] = {};
"9 5 14"_idx(array) = 1;
"8 15 23 12"_idx(array) = 2;
If the digits need to be separated by commas, there is a small change needed. In any case, here is the complete code:
#include <algorithm>
#include <iostream>
#include <sstream>
#include <iterator>
template <int Size, typename T = int>
class assign
{
int d_indices[Size];
int* d_end;
T* d_array;
void operator=(assign const&) = delete;
public:
assign(char const* base, std::size_t n)
: d_end(std::copy(std::istream_iterator<int>(
std::istringstream(std::string(base, n)) >> std::skipws),
std::istream_iterator<int>(), this->d_indices))
, d_array()
{
}
assign(assign<Size>* as, T* a)
: d_end(std::copy(as->begin(), as->end(), this->d_indices))
, d_array(a) {
}
assign(assign const& o)
: d_end(std::copy(o.begin(), o.end(), this->d_indices))
, d_array(o.d_array)
{
}
int const* begin() const { return this->d_indices; }
int const* end() const { return this->d_end; }
template <typename A>
assign<Size, A> operator()(A* array) {
return assign<Size, A>(this, array);
}
void operator=(T const& value) {
for (auto it(this->begin()), end(this->end()); it != end; ++it) {
d_array[*it] = value;
}
}
};
assign<30> operator""_idx(char const* base, std::size_t n)
{
return assign<30>(base, n);
}
int main()
{
double array[40] = {};
"1 3 5"_idx(array) = 17;
"4 18 7"_idx(array) = 19;
std::copy(std::begin(array), std::end(array),
std::ostream_iterator<double>(std::cout, " "));
std::cout << "\n";
}
I just had a play around for the sake of fun / experimentation (Note my concerns at the bottom of the answer):
It's used like this:
smartAssign(array)[0][8] = 1;
smartAssign(array)[1][4][2] = 2;
smartAssign(array)[3] = 3;
smartAssign(array)[5][9][6][7] = 4;
Source code:
#include <assert.h> //Needed to test variables
#include <iostream>
#include <cstddef>
template <class ArrayPtr, class Value>
class SmartAssign
{
ArrayPtr m_array;
public:
class Proxy
{
ArrayPtr m_array;
size_t m_index;
Proxy* m_prev;
Proxy(ArrayPtr array, size_t index)
: m_array(array)
, m_index(index)
, m_prev(nullptr)
{ }
Proxy(Proxy* prev, size_t index)
: m_array(prev->m_array)
, m_index(index)
, m_prev(prev)
{ }
void assign(Value value)
{
m_array[m_index] = value;
for (auto prev = m_prev; prev; prev = prev->m_prev) {
m_array[prev->m_index] = value;
}
}
public:
void operator=(Value value)
{
assign(value);
}
Proxy operator[](size_t index)
{
return Proxy{this, index};
}
friend class SmartAssign;
};
SmartAssign(ArrayPtr array)
: m_array(array)
{
}
Proxy operator[](size_t index)
{
return Proxy{m_array, index};
}
};
template <class T>
SmartAssign<T*, T> smartAssign(T* array)
{
return SmartAssign<T*, T>(array);
}
int main()
{
int array[10];
smartAssign(array)[0][8] = 1;
smartAssign(array)[1][4][2] = 2;
smartAssign(array)[3] = 3;
smartAssign(array)[5][9][6][7] = 4;
for (auto i : array) {
std::cout << i << "\n";
}
//Now to test the variables
assert(array[0] == 1 && array[8] == 1);
assert(array[1] == 2 && array[4] == 2 && array[2] == 2);
assert(array[3] == 3);
assert(array[5] == 4 && array[9] == 4 && array[6] == 4 && array[7] == 4);
}
Let me know what you think, I don't typically write much code like this, I'm sure someone will point out some problems somewhere ;)
I'm not a 100% certain of the lifetime of the proxy objects.
The best you can do if your indexes are unrelated is "chaining" the assignments:
array[9] = array[5] = array[14] = 1;
However if you have some way to compute your indexes in a deterministic way you could use a loop:
for (size_t i = 0; i < 3; ++i)
array[transform_into_index(i)] = 1;
This last example also obviously applies if you have some container where your indexes are stored. So you could well do something like this:
const std::vector<size_t> indexes = { 9, 5, 14 };
for (auto i: indexes)
array[i] = 1;
Compilers which still doesn't support variadic template argument and universal initialization list, it can be a pain to realize, that some of the posted solution will not work
As it seems, OP only intends to work with arrays of numbers, valarray with variable arguments can actually solve this problem quite easily.
#include <valarray>
#include <cstdarg>
#include <iostream>
#include <algorithm>
#include <iterator>
template <std::size_t size >
std::valarray<std::size_t> selection( ... )
{
va_list arguments;
std::valarray<std::size_t> sel(size);
//Skip the first element
va_start ( arguments, size );
va_arg ( arguments, int );
for(auto &elem : sel)
elem = va_arg ( arguments, int );
va_end ( arguments );
return sel;
}
int main ()
{
//Create an array of 30 integers
std::valarray<int> array(30);
//The first argument is the count of indexes
//followed by the indexes of the array to initialize
array[selection<3>(9,5,14)] = 1;
array[selection<4>(8,15,13, 12)] = 2;
std::copy(std::begin(array), std::end(array),
std::ostream_iterator<int>(std::cout, " "));
return 0;
}
I remember, for static initialization exist syntax like:
int array[30] = {
[9] = 1, [8] = 2
}
And so on. This works in gcc, about another compilers - I do not know.
Use overload operator << .
#include <iostream>
#include <iomanip>
#include <cmath>
// value and indexes wrapper
template< typename T, std::size_t ... Ints> struct _s{ T value; };
//deduced value type
template< std::size_t ... Ints, typename T>
constexpr inline _s<T, Ints... > _ ( T const& v )noexcept { return {v}; }
// stored array reference
template< typename T, std::size_t N>
struct _ref
{
using array_ref = T (&)[N];
array_ref ref;
};
//join _s and _ref with << operator.
template<
template< typename , std::size_t ... > class IC,
typename U, std::size_t N, std::size_t ... indexes
>
constexpr _ref<U,N> operator << (_ref<U,N> r, IC<U, indexes...> ic ) noexcept
{
using list = bool[];
return ( (void)list{ false, ( (void)(r.ref[indexes] = ic.value), false) ... }) , r ;
//return r;
}
//helper function, for creating _ref<T,N> from array.
template< typename T, std::size_t N>
constexpr inline _ref<T,N> _i(T (&array)[N] ) noexcept { return {array}; }
int main()
{
int a[15] = {0};
_i(a) << _<0,3,4,5>(7) << _<8,9, 14>( 6 ) ;
for(auto x : a)std::cout << x << " " ;
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
//result: 7 0 0 7 7 7 0 0 6 6 0 0 0 0 6
double b[101]{0};
_i(b) << _<0,10,20,30,40,50,60,70,80,90>(3.14)
<< _<11,21,22,23,24,25>(2.71)
<< _<5,15,25,45,95>(1.414) ;
}
struct _i_t
{
int * array;
struct s
{
int* array;
std::initializer_list<int> l;
s const& operator = (int value) const noexcept
{
for(auto i : l )
array[i] = value;
return *this;
}
};
s operator []( std::initializer_list<int> i ) const noexcept
{
return s{array, i};
}
};
template< std::size_t N>
constexpr _i_t _i( int(&array)[N]) noexcept { return {array}; }
int main()
{
int a[15] = {0};
_i(a)[{1,3,5,7,9}] = 7;
for(auto x : a)std::cout << x << ' ';
}
Any fancy trickery you do will be unrolled by the compiler/assembler into exactly what you have. Are you doing this for readability reasons? If your array is already init, you can do:
array[8] = array[15] = array[23] = array[12] = 2;
But I stress my point above; it will be transformed into exactly what you have.
I'm having a problem getting the syntax right so if someone can help,please?
I have a timing function which take a function and its arguments as a parameters, but I'm not sure how should the call look like.
#include <iostream>
#include <iterator>
#include <random>
#include <vector>
#include<list>
#include<deque>
#include <algorithm>
#include <chrono>
#include <functional>
#include <sstream>
using namespace std;
using namespace std::chrono;
int global_SortType = 1;
template<class F, class A, typename T>
void times(F func, A arg, int n, T typeval) // call func(arg,n)
{
auto t1 = system_clock::now();
func(arg, n, typeval);
auto t2 = system_clock::now();
auto dms = duration_cast<milliseconds>(t2-t1);
cout << "f(x) took " << dms.count() << " milliseconds\n";
}
template<class T>
bool Greater(const T& v1, const T& v2)
{
return false;
}
bool Greater(const int& v1, const int& v2)
{
return v1 > v2;
}
bool Greater(const string& v1, const string& v2)
{
return strcmp(v1.c_str(), v2.c_str()) > 0;
}
template <class T>
struct GreaterThan: public std::binary_function<T, T, bool > {
bool operator () ( const T &ival, const T &newval ) const {
return Greater(ival, newval);
}
};
string random_gen(string& s)
{
string Result; // string which will contain the result
ostringstream convert; // stream used for the conversion
convert << rand();
return convert.str();
}
int random_gen(int& i){
default_random_engine re { std::random_device()() };
uniform_int_distribution<int> dist;
auto r= bind(dist,re);
int x =r();
return x;
}
template<class T>
void print(T& val)
{
}
void print(int& val)
{
cout << val << " ";
}
void print(string& val)
{
cout << val.c_str() << " ";
}
struct Record
{
int v;
string s;
Record(){}
Record(int iv, string ss): v(iv), s(ss)
{
}
};
Record random_gen(Record& r)
{
string stemp;
int i = 0;
return Record(random_gen(i), random_gen(stemp));
}
void print(Record& r)
{
cout<<"int="<<r.v<<" string=";
print(r.s);
}
bool Greater(const Record& r1, const Record& r2)
{
return global_SortType == 1 ? Greater(r1.v, r2.v) : Greater(r1.s, r2.s);
}
template<typename SequenceContainer, class T>
void build_cont(SequenceContainer& seq, int n, T valtype)
{
for(int i=0; i!=n; ++i) {
T gen = random_gen(valtype);
typename SequenceContainer::const_iterator it;
it=find_if(seq.begin(), seq.end(), std::bind2nd(GreaterThan<T>(), gen));
seq.insert(it, gen);
}
for(int i=n-1; i >=0; i--)
{
int gen = i;
if(i > 0)
gen = random_gen(i)%i;
typename SequenceContainer::const_iterator it=seq.begin();
for(int j = 0; j < gen; j++)
it++;
seq.erase(it);
}
}
int main()
{
int n=1000;
vector<int> v;
times(build_cont<std::vector<int>, int>, v, n, 0); // works
vector<string> sv;
string stemp = "";
times(build_cont<std::vector<string>, string>, sv, n, stemp); // works
global_SortType = 1;
vector<Record> rv;
Record rtemp(0, "sfds");
global_SortType = 2;
vector<Record> rsv;
Record rstemp(0, "sfds");
//This one desn't work and I'm not sure of the right syntax
times(build_cont<std::vector<Record>,Record>, sv, n, stemp);
return 0;
}
I'm getting this error
Non-const lvalue reference to type 'vector>' cannot bind to a value of unrelated type 'vector, allocator>>'
and it points to line
func(arg, n, typeval);
Inside this function:
template<typename SequenceContainer, class T>
void build_cont(SequenceContainer& seq, int n, T valtype)
You are using const_iterators rather than iterators to perform insertions and removals. You should change the definition of that function as follows:
template<typename SequenceContainer, class T>
void build_cont(SequenceContainer& seq, int n, T valtype)
{
for(int i=0; i!=n; ++i) {
T gen = random_gen(valtype);
typename SequenceContainer::iterator it;
// ^^^^^^^^
it=find_if(seq.begin(), seq.end(), std::bind2nd(GreaterThan<T>(), gen));
seq.insert(it, gen);
}
for(int i=n-1; i >=0; i--)
{
int gen = i;
if(i > 0)
gen = random_gen(i)%i;
typename SequenceContainer::iterator it=seq.begin();
// ^^^^^^^^
for(int j = 0; j < gen; j++)
it++;
seq.erase(it);
}
}
Also, you forgot to #include the <cstring> standard header, which contains the definition for the strcmp() function. You are using that function inside your Greater() function:
bool Greater(const string& v1, const string& v2)
{
return strcmp(v1.c_str(), v2.c_str()) > 0;
// ^^^^^^
// You need to #include <cstring> before calling this function
}
Moreover, you're invoking function times() with the wrong arguments (sv and stemp):
//This one desn't work and I'm not sure of the right sytax
times(build_cont<std::vector<Record>,Record>, rsv, n, rstemp);
// ^^^ ^^^^^^