So I created a c++ code that counts "special" numbers in a given range, which is defined as a number where the total of its number of 1-bits in its binary representation is less than our equal to 3 (i.e. 1(1), 2(10), 3(11), 4(100), 5(101), 6(110), 7(111), 8(1000).
I successfully created the code, however there is one problem. At high number ranges, it outputs segmentation fault.
Any idea as to why this happens?
#include <iostream>
#include <cmath>
using namespace std;
long special(long x, long y){
long sArray[y];
long output = 0;
sArray[0]=0;
sArray[1]=1;
for(long i = 2; i<=y; i++){
long j = floor(i/2);
sArray[i] = sArray[j]+(i%2);
if (i>=x && sArray[i]<=3){
output++;
}
}
return output;
}
int main()
{
cout<<special(5,2717261);
return 0;
}
The segmentation fault occurs because you try to declare an array that's too large and extends outside the current memory segment.
Frankly, you don't need this array, and can just count the number of special numbers in the given range:
boolean isSpecial(long num) {
int bits = 0;
while (num > 0) {
if (num % 2 > 0) {
++bits;
if (bits >= 3) {
return true;
}
}
num /= 2;
}
return false;
}
long special(long x, long y) {
long output = 0;
for(long i = x; i <= y; ++i) {
if (isSpecial(i)) {
++output;
}
}
return output;
}
Related
Consistently comparing digits symmetrically to its middle digit. If first number is bigger than the last , first is wining and I have to display it else I display last and that keep until I reach middle digit(this is if I have odd number of digits), if digit don't have anything to be compared with it wins automatically.
For example number is 13257 the answer is 7 5 2.
Another one 583241 the answer is 5 8 3.
For now I am only trying to catch when number of digits is odd. And got stuck.. This is my code. The problem is that this code don't display any numbers, but it compares them in the if statement(I checked while debugging).
#include <iostream>
using namespace std;
int countDigit(int n) {
int count = 0;
while (n != 0) {
count++;
n /= 10;
}
return count;
}
int main() {
int n;
cin >> n;
int middle;
int count = countDigit(n);
if (count % 2 == 0) {
cout<<"No mid digit exsist!!";
}
else {
int lastDigit = n % 10;
middle = (count + 1) / 2;
for (int i = 0; i < middle; i++) {
for (int j = lastDigit; j<middle; j--) {
if (i > j) {
cout << i <<' ';
}
else {
cout << j;
}
}
}
}
return 0;
}
An easier approach towards this, in my opinion, would be using strings. You can check the size of the string. If there are even number of characters, you can just compare the first half characters, with the last half. If there are odd numbers, then do the same just print the middle character.
Here's what I'd do for odd number of digits:
string n;
cin>>n;
int i,j;
for(i=0,j=n.size()-1;i<n.size()/2,j>=(n.size()+1)/2;i++,j--)
{
if(n[i]>n[j]) cout<<n[i]<<" ";
else cout<<n[j]<<" ";
}
cout<<n[n.size()/2]<<endl;
We analyze the requirements and then come up with a design.
If we have a number, consisting of digits, we want to compare "left" values with "right" values. So, start somehow at the left and the right index of digits in a number.
Look at this number: 123456789
Index: 012345678
Length: 9
in C and C++ indices start with 0.
So, what will we do?
Compare index 0 with index 8
Compare index 1 with index 7
Compare index 2 with index 6
Compare index 3 with index 5
Compare index 4 with index 4
So, the index from the left is running up and the index from the right is running down.
We continue as long as the left index is less than or equal the right index. All this can be done in a for or while loop.
It does not matter, wether the number of digits is odd or even.
Of course we also do need functions that return the length of a number and a digit of the number at a given position. But I see that you know already how to write these functions. So, I will not explain it further here.
I show you 3 different examples.
Ultra simple and very verbose. Very inefficient, because we do not have arrays.
Still simple, but more compressed. Very inefficient, because we do not have arrays.
C++ solution, not allowed in your case
Verbose
#include <iostream>
// Get the length of a number
unsigned int length(unsigned long long number) {
unsigned int length = 0;
while (number != 0) {
number /= 10;
++length;
}
return length;
}
// Get a digit at a given index of a number
unsigned int digitAt(unsigned int index, unsigned long long number) {
index = length(number) - index - 1;
unsigned int result = 0;
unsigned int count = 0;
while ((number != 0) && (count <= index)) {
result = number % 10;
number /= 10;
++count;
}
return result;
}
// Test
int main() {
unsigned long long number;
if (std::cin >> number) {
unsigned int indexLeft = 0;
unsigned int indexRight = length(number) - 1;
while (indexLeft <= indexRight) {
if (digitAt(indexLeft, number) > digitAt(indexRight, number)) {
std::cout << digitAt(indexLeft, number);
}
else {
std::cout << digitAt(indexRight, number);
}
++indexLeft;
--indexRight;
}
}
}
Compressed
#include <iostream>
// Get the length of a number
size_t length(unsigned long long number) {
size_t length{};
for (; number; number /= 10) ++length;
return length;
}
// Get a digit at a given index of a number
unsigned int digitAt(size_t index, unsigned long long number) {
index = length(number) - index - 1;
unsigned int result{}, count{};
for (; number and count <= index; ++count, number /= 10)
result = number % 10;
return result;
}
// Test
int main() {
if (unsigned long long number; std::cin >> number) {
// Iterate from left and right at the same time
for (size_t indexLeft{}, indexRight{ length(number) - 1 }; indexLeft <= indexRight; ++indexLeft, --indexRight)
std::cout << ((digitAt(indexLeft,number) > digitAt(indexRight, number)) ? digitAt(indexLeft, number) : digitAt(indexRight, number));
}
}
More modern C++
#include <iostream>
#include <string>
#include <algorithm>
#include <cctype>
int main() {
if (std::string numberAsString{}; std::getline(std::cin, numberAsString) and not numberAsString.empty() and
std::all_of(numberAsString.begin(), numberAsString.end(), std::isdigit)) {
for (size_t indexLeft{}, indexRight{ numberAsString.length() - 1 }; indexLeft <= indexRight; ++indexLeft, --indexRight)
std::cout << ((numberAsString[indexLeft] > numberAsString[indexRight]) ? numberAsString[indexLeft] : numberAsString[indexRight]);
}
}
You are trying to do something confusing with nested for-cycles. This is obviously wrong, because there is nothing “quadratic” (with respect to the number of digits) in the entire task. Also, your code doesn’t seem to contain anything that would determine the highest-order digit.
I would suggest that you start with something very simple: string’ify the number and then iterate over the digits in the string. This is obviously neither elegant nor particularly fast, but it will be a working solution to start with and you can improve it later.
BTW, the sooner you get out of the bad habit of using namespace std; the better. It is an antipattern, please avoid it.
Side note: There is no need to treat odd and even numbers of digits differently. Just let the algorithm compare the middle digit (if it exists) against itself and select it; no big deal. It is a tiny efficiency drawback in exchange for a big code simplicity benefit.
#include <cstdint>
#include <iostream>
#include <string>
using std::size_t;
using std::uint64_t;
uint64_t extract_digits(uint64_t source) {
const std::string digits{std::to_string(source)};
auto i = digits.begin();
auto j = digits.rbegin();
const auto iend = i + (digits.size() + 1) / 2;
uint64_t result{0};
for (; i < iend; ++i, ++j) {
result *= 10;
result += (*i > *j ? *i : *j) - '0';
}
return result;
}
int main() {
uint64_t n;
std::cin >> n;
std::cout << extract_digits(n) << std::endl;
}
If the task disallows the use of strings and arrays, you could try using pure arithmetics by constructing a “digit-inverted” version of the number and then iterating over both numbers using division and modulo. This will (still) have obvious limitations that stem from the data type size, some numbers cannot be inverted properly etc. (Use GNU MP for unlimited integers.)
#include <cstdint>
#include <iostream>
using std::size_t;
using std::uint64_t;
uint64_t extract_digits(uint64_t source) {
uint64_t inverted{0};
size_t count{0};
for (uint64_t div = source; div; div /= 10) {
inverted *= 10;
inverted += div % 10;
++count;
}
count += 1;
count /= 2;
uint64_t result{0};
if (count) for(;;) {
const uint64_t a{source % 10}, b{inverted % 10};
result *= 10;
result += a > b ? a : b;
if (!--count) break;
source /= 10;
inverted /= 10;
}
return result;
}
int main() {
uint64_t n;
std::cin >> n;
std::cout << extract_digits(n) << std::endl;
}
Last but not least, I would strongly suggest that you ask questions after you have something buildable and runnable. Having homework solved by someone else defeats the homework’s purpose.
I'm trying to write a c++ program which gets an integer n (n>=1 && n<=100000) from the user and puts the sum of its digits into b. The output needed is the b-th prime number coming after n. I'm an absolute beginner in programming so I don't know what's wrong with the for loop or any other code that it doesn't show the correct output. For example the 3rd prime number after 12 (1+2=3) is 19 but the loop counts the prime numbers from 2 instead of 12, so it prints 7 as result.
#include <iostream>
using namespace std;
bool isPrime(int n)
{
if(n <= 1)
return false;
for(int i = 2; i <= (n/2); i++)
if(n % i == 0)
return false;
return true;
}
int main()
{
long int n;
int b = 0;
cin>>n;
while(n >= 1 && n <= 100000){
b += n % 10;
n /= 10;
}
for(int i = n, counter = b; counter <= 10; i++)
if(isPrime(i)){
counter++;
if(i > n)
cout<<counter<<"th prime number after n is : "<<i<<endl;
}
return 0;
}
So one of the possible solutions to my question, according to #Bob__ answer (and converting it to the code style I've used in the initial code) is as follows:
#include <iostream>
using namespace std;
bool isPrime(long int number)
{
if(number <= 1)
return false;
for(int i = 2; i <= (number / 2); i++)
if(number % i == 0)
return false;
return true;
}
int sumOfDigits(long int number)
{
int sum = 0;
while(number >= 1 && number <= 100000)
{
sum += number % 10;
number /= 10;
}
return sum;
}
long int bthPrimeAfter(int counter, long int number)
{
while(counter)
{
++number;
if(isPrime(number))
--counter;
}
return number;
}
int main()
{
long int number;
cin>>number;
int const counter = sumOfDigits(number);
cout<<bthPrimeAfter(counter, number)<<"\n";
return 0;
}
As dratenik said in their comment:
You have destroyed the value in n to produce b in the while loop. When the for loop comes around, n keeps being zero.
That's a key point to understand, sometimes we need to make a copy of a variable. One way to do that is passing it to a function by value. The function argument will be a local copy which can be changed without affecting the original one.
As an example, the main function could be written like the following:
#include <iostream>
bool is_prime(long int number);
// ^^^^^^^^ So is `n` in the OP's `main`
int sum_of_digits(long int number);
// ^^^^^^^^^^^^^^^ This is a local copy.
long int nth_prime_after(int counter, long int number);
int main()
{
long int number;
// The input validation (check if it's a number and if it's in the valid range,
// deal with errors) is left to the reader as an exercise.
std::cin >> number;
int const counter = sum_of_digits(number);
std::cout << nth_prime_after(counter, number) << '\n';
return 0;
}
The definition of sum_of_digits is straightforward.
int sum_of_digits(long int number)
{
int sum = 0;
while ( number ) // Stops when number is zero. The condition n <= 100000
{ // belongs to input validation, like n >= 0.
sum += number % 10;
number /= 10; // <- This changes only the local copy.
}
return sum;
}
About the last part (finding the nth prime after the chosen number), I'm not sure to understand what the asker is trying to do, but even if n had the correct value, for(int i = n, counter = b; counter <= 10; i++) would be just wrong. For starters, there's no reason for the condition count <= 10 or at least none that I can think of.
I'd write something like this:
long int nth_prime_after(int counter, long int number)
{
while ( counter )
{
++number;
if ( is_prime(number) )
{
--counter; // The primes aren't printed here, not even the nth.
}
}
return number; // Just return it, the printing is another function's
} // responsabilty.
A lot more could be said about the is_prime function and the overall (lack of) efficiency of this algorithm, but IMHO, it's beyond the scope of this answer.
#include <cmath>
#include <vector>
class Solution {
public:
vector<int> plusOne(vector<int>& digits) {
vector<int>result;
unsigned long long c =0,answer;
for (int i=0; i<digits.size(); i++){
c = pow(10, i)*(digits[digits.size()-1-i]) + c;
//cout<<"loop"<<endl;
}
answer = c+1;
while (answer){
result.insert(result.begin(),answer%10);
answer = answer/10;
}
return result;
}
};
I get an error for long vectors.
Ex: for testcase , [6,1,4,5,3,9,0,1,9,5,1,8,6,7,0,5,5,4,3]
My code is giving output as [6,1,4,5,3,9,0,1,9,5,1,8,6,7,0,5,4,0,9]
last three digits are wrong
If someone asked you to add one to a large number, would you use the pow function? Obviously not. This is how you should write the function
vector<int> plusOne(const vector<int>& digits) {
vector<int> result = digits;
int carry = 1;
int i = digits.size() - 1;
while (i > 0 && carry) {
++result[i];
if (result[i] < 10)
carry = 0;
else
result[i] = 0;
--i;
}
if (carry)
result.insert(result.begin(), 1); // overflow, e.g. 9999 => 10000
return result;
}
Untested code.
I wrote the following dp code for finding the prime factors of a number.
#include <bits/stdc++.h>
#define max 1000001
using namespace std;
vector <int> prime;
vector<bool> isprime(max,true);
vector<bool> visited(max,false);
vector<int> data(max,-1);
void dp(int n,int last)
{
if(n >= max || visited[n])
return;
visited[n] = true;
for(int i = last;i<prime.size();i++)
{
if(n*prime[i] >= max || data[n*prime[i]] != -1)
return;
data[n*prime[i]] = prime[i];
dp(n*prime[i],i);
}
}
int main()
{
isprime[1] = false;
data[1] = 1;
for(int i = 4;i<max;i += 2)
isprime[i] = false;
for(int i = 3; i*i< max;i += 2)
{
for(int j = i*i; j < max;j += i)
isprime[j] = false;
}
prime.push_back(2);
data[2] = 2;
for(int i =3;i<max;i += 2)
if(isprime[i])
{
prime.push_back(i);
data[i] = i;
}
for(int i = 0;i<prime.size();i++)
{
dp(prime[i],i);
}
cout<<"...1\n";
for(int i = 2;i<=8000;i++)
{
cout<<i<<" :- ";
int temp = i;
while(temp!= 1)
{
cout<<data[temp]<<" ";
temp = temp/data[temp];
}
cout<<endl;
}
return 0;
}
Here, last is the last index of prime number n.
But I am getting segmentation fault for this, when I change max to 10001, it runs perfectly. I'm not getting why is this happening since the data-structures used are 1-d vectors which can hold values up to 10^6 easily.
I checked your program out using GDB. The segfault is taking place at this line:
if(n*prime[i] >= max || data[n*prime[i]] != -1)
In your first ever call to DP in your for loop, where you call dp(2,0), the recursive calls eventually generate this call: dp(92692,2585).
92692 * 2585 = 239608820
This number is larger than a 32 bit integer can hold, so the r-value generated by the integer multiplication of those two numbers overflows and becomes negative. nprime[i] becomes negative, so your first condition of the above loop fails, and the second is checked. data[n * prime[i]] is accessed, and since n*prime[i] is negative, your program accesses invalid memory and segfaults. To fix this, simply change n to a long long in your parameter list and you should be fine.
void dp(long long n, int last)
So I am a beginner in c++ programming and I was doing some problem online.
I have to calculate all the products of numbers from 999 to 100 (Eg.999*999 , 999*998 ... 800* 800 , 800 *799 ... , 100 * 100). I can easily print out these products but when I try to pass these values to a function they do not work.
Can you please look at the following code and point out anything that's wrong?
I think its got something to do with buffer but I have no idea how to fix that. Thanks.
#include <iostream>
using namespace std;
unsigned long int num,rev,temp,rem = 0,reversed = 0;
int ispalin(unsigned long int n)
{
temp=n;
while(temp!=0)
{
rem = temp%10;
reversed = reversed*10 + rem;
temp/=10;
}
if(reversed == n)
{
return 1;
}
return 0;
}
int main()
{
int maxi = 0;
for (int i =999 ; i >= 100;i--)
{
for(int j = i;j >= 100; j--)
{
rev = ispalin(i*j);
if (rev == 1)
{
if(i*j > maxi)
{
maxi = i*j;
}
}
}
}
cout<<maxi<<" This is max"<<endl;
}
reversed must be reset to zero at the beginning of every check for palindrome. The best would be to make reversed (and others) a local variable of ispalin.