Thread-safe reference-counted queue C++ - c++

I'm struggling to implement a thread-safe reference-counted queue. The idea is that I have a number of tasks that each maintain a shared_ptr to a task manager that owns the queue. Here is a minimal implementation that should encounter that same issue:
#include <condition_variable>
#include <deque>
#include <functional>
#include <iostream>
#include <memory>
#include <mutex>
#include <thread>
namespace {
class TaskManager;
struct Task {
std::function<void()> f;
std::shared_ptr<TaskManager> manager;
};
class Queue {
public:
Queue()
: _queue()
, _mutex()
, _cv()
, _running(true)
, _thread([this]() { sweepQueue(); })
{
}
~Queue() { close(); }
void close() noexcept
{
try {
{
std::lock_guard<std::mutex> lock(_mutex);
if (!_running) {
return;
}
_running = false;
}
_cv.notify_one();
_thread.join();
} catch (...) {
std::cerr << "An error occurred while closing the queue\n";
}
}
void push(Task&& task)
{
std::unique_lock<std::mutex> lock(_mutex);
_queue.emplace_back(std::move(task));
lock.unlock();
_cv.notify_one();
}
private:
void sweepQueue() noexcept
{
while (true) {
try {
std::unique_lock<std::mutex> lock(_mutex);
_cv.wait(lock, [this] { return !_running || !_queue.empty(); });
if (!_running && _queue.empty()) {
return;
}
if (!_queue.empty()) {
const auto task = _queue.front();
_queue.pop_front();
task.f();
}
} catch (...) {
std::cerr << "An error occurred while sweeping the queue\n";
}
}
}
std::deque<Task> _queue;
std::mutex _mutex;
std::condition_variable _cv;
bool _running;
std::thread _thread;
};
class TaskManager : public std::enable_shared_from_this<TaskManager> {
public:
void addTask(std::function<void()> f)
{
_queue.push({ f, shared_from_this() });
}
private:
Queue _queue;
};
} // anonymous namespace
int main(void)
{
const auto manager = std::make_shared<TaskManager>();
manager->addTask([]() { std::cout << "Hello world\n"; });
}
The problem I find is that on rare occasions, the queue will try to invoke its own destructor within the sweepQueue method. Upon further inspection, it seems that the reference count on the TaskManager hits zero once the last task is dequeued. How can I safely maintain the reference count without invoking the destructor?
Update: The example does not clarify the need for the std::shared_ptr<TaskManager> within Task. Here is an example use case that should illustrate the need for this seemingly unnecessary ownership cycle.
std::unique_ptr<Task> task;
{
const auto manager = std::make_shared<TaskManager>();
task = std::make_unique<Task>(someFunc, manager);
}
// Guarantees manager is not destroyed while task is still in scope.

The ownership hierarchy here is TaskManager owns Queue and Queue owns Tasks. Tasks maintaining a shared pointer to TaskManager create an ownership cycle which does not seem to serve a useful purpose here.
This is the ownership what is root of the problem here. A Queue is owned by TaskManager, so that Queue can have a plain pointer to TaskManager and pass that pointer to Task in sweepQueue. You do not need std::shared_pointer<TaskManager> in Task at all here.

I'd refactor the queue from the thread first.
But to fix your problem:
struct am_I_alive {
explicit operator bool() const { return m_ptr.lock(); }
private:
std::weak_ptr<void> m_ptr;
};
struct lifetime_tracker {
am_I_alive track_lifetime() {
if (!m_ptr) m_ptr = std::make_shared<bool>(true);
return {m_ptr};
}
lifetime_tracker() = default;
lifetime_tracker(lifetime_tracker const&) {} // do nothing, don't copy
lifetime_tracker& operator=(lifetime_tracker const&){ return *this; }
private:
std::shared_ptr<void> m_ptr;
};
this is a little utility to detect if we have been deleted. It is useful in any code that calls an arbitrary callback whose side effect could include delete(this).
Privately inherit your Queue from it.
Then split popping the task from running it.
std::optional<Task> get_task() {
std::unique_lock<std::mutex> lock(_mutex);
_cv.wait(lock, [this] { return !_running || !_queue.empty(); });
if (!_running && _queue.empty()) {
return {}; // end
}
auto task = _queue.front();
_queue.pop_front();
return task;
}
void sweepQueue() noexcept
{
while (true) {
try {
auto task = get_task();
if (!task) return;
// we are alive here
auto alive = track_lifetime();
try {
(*task).f();
} catch(...) {
std::cerr << "An error occurred while running a task\n";
}
task={};
// we could be deleted here
if (!alive)
return; // this was deleted, get out of here
}
} catch (...) {
std::cerr << "An error occurred while sweeping the queue\n";
}
}
}
and now you are safe.
After that you need to deal with the thread problem.
The thread problem is that you need your code to destroy the thread from within the thread it is running. At the same time, you also need to guarantee that the thread has terminated before main ends.
These are not compatible.
To fix that, you need to create a thread owning pool that doesn't have your "keep alive" semantics, and get your thread from there.
These threads don't delete themselves; instead, they return themselves to that pool for reuse by another client.
At shutdown, those threads are blocked on to ensure you don't have code running elsewhere that hasn't halted before the end of main.
To write such a pool without your inverted dependency mess, split the queue part of your code off. This queue owns no thread.
template<class T>
struct threadsafe_queue {
void push(T);
std::optional<T> pop(); // returns empty if thread is aborted
void abort();
~threadsafe_queue();
private:
std::mutex m;
std::condition_variable v;
std::deque<T> data;
bool aborted = false;
};
then a simple thread pool:
struct thread_pool {
template<class F>
std::future<std::result_of_t<F&()>> enqueue( F&& f );
template<class F>
std::future<std::result_of_t<F&()>> thread_off_now( F&& f ); // starts a thread if there aren't any free
void abort();
void start_thread( std::size_t n = 1 );
std::size_t count_threads() const;
~thread_pool();
private:
threadsafe_queue< std::function<void()> > tasks;
std::vector< std::thread > threads;
static void thread_loop( thread_pool* pool );
};
make a thread pool singleton. Get your threads for your queue from thread_off_now method, guaranteeing you a thread that (when you are done with it) can be recycled, and whose lifetime is handled by someone else.
But really, you should instead be thinking with ownership in mind. The idea that tasks and task queues mutually own each other is a mess.
If someone disposes of a task queue, it is probably a good idea to abandon the tasks instead of persisting it magically and silently.
Which is what my simple thread pool does.

Related

How to wait for completion of all tasks in this ThreadPool?

I am trying to write a ThreadPool class
class ThreadPool {
public:
ThreadPool(size_t numberOfThreads):isAlive(true) {
for(int i =0; i < numberOfThreads; i++) {
workerThreads.push_back(std::thread(&ThreadPool::doJob, this));
}
#ifdef DEBUG
std::cout<<"Construction Complete"<<std::endl;
#endif
}
~ThreadPool() {
#ifdef DEBUG
std::cout<<"Destruction Start"<<std::endl;
#endif
isAlive = false;
conditionVariable.notify_all();
waitForExecution();
#ifdef DEBUG
std::cout<<"Destruction Complete"<<std::endl;
#endif
}
void waitForExecution() {
for(std::thread& worker: workerThreads) {
worker.join();
}
}
void addWork(std::function<void()> job) {
#ifdef DEBUG
std::cout<<"Adding work"<<std::endl;
#endif
std::unique_lock<std::mutex> lock(lockListMutex);
jobQueue.push_back(job);
conditionVariable.notify_one();
}
private:
// performs actual work
void doJob() {
// try {
while(isAlive) {
#ifdef DEBUG
std::cout<<"Do Job"<<std::endl;
#endif
std::unique_lock<std::mutex> lock(lockListMutex);
if(!jobQueue.empty()) {
#ifdef DEBUG
std::cout<<"Next Job Found"<<std::endl;
#endif
std::function<void()> job = jobQueue.front();
jobQueue.pop_front();
job();
}
conditionVariable.wait(lock);
}
}
// a vector containing worker threads
std::vector<std::thread> workerThreads;
// a queue for jobs
std::list<std::function<void()>> jobQueue;
// a mutex for synchronized insertion and deletion from list
std::mutex lockListMutex;
std::atomic<bool> isAlive;
// condition variable to track whether or not there is a job in queue
std::condition_variable conditionVariable;
};
I am adding work to this thread pool from my main thread. My problem is calling waitForExecution() results in forever waiting main thread. I need to be able to terminate threads when all work is done and continue main thread execution from there. How should I proceed here?
The first step when writing a robust thread pool is to split the queue from the management of threads. A thread-safe queue is hard enough to write by its own, and managing threads similarly.
A thread safe queue looks like:
template<class T>
struct threadsafe_queue {
boost::optional<T> pop() {
std::unique_lock<std::mutex> l(m);
cv.wait(l, [&]{ aborted || !data.empty(); } );
if (aborted) return {};
return data.pop_front();
}
void push( T t )
{
std::unique_lock<std::mutex> l(m);
if (aborted) return;
data.push_front( std::move(t) );
cv.notify_one();
}
void abort()
{
std::unique_lock<std::mutex> l(m);
aborted = true;
data = {};
cv.notify_all();
}
~threadsafe_queue() { abort(); }
private:
std::mutex m;
std::condition_variable cv;
std::queue< T > data;
bool aborted = false;
};
where pop returns nullopt when the queue is aborted.
Now our thread pool is easy:
struct threadpool {
explicit threadpool(std::size_t n) { add_threads(n); }
threadpool() = default;
~threadpool(){ abort(); }
void add_thread() { add_threads(1); }
void add_threads(std::size_t n)
{
for (std::size_t i = 0; i < n; ++i)
threads.push_back( std::thread( [this]{ do_thread_work(); } ) );
}
template<class F>
auto add_task( F && f )
{
using R = std::result_of_t< F&() >;
auto pptr = std::make_shared<std::promise<R>>();
auto future = pptr.get_future();
tasks.push([pptr]{ (*pptr)(); });
return future;
}
void abort()
{
tasks.abort();
while (!threads.empty()) {
threads.back().join();
threads.pop_back();
}
}
private:
threadsafe_queue< std::function<void()> > tasks;
std::vector< std::thread > threads;
void do_thread_work() {
while (auto f = tasks.pop()) {
(*f)();
}
}
};
note that if you abort, outstanding future's are filled with a broken promise exception.
Worker threads stop running when the queue they are feeding from is aborted. The main thread on abort() will wait for the worker threads to finish (as is wise).
This does mean that worker thread tasks must also terminate, or the main thread will hang. There is no way to avoid this; often, your worker threads' tasks need to cooperate to get a message saying they should abort early.
Boost has a thread pool that integrates with its threading primitives and permits a less cooperative abort; in it, all mutex type operations implicitly check for an abort flag, and if they see it the operation throws.
How should I proceed here?
Well, you should learn to use your debugger, which should show you exactly where each of the threads you want to join is stopped.
I'm going to tell you what looks wrong, but strongly encourage you to do that first. It's invaluable.
OK, now: your condition variable loop is wrong.
The correct pattern is the one that behaves like the second form, with the predicate argument, here:
while (!pred()) {
wait(lock);
}
Specifically, if your predicate is true, you must not call wait. You may never be woken again, because the predicate never became false in the first place!
Try
// wait until we have something to do
while(jobQueue.empty() && isAlive) {
conditionVariable.wait(lock);
}
// unless we're exiting, we must have a job
if (isAlive) {
#ifdef DEBUG
std::cout<<"Next Job Found"<<std::endl;
#endif
std::function<void()> job = jobQueue.front();
jobQueue.pop_front();
job();
}
Imagine your thread is running a job when you call notify_all - it will call wait after the notification has already happened, and it isn't coming again. Since it doesn't check isAlive between finishing the job and calling wait, it's going to wait forever.
Even without the shutdown problem it would be wrong, because it should keep consuming jobs while there is work to do, instead of blocking every time it finishes one. Which reminds me of the last issue - you should probably unlock the mutex while executing the job (and re-lock it afterwards) - otherwise your pool is single-threaded.

Add a std::packaged_task to an existing thread?

Is there an standard way to add a std::packaged_task to an existing thread? There's a nontrivial amount of overhead that must happen before the task is run, so I want to do that once, then keep the thread running and waiting for tasks to execute. I want to be able to use futures so I can optionally get the result of the task and catch exceptions.
My pre-C++11 implementation requires my tasks to inherit from an abstract base class with a Run() method (a bit of a pain, can't use lambdas), and having a std::deque collection of those that I add to in the main thread and dequeue from in the worker thread. I have to protect that collection from simultaneous access and provide a signal to the worker thread that there's something to do so it isn't spinning or sleeping. Enqueing something returns a "result" object with a synchronization object to wait for the task to complete, and a result value. It all works well but it's time for an upgrade if there's something better.
Here is a toy thread pool:
template<class T>
struct threaded_queue {
using lock = std::unique_lock<std::mutex>;
void push_back( T t ) {
{
lock l(m);
data.push_back(std::move(t));
}
cv.notify_one();
}
boost::optional<T> pop_front() {
lock l(m);
cv.wait(l, [this]{ return abort || !data.empty(); } );
if (abort) return {};
auto r = std::move(data.back());
data.pop_back();
return std::move(r);
}
void terminate() {
{
lock l(m);
abort = true;
data.clear();
}
cv.notify_all();
}
~threaded_queue()
{
terminate();
}
private:
std::mutex m;
std::deque<T> data;
std::condition_variable cv;
bool abort = false;
};
struct thread_pool {
thread_pool( std::size_t n = 1 ) { start_thread(n); }
thread_pool( thread_pool&& ) = delete;
thread_pool& operator=( thread_pool&& ) = delete;
~thread_pool() = default; // or `{ terminate(); }` if you want to abandon some tasks
template<class F, class R=std::result_of_t<F&()>>
std::future<R> queue_task( F task ) {
std::packaged_task<R()> p(std::move(task));
auto r = p.get_future();
tasks.push_back( std::move(p) );
return r;
}
template<class F, class R=std::result_of_t<F&()>>
std::future<R> run_task( F task ) {
if (threads_active() >= total_threads()) {
start_thread();
}
return queue_task( std::move(task) );
}
void terminate() {
tasks.terminate();
}
std::size_t threads_active() const {
return active;
}
std::size_t total_threads() const {
return threads.size();
}
void clear_threads() {
terminate();
threads.clear();
}
void start_thread( std::size_t n = 1 ) {
while(n-->0) {
threads.push_back(
std::async( std::launch::async,
[this]{
while(auto task = tasks.pop_front()) {
++active;
try{
(*task)();
} catch(...) {
--active;
throw;
}
--active;
}
}
)
);
}
}
private:
std::vector<std::future<void>> threads;
threaded_queue<std::packaged_task<void()>> tasks;
std::atomic<std::size_t> active;
};
copied from another answer of mine.
A thread_pool with 1 thread matches your description pretty much.
The above is only a toy, a real thread pool I'd replace the std::packaged_task<void()> with a move_only_function<void()>, which is all I use it for. (A packaged_task<void()> can hold a packaged_task<R()> amusingly, if inefficiencly).
You will have to reason about shutdown and make a plan. The above code locks up if you try to shut it down without first clearing the threads.

C++ Thread safe queue shutdown

I'm using this class for producer-consumer setup in C++:
#pragma once
#include <queue>
#include <mutex>
#include <condition_variable>
#include <memory>
#include <atomic>
template <typename T> class SafeQueue
{
public:
SafeQueue() :
_shutdown(false)
{
}
void Enqueue(T item)
{
std::unique_lock<std::mutex> lock(_queue_mutex);
bool was_empty = _queue.empty();
_queue.push(std::move(item));
lock.unlock();
if (was_empty)
_condition_variable.notify_one();
}
bool Dequeue(T& item)
{
std::unique_lock<std::mutex> lock(_queue_mutex);
while (!_shutdown && _queue.empty())
_condition_variable.wait(lock);
if(!_shutdown)
{
item = std::move(_queue.front());
_queue.pop();
return true;
}
return false;
}
bool IsEmpty()
{
std::lock_guard<std::mutex> lock(_queue_mutex);
return _queue.empty();
}
void Shutdown()
{
_shutdown = true;
_condition_variable.notify_all();
}
private:
std::mutex _queue_mutex;
std::condition_variable _condition_variable;
std::queue<T> _queue;
std::atomic<bool> _shutdown;
};
And I use it like this:
class Producer
{
public:
Producer() :
_running(true),
_t(std::bind(&Producer::ProduceThread, this))
{ }
~Producer()
{
_running = false;
_incoming_packets.Shutdown();
_t.join();
}
SafeQueue<Packet> _incoming_packets;
private:
void ProduceThread()
{
while(_running)
{
Packet p = GetNewPacket();
_incoming_packets.Enqueue(p);
}
}
std::atomic<bool> _running;
std::thread _t;
}
class Consumer
{
Consumer(Producer* producer) :
_producer(producer),
_t(std::bind(&Consumer::WorkerThread, this))
{ }
~Consumer()
{
_t.join();
}
private:
void WorkerThread()
{
Packet p;
while(producer->_incoming_packets.Dequeue(p))
ProcessPacket(p);
}
std::thread _t;
Producer* _producer;
}
This works most of the time. But once in a while when I delete the producer (and causing it's deconstructor to call SafeQueue::Shutdown, the _t.join() blocks forever.
My guess is the that the problem is here (in SafeQueue::Dequeue):
while (!_shutdown && _queue.empty())
_condition_variable.wait(lock);
SafeQueue::Shutdown from thread #1 gets called while thread #2 finished checking _shutdown but before it executed _condition_variable.wait(lock), so it "misses" the notify_all(). Can this happen?
If that's the problem, what's the best way to solve it?
Since the SafeQueue object is owned by the producer, deleting the producer causes a race condition between the consumer being notified and the SafeQueue being deleted out from under it when ~Producer completes.
I suggest having the shared resource being owned by neither the producer nor consumer, but passed as a reference to the constructor of each.
Change the Producer and Consumer constructors;
Producer( SafeQueue<Packet> & queue ) :
_running(false), _incoming_packets(queue) {}
Consumer( SafeQueue<Packet> & queue ) :
_running(false), _incoming_packets(queue) {}
Use your instances this way;
SafeQueue<Packet> queue;
Producer producer(queue);
Consumer consumer(queue);
...do stuff...
queue.shutdown();
This also resolves a poor design issue you have in the Consumer class being so tightly coupled to the Producer class.
Also, it's probably a bad idea to kill and join threads in a destructor, as you do for ~Producer. Better to add a Shutdown() method to each thread class, and call them explicitly;
producer.shutdown();
consumer.shutdown();
queue.shutdown();
Shutdown order doesn't really matter, unless you are concerned about losing unprocessed packets that are still in the queue when you stop the consumer.
In your SafeQueue::Dequeue, you are probably using std::condition_variable the wrong way... Change this:
bool Dequeue(T& item)
{
std::unique_lock<std::mutex> lock(_queue_mutex);
while (!_shutdown && _queue.empty())
_condition_variable.wait(lock);
if(!_shutdown)
{
item = std::move(_queue.front());
_queue.pop();
return true;
}
return false;
}
to
bool Dequeue(T& item)
{
std::unique_lock<std::mutex> lock(_queue_mutex);
_condition_variable.wait(lock, []{ return _shutdown || !_queue.empty() });
if(!_shutdown)
{
item = std::move(_queue.front());
_queue.pop();
return true;
}
return false;
}
Secondly, the order of initialization of the data members in Consumer isn't right with regards to its constructor
class Consumer
{
Consumer(Producer* producer) :
_producer(producer),
_t(std::bind(&Consumer::WorkerThread, this))
{ }
......
// _t will be constructed first, regardless of your constructor initializer list
// Meaning, the thread can even start running using an unintialized _producer
std::thread _t;
Producer* _producer;
}
It should be reordered to:
class Consumer
{
Consumer(Producer* producer) :
_producer(producer),
_t(std::bind(&Consumer::WorkerThread, this))
{ }
......
Producer* _producer;
std::thread _t;
}
Another part of your problem is covered by CAB's answer

detached thread crashing on exiting

I am using a simple thread pool as below-
template<typename T>
class thread_safe_queue // thread safe worker queue.
{
private:
std::atomic<bool> finish;
mutable std::mutex mut;
std::queue<T> data_queue;
std::condition_variable data_cond;
public:
thread_safe_queue() : finish{ false }
{}
~thread_safe_queue()
{}
void setDone()
{
finish.store(true);
data_cond.notify_one();
}
void push(T new_value)
{
std::lock_guard<std::mutex> lk(mut);
data_queue.push(std::move(new_value));
data_cond.notify_one();
}
void wait_and_pop(T& value)
{
std::unique_lock<std::mutex> lk(mut);
data_cond.wait(lk, [this]
{
return false == data_queue.empty();
});
if (finish.load() == true)
return;
value = std::move(data_queue.front());
data_queue.pop();
}
bool empty() const
{
std::lock_guard<std::mutex> lk(mut);
return data_queue.empty();
}
};
//Thread Pool
class ThreadPool
{
private:
std::atomic<bool> done;
unsigned thread_count;
std::vector<std::thread> threads;
public:
explicit ThreadPool(unsigned count = 1);
ThreadPool(const ThreadPool & other) = delete;
ThreadPool& operator = (const ThreadPool & other) = delete;
~ThreadPool()
{
done.store(true);
work_queue.setDone();
// IF thread is NOT marked detached and this is uncommented the worker threads waits infinitely.
//for (auto &th : threads)
//{
// if (th.joinable())
// th.join();
// }
}
void init()
{
try
{
thread_count = std::min(thread_count, std::thread::hardware_concurrency());
for (unsigned i = 0; i < thread_count; ++i)
{
threads.emplace_back(std::move(std::thread(&ThreadPool::workerThread, this)));
threads.back().detach();
// here the problem is if i dont mark it detatched thread infinitely waits for condition.
// if i comment out the detach line and uncomment out comment lines in ~ThreadPool main threads waits infinitely.
}
}
catch (...)
{
done.store(true);
throw;
}
}
void workerThread()
{
while (true)
{
std::function<void()> task;
work_queue.wait_and_pop(task);
if (done == true)
break;
task();
}
}
void submit(std::function<void(void)> fn)
{
work_queue.push(fn);
}
};
The usage is like :
struct start
{
public:
ThreadPool::ThreadPool m_NotifPool;
ThreadPool::ThreadPool m_SnapPool;
start()
{
m_NotifPool.init();
m_SnapPool.init();
}
};
int main()
{
start s;
return 0;
}
I am running this code on visual studio 2013. The problem is when main thread exits. The program crashes. It throws exception.
Please help me with what am i doing wrong? How do i stop the worker thread properly? I have spent quite some time but still figuring out what is the issue.
Thanks for your help in advance.
I am not familiar with threads in c++ but have worked with threading in C. In C what actually happens is when you creates child threads of from the main thread then you have to stop the main thread until the childs finishes. If main exits the threads becomes zombie. I think C don't throw an exception in case of Zombies. And may be you are getting exception because of these zombies only. Try stopping the main until the childs finishes and see if it works.
When main exits, detached threads are allowed to continue running, however, object s is destroyed. So, as your threads attempt to access members of object s, you are running into UB.
See accepted answer of this question for more details about your issue : What happens to a detached thread when main() exits?
A rule of thumb would be not to detach threads from main, but signal thread pool that app is ending and join all thread. Or do as is answered in What happens to a detached thread when main() exits?

Proper cleanup with a suspended coroutine

I'm wondering what the best (cleanest, hardest to mess up) method for cleanup is in this situation.
void MyClass::do_stuff(boost::asio::yield_context context) {
while (running_) {
uint32_t data = async_buffer->Read(context);
// do other stuff
}
}
Read is a call which asynchronously waits until there is data to be read, then returns that data. If I want to delete this instance of MyClass, how can I make sure I do so properly? Let's say that the asynchronous wait here is performed via a deadline_timer's async_wait. If I cancel the event, I still have to wait for the thread to finish executing the "other stuff" before I know things are in a good state (I can't join the thread, as it's a thread that belongs to the io service that may also be handling other jobs). I could do something like this:
MyClass::~MyClass() {
running_ = false;
read_event->CancelEvent(); // some way to cancel the deadline_timer the Read is waiting on
boost::mutex::scoped_lock lock(finished_mutex_);
if (!finished_) {
cond_.wait(lock);
}
// any other cleanup
}
void MyClass::do_stuff(boost::asio::yield_context context) {
while (running_) {
uint32_t data = async_buffer->Read(context);
// do other stuff
}
boost::mutex::scoped_lock lock(finished_mutex_);
finished_ = true;
cond.notify();
}
But I'm hoping to make these stackful coroutines as easy to use as possible, and it's not straightforward for people to recognize that this condition exists and what would need to be done to make sure things are cleaned up properly. Is there a better way? Is what I'm trying to do here wrong at a more fundamental level?
Also, for the event (what I have is basically the same as Tanner's answer here) I need to cancel it in a way that I'd have to keep some extra state (a true cancel vs. the normal cancel used to fire the event) -- which wouldn't be appropriate if there were multiple pieces of logic waiting on that same event. Would love to hear if there's a better way to model the asynchronous event to be used with a coroutine suspend/resume.
Thanks.
EDIT: Thanks #Sehe, took a shot at a working example, I think this illustrates what I'm getting at:
class AsyncBuffer {
public:
AsyncBuffer(boost::asio::io_service& io_service) :
write_event_(io_service) {
write_event_.expires_at(boost::posix_time::pos_infin);
}
void Write(uint32_t data) {
buffer_.push_back(data);
write_event_.cancel();
}
uint32_t Read(boost::asio::yield_context context) {
if (buffer_.empty()) {
write_event_.async_wait(context);
}
uint32_t data = buffer_.front();
buffer_.pop_front();
return data;
}
protected:
boost::asio::deadline_timer write_event_;
std::list<uint32_t> buffer_;
};
class MyClass {
public:
MyClass(boost::asio::io_service& io_service) :
running_(false), io_service_(io_service), buffer_(io_service) {
}
void Run(boost::asio::yield_context context) {
while (running_) {
boost::system::error_code ec;
uint32_t data = buffer_.Read(context[ec]);
// do something with data
}
}
void Write(uint32_t data) {
buffer_.Write(data);
}
void Start() {
running_ = true;
boost::asio::spawn(io_service_, boost::bind(&MyClass::Run, this, _1));
}
protected:
boost::atomic_bool running_;
boost::asio::io_service& io_service_;
AsyncBuffer buffer_;
};
So here, let's say that the buffer is empty and MyClass::Run is currently suspended while making a call to Read, so there's a deadline_timer.async_wait that's waiting for the event to fire to resume that context. It's time to destroy this instance of MyClass, so how do we make sure that it gets done cleanly.
A more typical approach would be to use boost::enable_shared_from_this with MyClass, and run the methods as bound to the shared pointer.
Boost Bind supports binding to boost::shared_ptr<MyClass> transparently.
This way, you can automatically have the destructor run only when the last user disappears.
If you create a SSCCE, I'm happy to change it around, to show what I mean.
UPDATE
To the SSCCEE: Some remarks:
I imagined a pool of threads running the IO service
The way in which MyClass calls into AsyncBuffer member functions directly is not threadsafe. There is actually no thread safe way to cancel the event outside the producer thread[1], since the producer already access the buffer for Writeing. This could be mitigated using a strand (in the current setup I don't see how MyClass would likely be threadsafe). Alternatively, look at the active object pattern (for which Tanner has an excellent answer[2] on SO).
I chose the strand approach here, for simplicity, so we do:
void MyClass::Write(uint32_t data) {
strand_.post(boost::bind(&AsyncBuffer::Write, &buffer_, data));
}
You ask
Also, for the event (what I have is basically the same as Tanner's answer here) I need to cancel it in a way that I'd have to keep some extra state (a true cancel vs. the normal cancel used to fire the event)
The most natural place for this state is the usual for the deadline_timer: it's deadline. Stopping the buffer is done by resetting the timer:
void AsyncBuffer::Stop() { // not threadsafe!
write_event_.expires_from_now(boost::posix_time::seconds(-1));
}
This at once cancels the timer, but is detectable because the deadline is in the past.
Here's a simple demo with a a group of IO service threads, one "producer coroutine" that produces random numbers and a "sniper thread" that snipes the MyClass::Run coroutine after 2 seconds. The main thread is the sniper thread.
See it Live On Coliru
#include <boost/asio.hpp>
#include <boost/asio/spawn.hpp>
#include <boost/asio/async_result.hpp>
#include <boost/bind.hpp>
#include <boost/thread.hpp>
#include <boost/atomic.hpp>
#include <list>
#include <iostream>
// for refcounting:
#include <boost/enable_shared_from_this.hpp>
#include <boost/make_shared.hpp>
namespace asio = boost::asio;
class AsyncBuffer {
friend class MyClass;
protected:
AsyncBuffer(boost::asio::io_service &io_service) : write_event_(io_service) {
write_event_.expires_at(boost::posix_time::pos_infin);
}
void Write(uint32_t data) {
buffer_.push_back(data);
write_event_.cancel();
}
uint32_t Read(boost::asio::yield_context context) {
if (buffer_.empty()) {
boost::system::error_code ec;
write_event_.async_wait(context[ec]);
if (ec != boost::asio::error::operation_aborted || write_event_.expires_from_now().is_negative())
{
if (context.ec_)
*context.ec_ = boost::asio::error::operation_aborted;
return 0;
}
}
uint32_t data = buffer_.front();
buffer_.pop_front();
return data;
}
void Stop() {
write_event_.expires_from_now(boost::posix_time::seconds(-1));
}
private:
boost::asio::deadline_timer write_event_;
std::list<uint32_t> buffer_;
};
class MyClass : public boost::enable_shared_from_this<MyClass> {
boost::atomic_bool stopped_;
public:
MyClass(boost::asio::io_service &io_service) : stopped_(false), buffer_(io_service), strand_(io_service) {}
void Run(boost::asio::yield_context context) {
while (!stopped_) {
boost::system::error_code ec;
uint32_t data = buffer_.Read(context[ec]);
if (ec == boost::asio::error::operation_aborted)
break;
// do something with data
std::cout << data << " " << std::flush;
}
std::cout << "EOF\n";
}
bool Write(uint32_t data) {
if (!stopped_) {
strand_.post(boost::bind(&AsyncBuffer::Write, &buffer_, data));
}
return !stopped_;
}
void Start() {
if (!stopped_) {
stopped_ = false;
boost::asio::spawn(strand_, boost::bind(&MyClass::Run, shared_from_this(), _1));
}
}
void Stop() {
stopped_ = true;
strand_.post(boost::bind(&AsyncBuffer::Stop, &buffer_));
}
~MyClass() {
std::cout << "MyClass destructed because no coroutines hold a reference to it anymore\n";
}
protected:
AsyncBuffer buffer_;
boost::asio::strand strand_;
};
int main()
{
boost::thread_group tg;
asio::io_service svc;
{
// Start the consumer:
auto instance = boost::make_shared<MyClass>(svc);
instance->Start();
// Sniper in 2 seconds :)
boost::thread([instance]{
boost::this_thread::sleep_for(boost::chrono::seconds(2));
instance->Stop();
}).detach();
// Start the producer:
auto producer_coro = [instance, &svc](asio::yield_context c) { // a bound function/function object in C++03
asio::deadline_timer tim(svc);
while (instance->Write(rand())) {
tim.expires_from_now(boost::posix_time::milliseconds(200));
tim.async_wait(c);
}
};
asio::spawn(svc, producer_coro);
// Start the service threads:
for(size_t i=0; i < boost::thread::hardware_concurrency(); ++i)
tg.create_thread(boost::bind(&asio::io_service::run, &svc));
}
// now `instance` is out of scope, it will selfdestruct after the snipe
// completed
boost::this_thread::sleep_for(boost::chrono::seconds(3)); // wait longer than the snipe
std::cout << "This is the main thread _after_ MyClass self-destructed correctly\n";
// cleanup service threads
tg.join_all();
}
[1] logical thread, this could be a coroutine that gets resumed on different threads
[2] boost::asio and Active Object