My assignment is to perform transformations (reflections) on a 2D object.
Lets say my original object is a circle:
o
I want to reflect it across a line y = 5 for example.
o | o
Then I want to reflect the two objects across a line x = 5 for example.
o o
__
o o
Then finally I want to reflect the four objects across a line y = 10 for example.
o o | o o
o o | o o
So ultimately I want the end result to include 8 circles.
My question is, how would I go about implementing that into my code?
This is the code for my project:
#include <glut.h>
GLfloat square[4][3] = {{5, 0,0}, {5,20,0},{-5,20,0}, {-5,0,0}};
GLfloat square2[4][3] = { { 10, -5,0 },{ 10,25,0 },{ 0,25,0 },{ 0,-5,0 } };
GLfloat square3[4][3] = { { 0, -5,0 },{ 0,25,0 },{ -10,25,0 },{ -10,-5,0 } };
GLfloat colors[3][3] = {{0,0,1},{1,1,1},{0,0,0}};
void draw_square(void){
glBegin(GL_POLYGON);
for(int i = 0; i < 4; i++){
glVertex3fv(square[i]);
}
glEnd();
}
void draw_square2(void) {
glBegin(GL_POLYGON);
for (int i = 0; i < 4; i++) {
glVertex3fv(square2[i]);
}
glEnd();
}
void draw_square3(void) {
glBegin(GL_POLYGON);
for (int i = 0; i < 4; i++) {
glVertex3fv(square3[i]);
}
glEnd();
}
void draw_ring(void){
for(int r =0; r < 360;r+=45){
glPushMatrix();
glRotated(r, 0,0,1);
glTranslated(0,50,0);
draw_square();
glPopMatrix();
}
}
void draw_ring2(void) {
for (int r = 0; r < 360; r += 45) {
glPushMatrix();
glRotated(r, 0, 0, 1);
glTranslated(0, 50, 0);
draw_square2();
glPopMatrix();
}
}
void draw_ring3(void) {
for (int r = 0; r < 360; r += 45) {
glPushMatrix();
glRotated(r, 0, 0, 1);
glTranslated(0, 50, 0);
draw_square3();
glPopMatrix();
}
}
The display function below creates the set of overlapping rings that I want to reflect. The way it is now, I only get one set of overlapping rings at the bottom left corner. I want the output to be 8 sets of overlapping rings. Ive been trying to find a way to create the reflections I need, but i cant seem to figure it out.
void display(void){
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
glPushMatrix();
glColor3fv(colors[0]);
draw_ring();
glColor3fv(colors[1]);
draw_ring2();
glColor3fv(colors[2]);
draw_ring3();
glPopMatrix();
glFlush();
}
void main(int argc, char** argv){
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB|GLUT_DEPTH);
glutInitWindowSize(1000,600);
glutInitWindowPosition(200,100);
glutCreateWindow("Project 2");
glClearColor(1.0,1.0,0.0,1.0);
glEnable(GL_DEPTH_TEST);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(-100.0, 1000.0, -100.0,600.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glutDisplayFunc(display);
glutMainLoop();
}
Any help would be greatly appreciated.
Note, that drawing by glBegin/glEnd sequences and the fixed function pipeline matrix stack is deprecated since decades.
Read about Fixed Function Pipeline and see Vertex Specification and Shader for a state of the art way of rendering.
Anyway, if you want to tile the objects, then you can do this by nested loops:
void draw_object( void )
{
glPushMatrix();
glColor3fv(colors[0]);
draw_ring();
glColor3fv(colors[1]);
draw_ring2();
glColor3fv(colors[2]);
draw_ring3();
glPopMatrix();
}
void display(void)
{
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
int tile_x = 4;
int tile_y = 2;
float tile_dist = 200.0f;
for ( int x = 0; x < tile_x; ++ x )
{
for (int y = 0; y < tile_y; ++ y )
{
glPushMatrix();
glTranslatef( (float)x * tile_dist, (float)y * tile_dist, 0.0f );
draw_object();
glPopMatrix();
}
}
glFlush();
}
The same tile effect can be achieved by a recursive function:
void display_tiles_recursive( int level, float dist )
{
if ( level == 0 )
{
draw_object();
return;
}
int tile = level / 2;
bool tile_x = level % 2 != 0;
float offset_x = tile_x ? pow(2.0f, (float)tile) * dist : 0.0f;
float offset_y = tile_x ? 0.0f : pow(2.0f, (float)(tile-1)) * dist;
glPushMatrix();
display_tiles_recursive( level - 1, dist );
glTranslatef( offset_x, offset_y, 0.0f );
display_tiles_recursive( level - 1, dist );
glPopMatrix();
}
void display_mirror(void)
{
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
display_tiles_recursive( 3, 200.0f );
glFlush();
}
If you want to achieve a repeated mirror effect, then have to mirror the even tiles along the x and y axis. The mirroring can be achieved by glScale. glScalef( -1.0f, 1.0f, 1.0f ); to mirror along the x-axis and glScalef( 1.0f, -1.0f, 1.0f ); to mirror along the y axis. You can extend the recursive tiling function to get this effect:
void display_mirror_recursive( int level, float dist, bool even_x, bool even_y )
{
if ( level == 0 )
{
glPushMatrix();
if ( even_x )
glScalef( -1.0f, 1.0f, 1.0f );
if ( even_y )
glScalef( 1.0f, -1.0f, 1.0f );
draw_object();
glPopMatrix();
return;
}
int tile = level / 2;
bool tile_x = level % 2 != 0;
float offset_x = tile_x ? pow(2.0f, (float)tile) * dist : 0.0f;
float offset_y = tile_x ? 0.0f : pow(2.0f, (float)(tile-1)) * dist;
glPushMatrix();
display_mirror_recursive( level - 1, dist, even_x, even_y );
glTranslatef( offset_x, offset_y, 0.0f );
if ( level == 1 )
even_y = !even_y;
if ( level == 2)
even_x = !even_x;
display_mirror_recursive( level - 1, dist, even_x, even_y );
glPopMatrix();
}
void display(void)
{
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
display_mirror_recursive( 3, 200.0f, false, false );
glFlush();
}
Related
I have developed an opengl application where we draw strings of text using freetype and opengl.
I want to achieve rotation capability for the text that I put on OpenGL window.
For instance, "This is a text" string should be calculated and put into a buffer on a plain background and then refactored with a rotation value, so that the text will be visible as such below
I also have a text background that is just a regular texture with a buffer. I manually fill this background with a uint8_t buffer which can contain anything ranging from a single colour to an image buffer.
struct Background{
Color color;
Texture* bg_texture;
int x, y;
int w, h;
uint8_t* buffer;
explicit Background(int x, int y):x(x), y(y)
{
};
void create_bg_buffer();
~Background()
{
free(buffer);
}
};
void Background::create_bg_buffer()
{
int w = this->w;
int h = this->h;
if (posix_memalign((void**)&this->buffer, 128, w * h * 4) != 0)
{
VI_ERROR("ERROR::FREETYTPE: Couldn't allocate frame buffer ");
}
int c = 0;
for ( int i = 0; i < w; i++ )
{
for ( int j = 0; j < h; j++ )
{
this->buffer[ c + 0 ] = this->color.get_color_char(Utils::RED);
this->buffer[ c + 1 ] = this->color.get_color_char(Utils::GREEN);
this->buffer[ c + 2 ] = this->color.get_color_char(Utils::BLUE);
this->buffer[ c + 3 ] = 0xFF;
c += 4;
}
}
}
I want users to be able to rotate this text with it's background with a given angle. In on itself, rotating this is a tedious task. So I want to draw the text inside the backgrounds buffer itself, and then rotate it.
Please note that the way I rotate a background, for different reasons is not using an opengl function but rather taking the rectangle's middle point and rotating each point manually and passing those points to opengl with this code:
cpp
...
GLfloat vertices[32] = {
// positions // colors // texture coords
pos.TR_x, pos.TR_y, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top right
pos.BR_x, pos.BR_y, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, // bottom right
pos.BL_x, pos.BL_y, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom left
pos.TL_x, pos.TL_y, 1.0f, 0.1f, 0.1f, 0.1f, 0.0f, 0.0f // top left
};
unsigned int indices[] = {
0, 1, 3, // first triangle
1, 2, 3 // second triangle
};
glGenVertexArrays(1, &VAO);
glGenBuffers(1, &VBO);
glGenBuffers(1, &EBO);
glBindVertexArray(VAO);
glBindBuffer(GL_ARRAY_BUFFER, VBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
...
Every pos stands for a rotated position, with labels indicating positions such as TR stands for top-right.
We want to use a Framebuffer for the output buffer. Then we want to use this framebuffer to be used for actual OpenGL output.
How should we alter the render_text function so that it will use the framebuffer to prepare the string from each individual character.
void Text::render_text(float angle_rad, bool has_bg)
{
if(has_bg) background->bg_texture->render(background->w, background->h, background->buffer, 1);
int start_y = ty + background->h;
start_y = ( std::abs(start_y - SCR_HEIGHT) / 2);
int total_h_index = 0;
for(auto& line: lines)
{
line.y = start_y;
line.x = tx;
total_h_index += line.total_height + LINE_GAP;
calc_pos(line.x, line.y, line.total_width, line.total_height, total_h_index);
for (c = line.text.begin(); c != line.text.end(); c++)
{
Character ch = Characters[*c];
line.char_h.push_back(ch.Size.y);
line.chars_y.push_back( line.y - (ch.Size.y - ch.Bearing.y) );
}
}
// glEnable(GL_CULL_FACE);
// glDisable(GL_BLEND);
// glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
shader.use();
glUniform3f(glGetUniformLocation(shader.ID, "textColor"), color.r, color.g, color.b);
glActiveTexture(GL_TEXTURE0);
glBindVertexArray(VAO);
GLfloat vertices[6][4] = {
{ 0.0, 1.0, 0.0, 0.0 },
{ 0.0, 0.0, 0.0, 1.0 },
{ 1.0, 0.0, 1.0, 1.0 },
{ 0.0, 1.0, 0.0, 0.0 },
{ 1.0, 0.0, 1.0, 1.0 },
{ 1.0, 1.0, 1.0, 0.0 }
};
glBindBuffer(GL_ARRAY_BUFFER, VBO);
glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(vertices), vertices); // Be sure to use glBufferSubData and not glBufferData
glBindBuffer(GL_ARRAY_BUFFER, 0);
GLint transition_loc = glGetUniformLocation(shader.ID, "transparency");
glUniform1f(transition_loc, 1.0f);
for(auto& line: lines)
{
GLfloat char_x = 0.0f;
std::string str = line.text;
glm::mat4 transOriginM = glm::translate(glm::mat4(1.0f), glm::vec3(line.x, line.y, 0));
glm::mat4 rotateM = glm::rotate(glm::mat4(1.0f), glm::radians(-angle_rad), glm::vec3(0.0f, 0.0f, 1.0f));
int e = 0;
std::vector<glm::vec2> rotated_pos = calc_rotation(line.chars_x, line.chars_y, -angle_rad, line.total_width);
for (c = str.begin(); c != str.end(); c++)
{
Character ch = Characters[*c];
GLfloat w = ch.Size.x;
GLfloat h = ch.Size.y;
GLfloat xrel = rotated_pos[e].x ; // char_x
GLfloat yrel = rotated_pos[e].y;
// Now advance cursors for next glyph (note that advance is number of 1/64 pixels)
e++; // Bitshift by 6 to get value in pixels (2^6 = 64 (divide amount of 1/64th pixels by 64 to get amount of pixels))
glm::mat4 transRelM = glm::translate(glm::mat4(1.0f), glm::vec3(xrel, yrel, 0));
glm::mat4 scaleM = glm::scale(glm::mat4(1.0f), glm::vec3(w, h, 1.0f));
// Keep the translation matrix that sets the position of the text before the rotation matrix
glm::mat4 modelM = transOriginM * transRelM * rotateM * scaleM;
GLint model_loc = glGetUniformLocation(shader.ID, "model");
glUniformMatrix4fv(model_loc, 1, GL_FALSE, glm::value_ptr(modelM));
// Render glyph texture over quad
glBindTexture(GL_TEXTURE_2D, ch.TextureID);
// Render quad
glDrawArrays(GL_TRIANGLES, 0, 6);
}
}
As of now, "Adding a character or text" is completely independent from the background operation.
They are just positioned in a way, so it looks like it has a background.
Our aim is to use a single output buffer that will hold both background color and freetype text data.
Following is how we handle the texture and texture rotation mechanism :
#define _VERTICIZE_X(number, global) _VERTICIZE(number, global) - 1
#define _VERTICIZE_Y(number, global) _VERTICIZE(number, global) + 1
namespace OpenGL
{
Texture::Texture(int x, int y, int w, int h, int gw, int gh, float angle)
{
Utils::Point rotatedPoints[4] = {
{x, y},
{x + w, y},
{x, y + h},
{x + w, y + h},
};
Utils::RotateRectangle(rotatedPoints, angle);
pos.TL_x = _VERTICIZE_X(rotatedPoints[0].x, gw); pos.TL_y = -_VERTICIZE_Y(rotatedPoints[0].y, gh);
pos.TR_x = _VERTICIZE_X(rotatedPoints[1].x, gw); pos.TR_y = -_VERTICIZE_Y(rotatedPoints[1].y, gh);
pos.BL_x = _VERTICIZE_X(rotatedPoints[2].x, gw); pos.BL_y = -_VERTICIZE_Y(rotatedPoints[2].y, gh);
pos.BR_x = _VERTICIZE_X(rotatedPoints[3].x, gw); pos.BR_y = -_VERTICIZE_Y(rotatedPoints[3].y, gh);
}
int Texture::init(float alpha, std::string* filter, Utils::Color proj_filt)
{
shader = Shader("./src/opengl/shaders/texture_shaders/texture.vs", "./src/opengl/shaders/texture_shaders/texture.fs");
void RotateRectangle(Point (&points)[4], float angle) {
// Calculate the center point
Point center = { 0 };
for (int i = 0; i < 4; i++) {
center.x += points[i].x;
center.y += points[i].y;
}
center.x /= 4;
center.y /= 4;
// Rotate each point
float angleRadians = angle * M_PI / 180.0f;
float s = sin(angleRadians);
float c = cos(angleRadians);
for (int i = 0; i < 4; i++) {
// Subtract the center point to get a vector from the center to the point
Point vector = { points[i].x - center.x, points[i].y - center.y };
// Rotate the vector
float x = vector.x;
float y = vector.y;
vector.x = x * c - y * s;
vector.y = x * s + y * c;
// Add the center point back to the rotated vector to get the new point
points[i].x = vector.x + center.x;
points[i].y = vector.y + center.y;
}
}
How can we use a framebuffer so that all OpenGL and FreeType operation are going to be executed in a single output space, and following that depending our way we can rotate the whole text using this single output framebuffer ?
I'm trying to make a color swatch tool, where you give it n colors and it makes a n-gon with those colors merging at the center.
So far it just makes an n-gon(without specifying colors, it randomly generates them for now).
However the colors don't merge at the center but rather a single vertex.
Is there any fix to this?
#include <GLFW/glfw3.h>
#include <iostream>
#include <cmath>
float randfloat(){
float r = ((float)(rand() % 10))/10;
return r;
}
int main() {
int side_count;
std::cout<<"Type the no. of sides: "<<std::endl;
std::cin>>side_count;
srand(time(NULL));
std::cout<<randfloat()<<std::endl;
std::cout<<randfloat()<<std::endl;
float rs[side_count];
float gs[side_count];
float bs[side_count];
for (int i=0;i<side_count;i++)
{
rs[i] = randfloat();
gs[i] = randfloat();
bs[i] = randfloat();
}
GLFWwindow* window;
if (!glfwInit())
return 1;
window = glfwCreateWindow(800, 800, "Window", NULL, NULL);
if (!window) {
glfwTerminate();
return 1;
}
glfwMakeContextCurrent(window);
if(glewInit()!=GLEW_OK)
std::cout<<"Error"<<std::endl;
while(!glfwWindowShouldClose(window)) {
glClear(GL_COLOR_BUFFER_BIT);
glClearColor(0.11f,0.15f,0.17f,1.0f);
glBegin(GL_POLYGON);
//glColor3f(1.0f,0.0f,0.0f);glVertex3f(-0.5f,0.0f,0.0f);
for(int i=0; i<side_count;i++)
{
float r = rs[i];
float g = gs[i];
float b = bs[i];
float x = 0.5f * sin(2.0*M_PI*i/side_count);
float y = 0.5f * cos(2.0*M_PI*i/side_count);
glColor3f(r,g,b);glVertex2f(x,y);
}
glEnd();
glfwSwapBuffers(window);
glfwPollEvents();
}
glfwTerminate();
return 0;
}
All you've to do is to add a new point to the GL_POLYGON primitive, in the center of the circular shape:
glBegin(GL_TRIANGLE_FAN);
glColor3f(0.5f, 0.5f, 0.5f);
glVertex2f(0, 0);
for(int i=0; i <= side_count; i++)
{
float r = rs[i % side_count];
float g = gs[i % side_count];
float b = bs[i % side_count];
float x = 0.5f * sin(2.0*M_PI*i/side_count);
float y = 0.5f * cos(2.0*M_PI*i/side_count);
glColor3f(r, g, b);
glVertex2f(x, y);
}
glEnd();
Note, you've to define the color for the center point. In the code snippet, I've chosen (0.5, 0.5, 0.5).
Instead of GL_POLYGON, GL_TRIANGLE_FAN can be used, too.
I am trying to generate the Sierpinski Gasket using a function that draws dot patterns and will generate the gasket.
But when I compile and run the program it displays nothing but black screen. What's causing the problem?
Here is my code:
#include <Windows.h>
#include <gl/GL.h>
#include <glut.h>
void myInit(void) {
glClearColor(1.0, 1.0, 1.0, 0.0);
glColor3f(0.0f, 0.0f, 0.0f);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0.0, 640.0, 0.0, 480.0);
}
class GLintPoint {
public:
GLint x, y;
};
int random(int m) {
return rand() % m;
}
void drawDot(GLint x, GLint y)
{
glBegin(GL_POINTS);
glVertex2i(x, y);
glEnd();
}
void Sierpinski(void) {
GLintPoint T[3] = {{ 10, 10 }, {300, 30}, {200, 300}};
int index = random(3);
GLintPoint point = T[index];
for (int i = 0; i < 1000; i++)
{
index = random(3);
point.x = (point.x + T[index].x) / 2;
point.y = (point.y + T[index].y) / 2;
drawDot(point.x, point.y);
}
glFlush();
}
void main(int argc, char** argv)
{
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
glutInitWindowSize(640, 480);
glutInitWindowPosition(100, 150);
glutCreateWindow("Sierpinski Gasket");
glutDisplayFunc(drawDot);
myInit();
glutMainLoop();
}
If you want to draw black dots on a white background, then you have to clear glClear the background:
glClear( GL_COLOR_BUFFER_BIT );
Note, glClearColor sets the color which is used to clear the view port, but doesn't clear anything itself.
Your code should look somehow like this:
void drawDot(GLint x, GLint y)
{
glVertex2i(x, y);
}
void Sierpinski(void) {
GLintPoint T[3] = {{ 10, 10 }, {300, 30}, {200, 300}};
int index = random(3);
GLintPoint point = T[index];
glClearColor(1.0, 1.0, 1.0, 1.0); // set up white clear color
glClear( GL_COLOR_BUFFER_BIT ); // clear the back ground (white)
glMatrixMode( GL_MODELVIEW );
glPushMatrix(); // setup model matrix
glScalef( 1.5f, 1.5f, 1.0f ); // scale the point distribution
glColor3f( 0.0f, 0.0f, 0.0f ); // set black draw color
glPointSize( 5.0f ); // set the size of the points
glBegin(GL_POINTS);
for (int i = 0; i < 1000; i++)
{
index = random(3);
point.x = (point.x + T[index].x) / 2;
point.y = (point.y + T[index].y) / 2;
drawDot(point.x, point.y);
}
glEnd();
glPopMatrix(); // reset model matrix
glFlush();
}
I want to make the codes that draw trajectory as the object's moving when I clicked any position on the screen.
I set the initial center point as a starting point. And I want to set the other point with mouse button clicked (destination point) as variables but I can't figure out how to do this.
float v1[3] = { -35.0f, 22.5f, 0.0f };
float v2[3] = { -35.0f, -22.5f, 0.0f };
float v3[3] = { 0.0f, 42.5f, 0.0f };
float v4[3] = { 0.0f, -42.5f, 0.0f };
float v5[3] = { 35.0f, 22.5f, 0.0f };
float v6[3] = { 35.0f, -22.5f, 0.0f };
This is the initial position of the object. (6-point star with 2 triangles)
float px, py;
float center_s[3] = { 0.0f, 0.0f, 0.0f };
float center_d[3] = { px, py, 0.0f };
center_s is the starting point and center_d is the destination point with variable px, py.
void lines(void) {
glColor3f(1.0, 0.0, 0.0);
glPointSize(5);
glBegin(GL_POINTS);
glVertex3fv(center_s);
glLineWidth(1);
glBegin(GL_LINES);
glVertex3fv(center_s);
glVertex3fv(center_d);
}
This function draws trajectory with red lines from center_s to center_d. Also it draws a center point.
case GLUT_LEFT_BUTTON:
if (state == GLUT_DOWN) {
x = mx;
y = glutGet(GLUT_WINDOW_HEIGHT) - my;
px = x + 35.0;
py = y + 42.5;
glutIdleFunc(lines);
}
glutPostRedisplay();
break;
Here is the problem. When the left mouse button is pressed, the star has to move to the clicked position and calculates the center point of the position and draw the line. But if I run these codes, the movement trajectory is not drawn.
Please let me know what the problem is. Plus, the star must move at a constant speed to the clicked location. (Not teleportation)
Following is the full codes:
#include <stdlib.h>
#include <GL/glut.h>
float v1[3] = { -35.0f, 22.5f, 0.0f };
float v2[3] = { -35.0f, -22.5f, 0.0f };
float v3[3] = { 0.0f, 42.5f, 0.0f };
float v4[3] = { 0.0f, -42.5f, 0.0f };
float v5[3] = { 35.0f, 22.5f, 0.0f };
float v6[3] = { 35.0f, -22.5f, 0.0f };
float px, py;
float center_s[3] = { 0.0f, 0.0f, 0.0f };
float center_d[3] = { px, py, 0.0f };
static GLfloat spin = 0.0;
float x = 400.0f, y = 442.5f;
float color1[3] = { 1.0f, 1.0f, 1.0f };
float color2[3] = { 1.0f, 1.0f, 1.0f };
int mode = 1;
int rotate = 1;
void init(void);
void triangle_1(void);
void triangle_2(void);
void lines(void);
void display(void);
void spinDisplay_1(void);
void spinDisplay_2(void);
void reshape(int, int);
void changeColor(int);
void mouse(int, int, int, int);
////////////////////////////////////////////////////////////////////
int main(int argc, char **argv) {
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);
glutInitWindowSize(500, 500);
glutInitWindowPosition(300, 300);
glutCreateWindow("6-Point Star");
init();
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutMouseFunc(mouse);
glutMainLoop();
return 0;
}
////////////////////////////////////////////////////////////////////
void init(void) {
glClearColor(0.0, 0.0, 0.0, 0.0);
glShadeModel(GL_FLAT);
}
void triangle_1(void) {
glColor3fv(color1);
glBegin(GL_TRIANGLE_FAN);
glVertex3fv(v1);
glVertex3fv(v4);
glVertex3fv(v5);
glEnd();
}
void triangle_2(void) {
glColor3fv(color2);
glBegin(GL_TRIANGLE_FAN);
glVertex3fv(v2);
glVertex3fv(v3);
glVertex3fv(v6);
glEnd();
}
void lines(void) {
glColor3f(1.0, 0.0, 0.0);
glPointSize(5);
glBegin(GL_POINTS);
glVertex3fv(center_s);
glLineWidth(1);
glBegin(GL_LINES);
glVertex3fv(center_s);
glVertex3fv(center_d);
}
void display(void) {
glClear(GL_COLOR_BUFFER_BIT);
glPushMatrix();
glTranslatef(x, y, 0.0f);
glRotatef(spin, 0.0, 0.0, 1.0);
triangle_1();
triangle_2();
glPopMatrix();
glutSwapBuffers();
}
void spinDisplay_1(void) {
spin = spin + 2.0;
if (spin > 360.0) {
spin = spin - 360.0;
}
glutPostRedisplay();
}
void spinDisplay_2(void) {
spin = spin - 2.0;
if (spin < 360.0) {
spin = spin + 360.0;
}
glutPostRedisplay();
}
void reshape(int w, int h) {
glViewport(0, 0, (GLsizei)w, (GLsizei)h);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0.0, 500.0, 0.0, 500.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
}
void changeColor(int n) {
if (n == 1) {
color1[0] = 0.0f, color1[1] = 0.0f, color1[2] = 1.0f;
color2[0] = 0.0f, color2[1] = 1.0f, color2[2] = 0.0f;
}
else if (n == 2) {
color1[0] = 1.0f, color1[1] = 1.0f, color1[2] = 1.0f;
color2[0] = 1.0f, color2[1] = 1.0f, color2[2] = 1.0f;
}
}
void mouse(int button, int state, int mx, int my) {
switch (button) {
case GLUT_LEFT_BUTTON:
if (state == GLUT_DOWN) {
x = mx;
y = glutGet(GLUT_WINDOW_HEIGHT) - my;
px = x + 35.0;
py = y + 42.5;
glutIdleFunc(lines);
}
glutPostRedisplay();
break;
case GLUT_MIDDLE_BUTTON:
if (state == GLUT_DOWN) {
if (mode == 1) {
changeColor(mode);
mode = 2;
}
else if (mode == 2) {
changeColor(mode);
mode = 1;
}
}
glutPostRedisplay();
break;
case GLUT_RIGHT_BUTTON:
if (state == GLUT_DOWN)
if (rotate == 1) {
glutIdleFunc(spinDisplay_1);
rotate = 2;
}
else if (rotate == 2) {
glutIdleFunc(spinDisplay_2);
rotate = 1;
}
break;
default:
break;
}
}
You're missing a few glEnd() and unless you have other plans for center_s and center_d then you don't need them. As x and y is center_s, while px and py is center_d.
So first of all in mouse() just assign the mouse position to px and py instead of x and y.
case GLUT_LEFT_BUTTON:
if (state == GLUT_DOWN) {
px = mx;
py = glutGet(GLUT_WINDOW_HEIGHT) - my;
}
Now next you need a way to obtain the delta time. Delta time is the time passed since the last frame. For ease I added the following code to the top of display().
int timeNow = glutGet(GLUT_ELAPSED_TIME);
float delta = (float)(timeNow - timeLastFrame) / 1000.0f;
timeLastFrame = timeNow;
Remember to declare int timeLastFrame = 0; among your global variables.
Now (still in display()) we can calculate the direction of the travel path. We do this by calculating the difference between the two points. Then calculate the length and normalize the difference.
float dx = px - x;
float dy = py - y;
float length = sqrt(dx * dx + dy * dy);
dx /= length;
dy /= length;
Now you just put it all together.
if (length > 1.0f) {
x += dx * speed * delta;
y += dy * speed * delta;
}
So while length > 1.0 then we move towards px and py at the speed of float speed = 100.0f; (declare this among your global variables as well).
Just to reemphasize. Yes, do delete glutIdleFunc(lines) from mouse(). Then we add it in display() instead. The full extend of display() should look like this now:
void display(void) {
int timeNow = glutGet(GLUT_ELAPSED_TIME);
float delta = (float)(timeNow - timeLastFrame) / 1000.0f;
timeLastFrame = timeNow;
float dx = px - x;
float dy = py - y;
float length = sqrt(dx * dx + dy * dy);
dx /= length;
dy /= length;
if (length > 1.0f) {
x += dx * speed * delta;
y += dy * speed * delta;
}
glClear(GL_COLOR_BUFFER_BIT);
glPushMatrix();
glTranslatef(x, y, 0.0f);
glRotatef(spin, 0.0, 0.0, 1.0);
triangle_1();
triangle_2();
glPopMatrix();
lines();
glutSwapBuffers();
glutPostRedisplay();
}
Remember glutPostRedisplay(). If not then it won't redraw and thus not animate. Also remember to #include <math.h> for sqrt().
Everything before glClear() could be moved to your glutIdleFunc() callback.
Since there was no need for center_s and center_d then lines() can be boiled down to:
void lines(void) {
glColor3f(1.0, 0.0, 0.0);
glPointSize(5);
glBegin(GL_POINTS);
glVertex2f(px, py);
glEnd();
glLineWidth(1);
glBegin(GL_LINES);
glVertex2f(x, y);
glVertex2f(px, py);
glEnd();
}
The result should look something like this:
For future reference. If you don't want to do the linear algebra by hand. Then you can use something like GLM.
I never got the concept down on how to get an animation working in OpenGL. I was working on his project trying to get it to work but never got the skier to move. Trying to figure out how to get this fixed.
#include "../shared/gltools.h" // OpenGL toolkit
#define PI 3.14159265
float a = -5;//maybe
float b = 29;
float c = 27;
float d = 28.25;
float e = 28.5;
bool lookUp;
bool setback;
bool lookDown;
bool lookLeft;
bool lookRight;
bool walkForward;
bool walkBackward;
bool strafeLeft;
bool strafeRight;
float xTranslation;
float yTranslation;
float zTranslation;
float yRotationAngle;
float zRotationAngle;
float xRotationAngle;
int mouseLastx;
int mouseLasty;
float sunRotationAngle=0;
float sunRadius = 150.0;
float day=0;
float dusk=1;
// Light values and coordinates
GLfloat lightPos[] = { 0.0f, 30.0f, 0.0f, 1.0f };
GLfloat lightPos2[] = { 0.0f, 0.0f, 40.0f, 1.0f };
GLfloat specular[] = { 1.0f, 1.0f, 1.0f, 1.0f};
GLfloat specular2[] = { 0.0f, 1.0f, 0.0f, 1.0f};
GLfloat diffuse[] = { 1.0f, 1.0f, 1.0f, 1.0f};
GLfloat diffuse2[] = { 0.0f, 0.3f, 0.0f, 1.0f};
GLloat specref[] = { 1.0f, 1.0f, 1.0f, 1.0f };
GLfloat ambientLight[] = { 0.5f, 0.5f, 0.5f, 1.0f};
GLfloat spotDir[] = { 0.0f, 0.0f, -1.0f };
void mouseMovement(int x, int y)
{
int mouseDiffx=x-mouseLastx;
int mouseDiffy=y-mouseLasty;
mouseLastx=x;
mouseLasty=y; //set lasty to the current y position
xRotationAngle += (GLfloat) mouseDiffy;
yRotationAngle += (GLfloat) mouseDiffx;
if (xRotationAngle>=90)
xRotationAngle=90;
if (xRotationAngle<=-90)
xRotationAngle=-90;
//cout << "x:" << x << "y:" << y << endl;
}
void drawcabin()
{
glColor3ub(0, 0, 0);
glBegin(GL_TRIANGLES);
//glTranslatef(0,-5,0); // move view left
//glNormal3f(-3,0.7,-1.7);
//glutSolidCube(5.0f);
glNormal3d(0,0.7,0.7);
glVertex3d(0,6,0);
glVertex3d(-3,3.5,-2);
glVertex3d(2,3.5,-2);
glNormal3d(2,-1,1);
glVertex3d(0,6,0);
glVertex3d(-3,3.5,-2);
glVertex3d(2,3.5,-2);
glTranslatef(0,-5,0); // move view left
glNormal3d(-3,0.7,-1.7);
glEnd();
glColor3ub(185, 0, 0);
glutSolidCube(5.0f);
}
void drawskislope()
{
glColor3ub(0, 0, 0);
glBegin(GL_QUADS);
glTranslatef(0,-5,90); // move view left
glColor3ub(185, 122, 87);
glNormal3d(0,5,1);
glVertex3d(10,0,5);
glVertex3d(10,.5,5);
glVertex3d(15,.5,5);
glVertex3d(15,0,5);//small square
glColor3ub(201, 192, 187);
glVertex3d(11.5,.5,5);
glVertex3d(13.5,.5,5);
glVertex3d(13.5,-10,5);
glVertex3d(11.5,-10,5);
//slope start
glTranslatef(0,-5,0); // move view left
// glNormal3d(-3,0.7,-1.7);
glEnd();
}
void drawskier()
{
float a = -5;//maybe
float b = 29;
float c = 27;
float d = 28.25;
float e = 28.5;
glBegin(GL_QUADS);
glTranslatef(0,-5,0); // move view
glColor3ub(185, 122, 87);
glNormal3d(0,5,1);
//Do While loop
// do
// {
// to move skier do a loop and update a in the translate
glTranslatef(0,a,0); // move view
glVertex3d(c,0,5);//10
glVertex3d(c,.1,5);//10
glVertex3d(b,.1,5);//15
glVertex3d(b,0,5);//skis on skier
glNormal3d(0,5,1);
glVertex3d(d,0,5);
glVertex3d(d,1.35,5);
glVertex3d(e,1.35,5);
glVertex3d(e,0,5);//body on skier
glutSwapBuffers;
// }while(b>15); //try to animate
glEnd();
glFlush();
b=b-1;
c=c-1;
d=d-1;
e=e-1;
glutPostRedisplay();
glTranslatef(30,3,0); // move view left
glColor3ub(168, 220, 109);
glutSolidSphere(.5,7,8); //sphere-head
glPushMatrix();
glTranslatef(3.5,-100,2);
glutSolidSphere(25,15,15); //sphere
glPopMatrix();
}
void updatescene()
{
}
///////////////////////////////////////////////////////////
// Called to draw scene
void RenderScene(void)
{
GLUquadricObj *pObj; // Quadric Object
pObj = gluNewQuadric();
gluQuadricNormals(pObj, GLU_SMOOTH);
GLfloat horizontalMovement=1;
GLfloat verticalMovement=0;
horizontalMovement=cos(xRotationAngle*PI/180);
verticalMovement=-sin(xRotationAngle*PI/180);
// Reset Model view matrix stack
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
horizontalMovement=cos(xRotationAngle*PI/180);
verticalMovement=-sin(xRotationAngle*PI/180);
if (lookDown)
{
xRotationAngle+=1;
if (xRotationAngle>=90)
xRotationAngle=90;
}
if (lookUp)
{
xRotationAngle-=1;
if (xRotationAngle<=-90)
xRotationAngle=-90;
}
if (lookRight)
{
yRotationAngle+=1;
if (yRotationAngle>=360)
yRotationAngle=0;
}
if (lookLeft)
{
yRotationAngle-=1;
if (yRotationAngle<=-360)
yRotationAngle=0;
}
if (walkForward)
{
zTranslation+=cos(yRotationAngle*PI/180)*horizontalMovement;
xTranslation-=sin(yRotationAngle*PI/180)*horizontalMovement;
yTranslation-=verticalMovement;
}
if (walkBackward)
{
zTranslation-=cos(yRotationAngle*PI/180)*horizontalMovement;
xTranslation+=sin(yRotationAngle*PI/180)*horizontalMovement;
yTranslation+=verticalMovement;
}
if (strafeRight)
{
zTranslation+=cos((yRotationAngle+90)*PI/180);
xTranslation-=sin((yRotationAngle+90)*PI/180);
}
if (strafeLeft)
{
zTranslation-=cos((yRotationAngle+90)*PI/180);
xTranslation+=sin((yRotationAngle+90)*PI/180);
}
if (setback)
{
zTranslation=0;
xTranslation=0;
yTranslation=0;
}
// Reset Model view matrix stack
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glRotatef(xRotationAngle,1,0,0);
glRotatef(zRotationAngle,0,0,1);
glRotatef(yRotationAngle,0,1,0);
glTranslatef(xTranslation,yTranslation,zTranslation);
//glRotatef(-15,1,0,0);
//glRotatef(90,0,1,0);
glTranslatef(0,-0.50,-10);
glPolygonMode(GL_FRONT_AND_BACK,GL_FILL);
sunRotationAngle++;
// Clear the window with current clearing color
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glColor3d(0,0,0);
glLineWidth(2);
//snow
glColor3ub(255, 255, 255);
glBegin(GL_QUADS);
glNormal3f(0,1,0);
for (int i=-100;i<=200;i+=10) //x
for (int j=-100;j<=200;j+=10)//z
{
float y1=(-j)*.25;
float y2=(-j+10)*.25;
glVertex3d(i+10,y2,-100);
glVertex3d(i,y2,-100);
glVertex3d(i,y1,-100);
glVertex3d(i+10,y1,-100);
}
glEnd();
glPushMatrix();
glTranslatef(-10,14,-50);
drawcabin();
drawskislope();
drawskier();
glPopMatrix();
// Flush drawing commands
glutSwapBuffers();
glutPostRedisplay();
//GLfloat horizontalMovement=1;
// GLfloat verticalMovement=0;
}
void TimerFunction(int value)
{
// Redraw the scene with new coordinates
glutPostRedisplay();
updatescene();
glutTimerFunc(16,TimerFunction, 1);
}
///////////////////////////////////////////////////////////
// Setup the rendering context
void SetupRC(void)
{
lookUp=false;
lookDown=false;
lookLeft=false;
lookRight=false;
walkForward=false;
walkBackward=false;
strafeLeft=false;
strafeRight=false;
yRotationAngle=0;
xRotationAngle=0;
zRotationAngle=0;
xTranslation=0;
yTranslation=0;
zTranslation=0;
// White background
glClearColor(0.5f,0.95f, 1.0f, 1.0f );
// Set drawing color to green
glColor3f(0.0f, 1.0f, 0.0f);
// Set color shading model to flat
glShadeModel(GL_SMOOTH);
// Clock wise wound polygons are front facing, this is reversed
// because we are using triangle fans
glFrontFace(GL_CCW);
glEnable (GL_DEPTH_TEST);
}
void ChangeSize(int w, int h)
{
//GLfloat nRange = 100.0f;
// Prevent a divide by zero
if(h == 0)
h = 1;
// Set Viewport to window dimensions
glViewport(0, 0, w, h);
// Reset projection matrix stack
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
// Establish clipping volume (left, right, bottom, top, near, far)
GLfloat fAspect;
fAspect = (GLfloat)w / (GLfloat)h;
//glOrtho(-10,10,-10,10,0,1000);
gluPerspective(45,fAspect,0.1,1000);
// Reset Model view matrix stack
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
}
// Respond to arrow keys by moving the camera frame of reference
void SpecialKeys(int key, int x, int y)
{
if(key == GLUT_KEY_UP)
lookUp=true;
if(key == GLUT_KEY_DOWN)
lookDown=true;
if(key == GLUT_KEY_LEFT)
lookLeft=true;
if(key == GLUT_KEY_RIGHT)
lookRight=true;
// Refresh the Window
glutPostRedisplay();
}
void SpecialKeysUp(int key, int x, int y)
{
if(key == GLUT_KEY_UP)
lookUp=false;
if(key == GLUT_KEY_DOWN)
lookDown=false;
if(key == GLUT_KEY_LEFT)
lookLeft=false;
if(key == GLUT_KEY_RIGHT)
lookRight=false;
// Refresh the Window
glutPostRedisplay();
}
void keyboardFunc(unsigned char key, int x, int y)
{
switch(key)
{
case 'w':
walkForward=true;
break;
case 's':
walkBackward=true;
break;
case 'a':
strafeLeft=true;
break;
case 'd':
strafeRight=true;
break;
case 'r':
setback=true;
break;
default:
break;
}
}
void keyboardUpFunc(unsigned char key, int x, int y)
{
switch(key)
{
case 'w':
walkForward=false;
break;
case 's':
walkBackward=false;
break;
case 'a':
strafeLeft=false;
break;
case 'd':
strafeRight=false;
break;
default:
break;
}
}
///////////////////////////////////////////////////////////
// Main program entry point
int main(int argc, char* argv[])
{
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);
glutInitWindowSize(500,500);
glutCreateWindow("Assignment 2");
glutReshapeFunc(ChangeSize);
glutDisplayFunc(RenderScene);
glutSpecialFunc(SpecialKeys);
glutSpecialUpFunc(SpecialKeysUp);
glutKeyboardUpFunc(keyboardUpFunc);
glutKeyboardFunc(keyboardFunc);
glutPassiveMotionFunc(mouseMovement);
SetupRC();
glutMainLoop();
return 0;
}
My general approach is to use a glutTimerFunc() callback to post a redisplay event every 16 milliseconds or so (~60 FPS).
Then in the glutDisplayFunc() callback you can grab the new GLUT_ELAPSED_TIME to calculate a delta-time (dt) from the last frame.
With dt in hand you can update any number of variables such as angles or translation offsets. You'll want to use dt instead of fixed increment values to decouple your animation speed from your framerate.
Then back in the glutDisplayFunc() callback you draw a new frame using the updated state variables.
This is an example that uses the method above to rotate a square at about 30 degrees per second:
#include <GL/glut.h>
float angle = 0;
void update( const double dt )
{
// in degrees per second
const float SPEED = 30.0f;
// update angle
angle += ( SPEED * dt );
}
void display()
{
// GLUT_ELAPSED_TIME is in milliseconds
static int prvMs = glutGet( GLUT_ELAPSED_TIME );
const int curMs = glutGet( GLUT_ELAPSED_TIME );
// dt is in seconds
const double dt = ( curMs - prvMs ) / 1000.0;
prvMs = curMs;
// update world state
update( dt );
glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );
// reset projection/modelview matrices each frame;
// this makes sure we have a known-good matrix
// stack each time through display()
glMatrixMode( GL_PROJECTION );
glLoadIdentity();
glOrtho( -2, 2, -2, 2, -1, 1 );
glMatrixMode( GL_MODELVIEW );
glLoadIdentity();
// draw rotated square
glRotatef( angle, 0, 0, 1 );
glBegin( GL_QUADS );
glColor3ub( 255, 0, 0 );
glVertex2i( -1, -1 );
glVertex2i( 1, -1 );
glVertex2i( 1, 1 );
glVertex2i( -1, 1 );
glEnd();
glutSwapBuffers();
}
void timer( int value )
{
glutPostRedisplay();
glutTimerFunc( 16, timer, 0 );
}
int main( int argc, char **argv )
{
glutInit( &argc, argv );
glutInitDisplayMode( GLUT_RGBA | GLUT_DEPTH | GLUT_DOUBLE );
glutInitWindowSize( 600, 600 );
glutCreateWindow( "GLUT" );
glutDisplayFunc( display );
glutTimerFunc( 0, timer, 0 );
glutMainLoop();
return 0;
}