Wide to Long Dataset in SAS - sas

I have a dataset that has multiple measures taken as multiple time points.
The data look like this:
UserID Var1_2008 Var1_2009 Var1_2010 Var2_2008 Var2_2009 Var2_2010 Race
1 Y N Y 20 30 20 1
2 N N N 15 30 35 0
I want the data to look like this:
Year UserID Var1 Var2 Race
2008 1 Y 20 1
2009 1 N 30 1
....
How can I do this? I'm totally lost

You could use an array, assuming you have the same years for all of the var1_ and var2_ variables.
data want ;
set have ;
/* Need two arrays, as one is character, the other numeric */
array v1{*} var1_: ; /* wildcard all 'var1_'-prefixed variables */
array v2{*} var2_: ; /* same for var2_ */
/* loop along v1 array */
do i = 1 to dim(v1) ;
/* use vname function to get variable name associated to this array element */
year = input(scan(vname(v1{i}),-1,'_'),8.) ;
var1 = v1{i} ;
var2 = v2{i} ;
output ;
end ;
drop i ;
run ;

There's a macro for that! I think running the following will do exactly what you want to accomplish:
filename ut url 'https://raw.githubusercontent.com/FriedEgg/Papers/master/An_Easier_and_Faster_Way_to_Untranspose_a_Wide_File/src/untranspose.sas';
%include ut ;
%untranspose(data=have, out=want, by=UserID, id=year, delimiter=_,
var=Var1 Var2, copy=Race)

Related

In the Data step of SAS, how can I get value of a Column with Column's name represented as a String?

In the Data Step of SAS, you get value of a Column by directly using its name, for example, like this,
name = col1;
But for some reason, I want to get value of a column where column is represented by a string. For example, like this,
name = get_value_of_column(cats("col", i))
Is this possible? And if so, how?
The DATA Step functions VVALUE and VVALUEX will return the formatted value of a variable.
VVALUE(<variable-name>) static, a step compilation time interaction
VVALUEX(<expression>) dynamic, a runtime expression resolving to a variable name
The actual value of the variable can be dynamically obtained via a _type_ array scan
Array Scan
data have;
input name $ x y z (s t u) ($) date: yymmdd10.;
format s t u $upcase. date yymmdd10.;
datalines;
x 1 2 3 a b c 2020-10-01
y 2 3 4 b c d 2020-10-02
z 3 4 5 c d e 2020-10-03
s 4 5 6 hi ho silver 2020-10-04
t 5 6 7 aa bb cc 2020-10-05
u 6 7 8 -- ** !! 2020-10-06
date 7 8 9 ppp qqq rrr 2020-10-07
;
data want;
set have;
length u_vvalue name_vvaluex $20.;
u_vvalue = vvalue(u);
name_vvaluex = vvaluex(name);
array nums _numeric_;
array chars _character_;
/* NOTE:
* variable based arrays cause automatic variable _i_ to be in the PDV
* and _i_ will be automatically dropped from output data sets
*/
do _i_ = 1 to dim(nums);
if upcase(name) = upcase(vname(nums(_i_))) then do;
name_numeric_raw = nums(_i_);
leave;
end;
end;
do _i_ = 1 to dim(chars);
if upcase(name) = upcase(vname(chars(_i_))) then do;
name_character_raw = chars(_i_);
leave;
end;
end;
run;
If you perform an 'excessive' amount of dynamic value lookup in your DATA Step a transposition could possibly lead to simpler processing.

How to recode values of a variable based on the maxmium value in the variable, for hundreds of variables?

I want to recode the max value of a variable as 1 and 0 when it is not. For each variable, there may be multiple observations with the max value. The max value for each value is not fixed, i.e. from cycle to cycle the max value for each variable may change. And there are hundreds of variables, cannot "hard-code" anything.
The final product would have the same dimensions as the original table, i.e. equal number of rows and columns as a matrix of 0s and 1s.
This is within SAS. I attempted to calculate the max of each variable and then append these max as a new observation into the data. Then comparing down the column of each variable against the "max" observation... looking into examples of the following did not help:
SQL
Array in datastep
proc transpose
formatting
Any insight would be much appreciated.
Here is a version done with SQL:
The idea is that we first calculate the maximum. The Latter select. Then we join the data to original and the outer the case-select specifies if the flag is set up or not.
data begin;
input var value;
cards;
1 1
1 2
1 3
1 2.5
1 1.7
1 3
2 34
2 33
2 33
2 33.7
2 34
2 34
; run;
proc sql;
create table result as
select a.var, a.value, case when a.value = b.maximum then 1 else 0 end as is_max from
(select * from begin) a
left join
(select max(value) as maximum, var from begin group by var) b
on a.var = b.var
;
quit;
To avoid "hard-code" you need to use some code generation.
First let's figure out what code you could use to solve the problem. Later we can look into ways to generate that code.
It is probably easiest to do this with PROC SQL code. SAS will allow you to reference the MAX() value of a variable. Also note that SAS evaluates boolean expressions to 1 (TRUE) or 0 (FALSE). So you just want to generate code like:
proc sql;
create table want as
select var1=max(var1) as var1
, var2=max(var2) as var2
from have
;
quit;
To generate the code you need a list of the variables in your source dataset. You can get those with PROC CONTENTS but also with the metadata table (view) DICTIONARY.COLUMNS (also accessible as SASHELP.VCOLUMN from outside PROC SQL).
If the list of variables is small then you could generate the code into a single macro variable.
proc sql noprint;
select catx(' ',cats(name,'=max(',name,')'),'as',name)
into :varlist separated by ','
from dictionary.columns
where libname='WORK' and memname='HAVE'
order by varnum
;
create table want as
select &varlist
from have
;
quit;
The maximum number of characters that will fit into a macro variable is 64K. So long enough for about 2,000 variables with names of 8 characters each.
Here is little more complex way that uses PROC SUMMARY and a data step with a temporary array. It does not really need any code generation.
%let dsin=sashelp.class(obs=10);
%let dsout=want;
%let varlist=_numeric_;
proc summary data=&dsin nway ;
var &varlist;
output out=summary(drop=_type_ _freq_) max= ;
run;
data &dsout;
if 0 then set &dsin;
array vars &varlist;
array max [10000] _temporary_;
if _n_=1 then do;
set summary ;
do _n_=1 to dim(vars);
max[_n_]=vars[_n_];
end;
end;
set &dsin;
do _n_=1 to dim(vars);
vars[_n_]=vars[_n_]=max[_n_];
end;
run;
Results:
Obs Name Sex Age Height Weight
1 Alfred M 0 1 1
2 Alice F 0 0 0
3 Barbara F 0 0 0
4 Carol F 0 0 0
5 Henry M 0 0 0
6 James M 0 0 0
7 Jane F 0 0 0
8 Janet F 1 0 1
9 Jeffrey M 0 0 0
10 John M 0 0 0

Ranking values based on another data set in SAS

Say I have two data sets A and B that have identical variables and want to rank values in B based on values in A, not B itself (as "PROC RANK data=B" does.)
Here's a simplified example of data sets A, B and want (the desired output):
A:
obs_A VAR1 VAR2 VAR3
1 10 100 2000
2 20 300 1000
3 30 200 4000
4 40 500 3000
5 50 400 5000
B:
obs_B VAR1 VAR2 VAR3
1 15 150 2234
2 14 352 1555
3 36 251 1000
4 41 350 2011
5 60 553 5012
want:
obs VAR1 VAR2 VAR3
1 2 2 3
2 2 4 2
3 4 3 1
4 5 4 3
5 6 6 6
I come up with a macro loop that involves PROC RANK and PROC APPEND like below:
%macro MyRank(A,B);
data AB; set &A &B; run;
%do i=1 %to 5;
proc rank data=AB(where=(obs_A ne . OR obs_B=&i) out=tmp;
var VAR1-3;
run;
proc append base=want data=tmp(where=(obs_B=&i) rename=(obs_B=obs)); run;
%end;
%mend;
This is ok when the number of observations in B is small. But when it comes to very large number, it takes so long and thus wouldn't be a good solution.
Thanks in advance for suggestions.
I would create formats to do this. What you're really doing is defining ranges via A that you want to apply to B. Formats are very fast - here assuming "A" is relatively small, "B" can be as big as you like and it's always going to take just as long as it takes to read and write out the B dataset once, plus a couple read/writes of A.
First, reading in the A dataset:
data ranking_vals;
input obs_A VAR1 VAR2 VAR3;
datalines;
1 10 100 2000
2 20 300 1000
3 30 200 4000
4 40 500 3000
5 50 400 5000
;;;;
run;
Then transposing it to vertical, as this will be the easiest way to rank them (just plain old sorting, no need for proc rank).
data for_ranking;
set ranking_vals;
array var[3];
do _i = 1 to dim(var);
var_name = vname(var[_i]);
var_value = var[_i];
output;
end;
run;
proc sort data=for_ranking;
by var_name var_value;
run;
Then we create a format input dataset, and use the rank as the label. The range is (previous value -> current value), and label is the rank. I leave it to you how you want to handle ties.
data for_fmt;
set for_ranking;
by var_name var_value;
retain prev_value;
if first.var_name then do; *initialize things for a new varname;
rank=0;
prev_value=.;
hlo='l'; *first record has 'minimum' as starting point;
end;
rank+1;
fmtname=cats(var_name,'F');
start=prev_value;
end=var_value;
label=rank;
output;
if last.var_name then do; *For last record, some special stuff;
start=var_value;
end=.;
hlo='h';
label=rank+1;
output; * Output that 'high' record;
start=.;
end=.;
label=.;
hlo='o';
output; * And a "invalid" record, though this should never happen;
end;
prev_value=var_value; * Store the value for next row.;
run;
proc format cntlin=for_fmt;
quit;
And then we test it out.
data test_b;
input obs_B VAR1 VAR2 VAR3;
var1r=put(var1,var1f.);
var2r=put(var2,var2f.);
var3r=put(var3,var3f.);
datalines;
1 15 150 2234
2 14 352 1555
3 36 251 1000
4 41 350 2011
5 60 553 5012
;;;;
run;
One way that you can rank by a variable from a separate dataset is by using proc sql's correlated subqueries. Essentially you counts the number of lower values in the lookup dataset for each value in the data to be ranked.
proc sql;
create table want as
select
B.obs_B,
(
select count(distinct A.Var1) + 1
from A
where A.var1 <= B.var1.
) as var1
from B;
quit;
Which can be wrapped in a macro. Below, a macro loop is used to write each of the subqueries. It looks through the list of variable and parametrises the subquery as required.
%macro rankBy(
inScore /*Dataset containing data to be ranked*/,
inLookup /*Dataset containing data against which to rank*/,
varID /*Variable by which to identify an observation*/,
varsRank /*Space separated list of variable names to be ranked*/,
outData /*Output dataset name*/);
/* Rank variables in one dataset by identically named variables in another */
proc sql;
create table &outData. as
select
scr.&varID.
/* Loop through each variable to be ranked */
%do i = 1 %to %sysfunc(countw(&varsRank., %str( )));
/* Store the variable name in a macro variable */
%let var = %scan(&varsRank., &i., %str( ));
/* Rank: count all the rows with lower value in lookup */
, (
select count(distinct lkp&i..&var.) + 1
from &inLookup. as lkp&i.
where lkp&i..&var. <= scr.&var.
) as &var.
%end;
from &inScore. as scr;
quit;
%mend rankBy;
%rankBy(
inScore = B,
inLookup = A,
varID = obs_B,
varsRank = VAR1 VAR2 VAR3,
outData = want);
Regarding speed, this will be slow if your A is large, but should be okay for large B and small A.
In rough testing on a slow PC I saw:
A: 1e1 B: 1e6 time: ~1s
A: 1e2 B: 1e6 time: ~2s
A: 1e3 B: 1e6 time: ~5s
A: 1e1 B: 1e7 time: ~10s
A: 1e2 B: 1e7 time: ~12s
A: 1e4 B: 1e6 time: ~30s
Edit:
As Joe points out below the length of time the query takes depends not just on the number of observations in the dataset, but how many unique values exist within the data. Apparently SAS performs optimisations to reduce the comparisons to only the distinct values in B, thereby reducing the number of times the elements in A need to be counted. This means that if the dataset B contains a large number of unique values (in the ranking variables) the process will take significantly longer then the times shown. This is more likely to happen if your data is not integers as Joe demonstrates.
Edit:
Runtime test rig:
data A;
input obs_A VAR1 VAR2 VAR3;
datalines;
1 10 100 2000
2 20 300 1000
3 30 200 4000
4 40 500 3000
5 50 400 5000
;
run;
data B;
do obs_B = 1 to 1e7;
VAR1 = ceil(rand("uniform")* 60);
VAR2 = ceil(rand("uniform")* 500);
VAR3 = ceil(rand("uniform")* 6000);
output;
end;
run;
%let start = %sysfunc(time());
%rankBy(
inScore = B,
inLookup = A,
varID = obs_B,
varsRank = VAR1 VAR2 VAR3,
outData = want);
%let time = %sysfunc(putn(%sysevalf(%sysfunc(time()) - &start.), time12.2));
%put &time.;
Output:
0:00:12.41

How do i perform calculation about the last n observations

how can i perform calculation for the last n observation in a data set
For example if I have 10 observations I would like to create a variable that would sum the last 5 values of another variable. Please do not suggest that I lag 5 times or use module ( N ). I need a bit more elegant solution than that.
with the code below alpha is the data set that i have and bravo is the one i need.
data alpha;
input lima ## ;
cards ;
3 1 4 21 3 3 2 4 2 5
;
run ;
data bravo;
input lima juliet;
cards;
3 .
1 .
4 .
21 .
3 32
3 32
2 33
4 33
2 14
5 16
;
run;
thank you in advance!
You can do this in the data step or using PROC EXPAND from SAS/ETS if available.
For the data step the idea is that you start with a cumulative sum (summ), but keep track of the number of values that were added so far (ninsum). Once that reaches 5, you start outputting the cumulative sum to the target variable (juliet), and from the next step you start subtracting the lagged-5 value to only store the sum of the last five values.
data beta;
set alpha;
retain summ ninsum 0;
summ + lima;
ninsum + 1;
l5 = lag5(lima);
if ninsum = 6 then do;
summ = summ - l5;
ninsum = ninsum - 1;
end;
if ninsum = 5 then do;
juliet = summ;
end;
run;
proc print data=beta;
run;
However there is a procedure that can do all kind of cumulative, moving window, etc calculations: PROC EXPAND, in which this is really just one line. We just tell it to calculate the backward moving sum in a window of width 5 and set the first 4 observations to missing (by default it will expand your series by 0's on the left).
proc expand data=alpha out=gamma;
convert lima = juliet / transformout=(movsum 5 trimleft 4);
run;
proc print data=gamma;
run;
Edit
If you want to do more complicated calculations, you need to carry the previous values in retained variables. I thought you wanted to avoid that, but here it is:
data epsilon;
set alpha;
array lags {5};
retain lags1 - lags5;
/* do whatever calculation is needed */
juliet = 0;
do i=1 to 5;
juliet = juliet + lags{i};
end;
output;
/* shift over lagged values, and add self at the beginning */
do i=5 to 2 by -1;
lags{i} = lags{i-1};
end;
lags{1} = lima;
drop i;
run;
proc print data=epsilon;
run;
I can offer rather ugly solution:
run data step and add increasing number to each group.
run sql step and add column of max(group).
run another data step and check if value from (2)-(1) is less than 5. If so, assign to _num_to_sum_ variable (for example) the value that you want to sum, otherwise leave it blank or assign 0.
and last do a sql step with sum(_num_to_sum_) and group results by grouping variable from (1).
EDIT: I have added a live example of the concept in a bit more compacted way.
input var1 $ var2;
cards;
aaa 3
aaa 5
aaa 7
aaa 1
aaa 11
aaa 8
aaa 6
bbb 3
bbb 2
bbb 4
bbb 6
;
run;
data step1;
set sourcetable;
by var1;
retain obs 0;
if first.var1 then obs = 0;
else obs = obs+1;
if obs >=5 then to_sum = var2;
run;
proc sql;
create table rezults as
select distinct var1, sum(to_sum) as needed_summs
from step1
group by var1;
quit;
In case anyone reads this :)
I solved it the way I needed it to be solved. Although now I am more curious which of the two(the retain and my solution) is more optimal in terms of computing/processing time.
Here is my solution:
data bravo(keep = var1 summ);
set alpha;
do i=_n_ to _n_-4 by -1;
set alpha(rename=var1=var2) point=i;
summ=sum(summ,var2);
end;
run;

How to add new observation to already created dataset in SAS?

How to add new observation to already created dataset in SAS ? For example, if I have dataset 'dataX' with variable 'x' and 'y' and I want to add new observation which is multiplication by two of the
of the observation number n, how can I do it ?
dataX :
x y
1 1
1 21
2 3
I want to create :
dataX :
x y
1 1
1 21
2 3
10 210
where observation number four is multiplication by ten of observation number two.
data X;
input x y;
datalines;
1 1
1 21
2 3
;
run;
data X ;
set X end=eof;
if eof then do;
output;
x=10 ;y=210;
end;
output;
run;
Here is one way to do this:
data dataX;
input x y;
datalines;
1 1
1 21
2 3
run;
/* Create a new observation into temp data set */
data _addRec;
set dataX(firstobs=2); /* Get observation 2 */
x = x * 10; /* Multiply each by 10 */
y = y * 10;
output; /* Output new observation */
stop;
run;
/* Add new obs to original data set */
proc append base=dataX data=_addRec;
run;
/* Delete the temp data set (to be safe) */
proc delete data=_addRec;
run;
data a ;
do kk=1 to 5 ;
output ;
end ;
run;
data a2 ;
kk=999 ;
output ;
run;
data a; set a a2 ;run ;
proc print data=a ;run ;
Result:
The SAS System 1
OBS kk
1 1
2 2
3 3
4 4
5 5
6 999
You can use macro to obtain your desired result :
Write a macro which will read first DataSet and when _n_=2 it will multiply x and y with 10.
After that create another DataSet which will hold only your muliplied value let say x'=10x and y'=10y.
Pass both DataSet in another macro which will set the original datset and newly created dataset.
Logic is you have to create another dataset with value 10x and 10y and after that set wih previous dataset.
I hope this will help !