classification with SVM using vocab build from Bag of Word - c++

My intention is to build a classifier that correctly classify the image ROI with the template that I have manually extracted
Here is what I have done.
My first step is to understand what should be done to achieve the above
I have realized I would need to create the representation vectors(of the template) through research from the net. Hence I have used Bag of words to create the vocabulary
I have used and rewritten the Roy's project to opencv 3.1 and also used his food database. On seeing his database, I have realised that some of the image contain multiple class type. I try to clip the image so that each training image only contains one class of item but the image are now of different size
I have tried to run this code. The result is very disappointing. It always points to one class.
Question I have?
Is my step in processing the training image wrong? I read around and some posts suggest the image size must be constant or at least the aspect ratio. I am confused by this. Is there some tools available for resizing samples?

It does not matter what is the size of the sample images, since Roy's algorithm uses local descriptors extracte from nearby points of interest.
SVM is linear regression classifier and you need to train different SVM-s for each class. For each class it will say whether it's of that class or the rest. The so called one vs. rest.

Related

How to find logos on a website screenshot

I'm looking for a way to check if a given logo appears on a screenshot of a webpage. So basically, I need to be able to find a small predefined image on a larger image that may or may not contain the smaller image. A match could be of a different scale, somewhat different colors. I need to judge occurrence similarity as well. Need some pointers for what to look at, I've never worked with computer vision before.
Simplest yet not simple way to do it is a normal CNN trained on augmented dataset of the logos.
Trying to keep the answer short, Just make a cnn in tensorflow and train your model on tons images of logos with labels on each training image, It's a simple task and a not-very-crafty CNN must be able to get your work done.
CNN- Convolutional Neural Network
Reference : https://etasr.com/index.php/ETASR/article/view/3919

Real-time object tracking in OpenCV

I have written an object classification program using BoW clustering and SVM classification algorithms. The program runs successfully. Now that I can classify the objects, I want to track them in real time by drawing a bounding rectangle/circle around them. I have researched and came with the following ideas.
1) Use homography by using the train set images from the train data directory. But the problem with this approach is, the train image should be exactly same as the test image. Since I'm not detecting specific objects, the test images are closely related to the train images but not essentially an exact match. In homography we find a known object in a test scene. Please correct me if I am wrong about homography.
2) Use feature tracking. Im planning to extract the features computed by SIFT in the test images which are similar to the train images and then track them by drawing a bounding rectangle/circle. But the issue here is how do I know which features are from the object and which features are from the environment? Is there any member function in SVM class which can return the key points or region of interest used to classify the object?
Thank you

Using CRF suite C++ on images

I have been implementing Object Localization and Segmentation of images.
I need to classify different objects on an image and segment the image accordingly.
I implemented a research paper which is as follows:
Make super pixels of the image(done using Slic algorithm)
Classify each super pixel using some annotated images
Also I am using the Support vector machine classifier to classify every super pixel.
Till here my code is working correct. But the next part is improvement of the segmentation using Conditional Random Field which is a graphical model to segment the image. But I have no idea how should I implement this Conditional Random Field model. I need to make a graph between the super pixels which i have done.
There is a CRF suite in C++ of which the link is provided but I do not understand how to use it for images that is what will be my training data for CRF model and which functions should I call of the library(CRF).
Now I would like to Ask how should I go about implementing the Conditional Random Field Suite in C++ on this graph of the Super pixel.
I went through this but I am unable to understand how should I go about it.
http://www.chokkan.org/software/crfsuite/

OpenCV to Identify objects from training video set and then test them against another video

I have been tasked to use OpenCV and C++
Read a set of videos for creating a set of images/learning.
Classify objects seen in the videos
Label the images
test against series of test videos to check objects were identified as expected. draw a rectangle around them and label.
I am new to OpenCV however happy to program in C++ as soon as approach is formed. I am also planning to write my own functions at a later stage.
I need your help in formning right way of solution approach as I have to identify household objects [cup, soft toy, phone, camera, keyboard) from a stream of video and then test on another stream of video. The original video has depth information as well but not sure how to use it to my benefit.
Read about Support vector machine (SVM) , Feature extraction (e.g. SIFT/SURF) , SVM training and SVM testing. And, for drawing Rectangle, read about findContour(), drawContour() in openCV.
Approach:
Detect objects (e.g. car/plane etc.). Store the points of its contours
Extract some features of that object using SIFT/SURF
Based upon the extracted features, classify the object using SVM (the input for SVM will be the extracted features)
And if the SVM says -Yes! it is a car. Then, draw a rectangle around it using the points of its contour which you had stored in first step.

Object Annotation in images with OpenCV

I am trying to develop an automatic(or semi-automatic) image annotator for my final year project with OpenCV. I have been studying many OpenCV resources and have come across cascade classification for training and detection purposes. I understood that part, and also tried the Face Detection tutorial provided with OpenCV. So, now I know how to train and detect objects.
However, I still cannot understand how can I annotate objects present in the image?
For example, the system will show that this is an object, but I want the system to show that it is a ball. How can i accomplish that?
Thanks in advance.
One binary classificator (detector) can separate objects by two classes:
positive - the object type classifier was trained for,
and negative - all others.
If you need detect several distinguished classes you should use one detector for each class, or you can train multiclass classifier ("one vs all" type of classifiers for example), but it usually works slower and with less accuracy (because detector better search for similar objects). You can also take a look at convolutional networks (by Yann LeCun).
This is a very hard task. I suggest simplifying it by using latent SVM detector and limiting yourself to the models it supplies:
http://docs.opencv.org/modules/objdetect/doc/latent_svm.html