I want to create a dilation image using a kernel that runs through the entire image and checks if the kernel zone has 0, if so, it gives the new image a pixel of 255. My code is giving me an all black dst and I don't know why.
This is the code:
Mat vcpi_binary_dilate(Mat src)
{
if (src.empty())
{
cout << "Failed to load image.";
return src;
}
Mat dst(src.rows, src.cols, CV_8UC1, Scalar(0));
const int kernnel = 3;
int array[kernnel * kernnel] = {};
for (int y = kernnel / 2; y < src.cols - kernnel / 2; y++)
{
for (int x = kernnel / 2; x < src.rows - kernnel / 2; x++)
for (int yk = -kernnel / 2; yk <= kernnel / 2; yk++)
{
for (int xk = -kernnel / 2; xk <= kernnel / 2; xk++)
{
if (src.at<uchar>(y + yk, x + xk) == 0)
{
dst.at<uchar>(y + yk, x + xk) = 255;
}
}
}
}
imshow("Image ", src);
imshow("Image dilate", dst);
waitKey(0);
return dst;
}
I hope to have an output image of this type.
I am not sure about the algorithm you are trying to implement.
But there is one thing that is definately wrong:
The image dimensions are mixed up-
cols is the width and corresponds to the x axis.
rows is the height and corresponds to the y axis.
This is causing you to access the images using cv::Mat::at with invalid coordinates.
Therefore you need to change:
for (int y = kernnel / 2; y < src.cols - kernnel / 2; y++)
{
for (int x = kernnel / 2; x < src.rows - kernnel / 2; x++)
{
To:
//--------------------------------vvvv--------------------
for (int y = kernnel / 2; y < src.rows - kernnel / 2; y++)
{
//------------------------------------vvvv--------------------
for (int x = kernnel / 2; x < src.cols - kernnel / 2; x++)
{
Note that this is consistent with your calls ...at<uchar>(y + yk, x + xk), since cv::Mat::at expects the row (i.e. y coordinate) first.
A side note: Why is "using namespace std;" considered bad practice?.
Edit:
After having a look at the matlab code in your comment, which applies an algorithm different than what you described in your question, you'll need to do the following changes:
Call something equivalent to matlab's im2bw.
Update dst current pixel, not the one in the neighborhood.
Maybe something like:
cv::Mat vcpi_binary_dilate(cv::Mat src) {
if (src.empty()) {
std::cout << "Failed to load image.";
return src;
}
cv::threshold(src, src, 127, 255, CV_THRESH_BINARY);
cv::Mat dst(src.rows, src.cols, CV_8UC1, cv::Scalar(255)); // <-- Replacement for im2bw, might need tuning.
const int kernnel = 3;
int array[kernnel * kernnel] = {};
for (int y = kernnel / 2; y < src.rows - kernnel / 2; y++)
{
for (int x = kernnel / 2; x < src.cols - kernnel / 2; x++)
{
for (int yk = -kernnel / 2; yk <= kernnel / 2; yk++)
{
for (int xk = -kernnel / 2; xk <= kernnel / 2; xk++)
{
if (src.at<uchar>(y + yk, x + xk) == 0) {
dst.at<uchar>(y, x) = 0; // <-- Update the current pixel, not the one in the neighborhood.
}
}
}
}
}
cv::imshow("Image ", src);
cv::imshow("Image dilate", dst);
cv::waitKey(0);
return dst;
}
I want to implement the harris corner detector. I found this page to be very helpful, since it shows how the detector is implemented using the basic opencv functions (like gaussianBlur and Sobel):
https://compvisionlab.wordpress.com/2013/03/02/harris-interest-point-detection-implementation-opencv/
Now I even want to implement Gaussian Blur and Sobel. If I run my Gaussian or Sobel over some Images it works but in combination with my Corner Detector it does not work. Can anybody help me please. The full Code is below, thx.
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
using namespace cv;
using namespace std;
/// Global variables
Mat src, src_gray, dst;
int thresh = 200;
int max_thresh = 255;
char* source_window = "Source Image";
char* corners_window = "Corner Image";
/// Function header
void cornerHarris_demo(int, void*);
void cornerHarrisMe(int, int, double);
int xGradient(Mat, int, int);
int yGradient(Mat, int, int);
void SobelMe(Mat&,Mat&,int,int);
int borderCheck(int M, int x);
void SepGaussian(Mat&, Mat&, int, int);
/** #function main */
int main(int argc, char** argv)
{
/// Load source image and convert it to gray
src = imread("data/a-real-big-church.jpg", 1);
//Mat src_gray(src.size(), CV_8UC1);
cvtColor(src, src_gray, CV_BGR2GRAY);
/// Create a window and a trackbar
namedWindow(source_window, CV_WINDOW_AUTOSIZE);
createTrackbar("Threshold: ", source_window, &thresh, max_thresh, cornerHarris_demo);
imshow(source_window, src);
cornerHarris_demo(0, 0);
waitKey(0);
return(0);
}
/** #function cornerHarris_demo */
void cornerHarris_demo(int, void*)
{
Mat dst_norm, dst_norm_scaled;
/// Detector parameters
int blockSize = 2;
int apertureSize = 3;
double k = 0.04;
/// Detecting corners
cornerHarrisMe(blockSize, apertureSize, k);
/// Normalizing
normalize(dst, dst_norm, 0, 255, NORM_MINMAX, CV_32FC1, Mat());
convertScaleAbs(dst_norm, dst_norm_scaled);
/// Drawing a circle around corners
for (int j = 0; j < dst_norm.rows; j++)
{
for (int i = 0; i < dst_norm.cols; i++)
{
if ((int)dst_norm.at<float>(j, i) > thresh)
{
circle(dst_norm_scaled, Point(i, j), 5, Scalar(255), 2, 8, 0);
}
}
}
/// Showing the result
namedWindow(corners_window, CV_WINDOW_AUTOSIZE);
imshow(corners_window, dst_norm_scaled);
}
void cornerHarrisMe(int blockSize, int apertureSize, double k)
{
Mat x2y2, xy, mtrace, x_der, y_der, x2_der, y2_der, xy_der, x2g_der, y2g_der, xyg_der;
//1: calculate x and y derivative of image via Sobel
SobelMe(src_gray, x_der, 1, 0);
SobelMe(src_gray, y_der, 0, 1);
//2: calculate other three images in M
pow(x_der, blockSize, x2_der);
pow(y_der, blockSize, y2_der);
multiply(x_der, y_der, xy_der);
//3: gaussain
SepGaussian(x2_der, x2g_der, 1, 0);
SepGaussian(y2_der, y2g_der, 0, 1);
SepGaussian(xy_der, xyg_der, 1, 1);
//4. calculating R with k
multiply(x2g_der, y2g_der, x2y2);
multiply(xyg_der, xyg_der, xy);
pow((x2g_der + y2g_der), blockSize, mtrace);
dst = (x2y2 - xy) - k * mtrace;
}
// gradient in the x direction
int xGradient(Mat image, int x, int y)
{
return image.at<uchar>(y - 1, x - 1) +
2 * image.at<uchar>(y, x - 1) +
image.at<uchar>(y + 1, x - 1) -
image.at<uchar>(y - 1, x + 1) -
2 * image.at<uchar>(y, x + 1) -
image.at<uchar>(y + 1, x + 1);
}
// gradient in the y direction
int yGradient(Mat image, int x, int y)
{
return image.at<uchar>(y - 1, x - 1) +
2 * image.at<uchar>(y - 1, x) +
image.at<uchar>(y - 1, x + 1) -
image.at<uchar>(y + 1, x - 1) -
2 * image.at<uchar>(y + 1, x) -
image.at<uchar>(y + 1, x + 1);
}
void SobelMe(Mat& source, Mat& destination, int xOrder, int yOrder){
int gradX, gradY, sum;
destination = source.clone();
if (xOrder == 1 && yOrder == 0){
for (int y = 1; y < source.rows - 1; y++){
for (int x = 1; x < source.cols - 1; x++){
gradX = xGradient(source, x, y);
sum = abs(gradX);
sum = sum > 255 ? 255 : sum;
sum = sum < 0 ? 0 : sum;
destination.at<uchar>(y, x) = sum;
}
}
}
else if (xOrder == 0 && yOrder == 1){
for (int y = 1; y < source.rows - 1; y++){
for (int x = 1; x < source.cols - 1; x++){
gradY = yGradient(source, x, y);
sum = abs(gradY);
sum = sum > 255 ? 255 : sum;
sum = sum < 0 ? 0 : sum;
destination.at<uchar>(y, x) = sum;
}
}
}
else if (xOrder == 1 && yOrder == 1)
for (int y = 1; y < source.rows - 1; y++){
for (int x = 1; x < source.cols - 1; x++){
gradX = xGradient(source, x, y);
gradY = yGradient(source, x, y);
sum = abs(gradX) + abs(gradY);
sum = sum > 255 ? 255 : sum;
sum = sum < 0 ? 0 : sum;
destination.at<uchar>(y, x) = sum;
}
}
}
int borderCheck(int M, int x){
if (x < 0)
return -x - 1;
if (x >= M)
return 2 * M - x - 1;
return x;
}
void SepGaussian(Mat& source, Mat& desination, int sigmaX, int sigmaY){
// coefficients of 1D gaussian kernel with sigma = 1
double coeffs[] = { 0.0545, 0.2442, 0.4026, 0.2442, 0.0545 };
Mat tempX, tempY;
float sum, x1, y1;
desination = source.clone();
tempY = source.clone();
tempX = source.clone();
// along y - direction
if (sigmaX == 0 && sigmaY == 1){
for (int y = 0; y < source.rows; y++){
for (int x = 0; x < source.cols; x++){
sum = 0.0;
for (int i = -2; i <= 2; i++){
y1 = borderCheck(source.rows, y - i);
sum = sum + coeffs[i + 2] * source.at<uchar>(y1, x);
}
desination.at<uchar>(y, x) = sum;
}
}
}
// along x - direction
else if (sigmaX == 1 && sigmaY == 0){
for (int y = 0; y < source.rows; y++){
for (int x = 0; x < source.cols; x++){
sum = 0.0;
for (int i = -2; i <= 2; i++){
x1 = borderCheck(source.cols, x - i);
sum = sum + coeffs[i + 2] * source.at<uchar>(y, x1);
}
desination.at<uchar>(y, x) = sum;
}
}
}
// along xy - direction
else if (sigmaX == 1 && sigmaY == 1){
for (int y = 0; y < source.rows; y++){
for (int x = 0; x < source.cols; x++){
sum = 0.0;
for (int i = -2; i <= 2; i++){
y1 = borderCheck(source.rows, y - i);
sum = sum + coeffs[i + 2] * source.at<uchar>(y1, x);
}
tempY.at<uchar>(y, x) = sum;
}
}
for (int y = 0; y < source.rows; y++){
for (int x = 0; x < source.cols; x++){
sum = 0.0;
for (int i = -2; i <= 2; i++){
x1 = borderCheck(source.cols, x - i);
sum = sum + coeffs[i + 2] * tempY.at<uchar>(y, x1);
}
desination.at<uchar>(y, x) = sum;
}
}
}
}
The Result:
Here is the a picture of the Result.
The Result is now the other way around, it detects areas where are no Corners.
In case there are some questions, feel free to ask me.
i want to transport the follow codes into c++:
gaussFilter = fspecial('gaussian', 2*neighSize+1, 0.5*neighSize);
pointFeature = imfilter(pointFeature, gaussFilter, 'symmetric');
where the pointFeature is a [height, width, 24] array.
i try to use filter2D, but it only support the 2D array.
so i want to know if there are functions in opencv that can filtering the multi-dimensional array?
You can use separable kernel filters for make anydimentional filter.
If you are using OpenCV, you could try this for a 3 Dimensional MatND:
void Smooth3DHist(cv::MatND &hist, const int& kernDimension)
{
assert(hist.dims == 3);
int x_size = hist.size[0];
int y_size = hist.size[1];
int z_size = hist.size[2];
int xy_size = x_size*y_size;
cv::Mat kernal = cv::getGaussianKernel(kernDimension, -1, CV_32F);
// Filter XY dimensions for every Z
for (int z = 0; z < z_size; z++)
{
float *ind = (float*)hist.data + z * xy_size; // sub-matrix pointer
cv::Mat subMatrix(2, hist.size, CV_32F, ind);
cv::sepFilter2D(subMatrix, subMatrix, CV_32F, kernal.t(), kernal, Point(-1,-1), 0.0, cv::BORDER_REPLICATE);
}
// Filter Z dimension
float* kernGauss = (float *)kernal.data;
unsigned kernSize = kernal.total();
int kernMargin = (kernSize - 1)/2;
float* lineBuffer = new float[z_size + 2*kernMargin];
for (int y = 0; y < y_size; y++)
{
for (int x = 0; x < x_size; x++)
{
// Copy along Z dimension into a line buffer
float* z_ptr = (float*)hist.data + y * x_size + x;//same as hist.ptr<float>(0, y, x)
for (int z = 0; z < z_size; z++, z_ptr += xy_size)
{
lineBuffer[z + kernMargin] = *z_ptr;
}
// Replicate borders
for (int m = 0; m < kernMargin; m++)
{
lineBuffer[m] = lineBuffer[kernMargin];// replicate left side
lineBuffer[z_size + 2*kernMargin - 1 - m] = lineBuffer[kernMargin + z_size - 1];//replicate right side
}
// Filter line buffer 1D - convolution
z_ptr = (float*)hist.data + y * x_size + x;
for (int z = 0; z < z_size; z++, z_ptr += xy_size)
{
*z_ptr = 0.0f;
for (unsigned k = 0; k < kernSize; k++)
{
*z_ptr += lineBuffer[z+k]*kernGauss[k];
}
}
}
}
delete [] lineBuffer;
}
I am running for displaying RGB image from raw in C++ without any library. When I input the square image (e.g: 512x512), my program can display the image perfectly, but it does not in not_square size image (e.g: 350x225). I understand that I need padding for this case, then I tried to find the same case but it didn't make sense for me how people can pad their image.
If anyone can show me how to pad, I would be thanks for this. And below is what I have done for RGB from Raw.
void CImage_MyClass::Class_MakeRGB(void)
{
m_BMPheader.biHeight = m_uiHeight;
m_BMPheader.biWidth = m_uiWidth;
m_pcBMP = new UCHAR[m_uiHeight * m_uiWidth * 3];
//RGB Image
{
int ind = 0;
for (UINT y = 0; y < m_uiHeight; y++)
{
for (UINT x = 0; x < m_uiHeight*3; x+=3)
{
m_pcBMP[ind++] = m_pcIBuff[m_uiHeight - y -1][x+2];
m_pcBMP[ind++] = m_pcIBuff[m_uiHeight - y -1][x+1];
m_pcBMP[ind++] = m_pcIBuff[m_uiHeight - y -1][x];
}
}
}
}
You need to pad the number of bytes in each line out to a multiple of 4.
void CImage_MyClass::Class_MakeRGB(void)
{
m_BMPheader.biHeight = m_uiHeight;
m_BMPheader.biWidth = m_uiWidth;
//Pad buffer width to next highest multiple of 4
const int bmStride = m_uiWidth * 3 + 3 & ~3;
m_pcBMP = new UCHAR[m_uiHeight * bmStride];
//Clear buffer so the padding bytes are 0
memset(m_pcBMP, 0, m_uiHeight * bmStride);
//RGB Image
{
for(UINT y = 0; y < m_uiHeight; y++)
{
for(UINT x = 0; x < m_uiWidth * 3; x += 3)
{
const int bmpPos = y * bmWidth + x;
m_pcBMP[bmpPos + 0] = m_pcIBuff[m_uiHeight - y - 1][x + 2];
m_pcBMP[bmpPos + 1] = m_pcIBuff[m_uiHeight - y - 1][x + 1];
m_pcBMP[bmpPos + 2] = m_pcIBuff[m_uiHeight - y - 1][x];
}
}
}
}
I also changed the inner for loop to use m_uiWidth instead of m_uiHeight.
#Retired Ninja, Thanks anyway for your answer... you showed me a simple way for this...
But by the way, I have fixed mine as well with different way.. here is it:
void CImage_MyClass::Class_MakeRGB(void)
{
m_BMPheader.biHeight = m_uiHeight;
m_BMPheader.biWidth = m_uiWidth;
int padding = 0;
int scanline = m_uiWidth * 3;
while ( ( scanline + padding ) % 4 != 0 )
{
padding++;
}
int psw = scanline + padding;
m_pcBMP = new UCHAR[m_uiHeight * m_uiWidth * 3 + m_uiHeight * padding];
//RGB Image
int ind = 0;
for (UINT y = 0; y < m_uiHeight; y++)
{
for (UINT x = 0; x < m_uiHeight*3; x+=3)
{
m_pcBMP[ind++] = m_pcIBuff[m_uiHeight - y -1][x+2];
m_pcBMP[ind++] = m_pcIBuff[m_uiHeight - y -1][x+1];
m_pcBMP[ind++] = m_pcIBuff[m_uiHeight - y -1][x];
}
for(int i = 0; i < padding; i++)
ind++;
}
}
For a project I'm writing some code to compute the HoG of some images, but I'm stuck with the fact that my orientations are only between 0 ~ 90 degrees, while using the atan2 function.
I'm guessing that this problem occurs due to the filter2D function of OpenCV but I'm not sure if this is the reason or that I'm doing something else wrong:
Vector<Vector<Mat_<float>>> HoG(Mat image) {
Mat img_x;
Mat img_y;
IplImage img = image;
Mat kern_x = (Mat_<char>(1, 3) << -1, 0, 1);
Mat kern_y = (Mat_<char>(3, 1) << -1, 0, 1);
filter2D(image, img_x, image.depth(), kern_x);
filter2D(image, img_y, image.depth(), kern_y);
Vector<Vector<Mat_<float>>> histograms;
for(int y = 0; y < image.rows - size; y += size) {
Vector<Mat_<float>> temp_hist;
for(int x = 0; x < image.cols - size; x += size) {
float total_mag = 0;
Mat hist = Mat::zeros(1, 8, CV_32FC1);
for(int i = y; i < y + size; ++i) {
for(int j = x; j < x + size; ++j) {
float grad_x = (float)img_x.at<uchar>(i, j);
float grad_y = (float)img_y.at<uchar>(i, j);
double ori = myatan2(grad_x, grad_y);
float mag = sqrt(pow(grad_x, 2) + pow(grad_y, 2));
int bin = round(ori/45);
hist.at<float>(0, (bin - 1 < 0 ? 7 : bin - 1)) += - (float)(ori - ((round(ori/45) - 1) * 45.0 + 22.5)) / 45.0f;
hist.at<float>(0, bin) += -(float)(ori - ((round(ori/45) - 1) * 45.0 + 22.5)) / 45.0f;
total_mag += mag;
}
}
// Normalize the histogram
for(int i = 0; i < 8; ++i) {
hist.at<float>(0, i) = hist.at<float>(0, i) / total_mag;
}
temp_hist.push_back(hist);
}
histograms.push_back(temp_hist);
}
return histograms;
}
If you have any other tips to increase a speed-up in my code or something else that is also welcome of course.
I notice this:
float grad_x = (float)img_x.at<uchar>(i, j);
float grad_y = (float)img_y.at<uchar>(i, j);
You seem to be using uchar. Should this not be char?