Using template specialization, I've written a series of functions all having the same name and taking the same argument type, but returning data of the type specified by the template parameter:
template<typename T> T f (int x); // Purposefully unimplemented.
template<> inline uint8_t f<uint8_t> (int x) { return f8 [x]; }
template<> inline uint16_t f<uint16_t>(int x) { return f16 [x]; }
template<> inline uint32_t f<uint32_t>(int x) { return f32 [x]; }
template<> inline uint64_t f<uint64_t>(int x) { return f64 [x]; }
Then I can write code like:
uint32_t a = f<uint32_t>(3);
uint64_t b = f<uint64_t>(7);
I've purposefully left the default template unimplemented to produce a linker error if someone tries to use a version of f for anything other than the specialized types for which I've defined it.
I have two questions:
1) Is there some way I can use static_assert() (or whatever) to produce a compile error (instead of a linker error) if someone tries to use the default template that's more friendly than what I get now: undefined reference to `int f(int)'?
2) Is there some way to do this with templates that maintains the same interface to the programmer, but doesn't require template specialization? (I.e., is there some way to avoid a default template altogether?)
namespace fimpl{
template<class T>struct tag_t{};
template<class T>
void fimpl(tag_t<T>, int x)=delete;
}
template<typename T> T f (int x){ using fimpl::fimpl; return fimpl(fimpl::tag_t<T>{}, x); }
now don't specialize; override.
namespace fimpl{ inline uint8_t fimpl(tag_t<uint8_t>, int x) { return f8 [x]; } }
namespace fimpl{ inline uint16_t fimpl(tag_t<uint16_t>, int x) { return f16 [x]; } }
namespace fimpl{ inline uint32_t fimpl(tag_t<uint32_t>, int x) { return f32 [x]; } }
namespace fimpl{ inline uint64_t fimpl(tag_t<uint64_t>, int x) { return f64 [x]; } }
This uses tag dispatching to pick which override instead of using specialization.
If no explicit specialization is found, the =delete template is picked and youmget a compiler error immediately.
Amusingly, if you wanted to extend this with new types, say namespace lib{ struct bigint; } you can put a fimpl(fimpl::tag_t<bigint>, int) overload in namespace lib and it would work. I doubt you'll need that.
You can also do away with f as a template if you are ok with f(tag<uint8_t>, 7) instead of f<uint8_t>(7). Just get rid of fimpl namespace (moving stuff out of it), rename fimpl::fimpl to just f, remove =deleteed template function, add template<class T> constexpr tag_t<T> tag{};. But the syntax is a bit different at point of call.
Is there some way I can use static_assert (or whatever) to produce a compile error (instead of a linker error) if someone tries to use the default template that's more friendly than what I get now: undefined reference to `int f(int)'?
I think the better solution is the one suggested by Passer By in a comment:
template<typename T> T f (int x) = delete;
But if you really want to use a static_assert()... I suppose you can try something as follows
template<typename T>
T f (int x)
{
static_assert( sizeof(T) == std::size_t(-1), "f()!" );
return {};
}
Is there some way to do this with templates that maintains the same interface to the programmer, but doesn't require template specialization? (I.e., is there some way to avoid a default template altogether?)
Isn't clear to me what do exactly want.
You don't want specialization and you want avoid default template?
Supposing that you want only the default template that is available only for a specific set of types, I suppose you can use SFINAE.
To make an example, the following f() is enabled only if T is an integral type.
template<typename T>
typename std::enable_if<std::is_integral<T>{}, T>::type f (int x)
{ return x; }
The following is a full compiling example
#include <iostream>
#include <type_traits>
template<typename T>
typename std::enable_if<std::is_integral<T>{}, T>::type f (int x)
{ return x; }
int main ()
{
auto f16 = f<std::uint16_t>(0);
auto f32 = f<std::uint32_t>(0);
static_assert( std::is_same<decltype(f16), std::uint16_t>{}, "!" );
static_assert( std::is_same<decltype(f32), std::uint32_t>{}, "!" );
// compilation error
// auto fd = f<double>(0);
}
Related
What I want to do is to define 3 functions like these:
template<int t = 0> int test() { return 8; }
template<int t = 1> float test() { return 8.8; }
template<int t = 2> std::string test() { return "8.9"; }
int main()
{
int a = test<0>();
float b = test<1>();
std::string c = test<2>();
return 0;
}
They use the same type of template parameter but return different types.
I believe there must be some way to do that (like std::get<>() does it), but I can not find how to do it.
It looks to me like you are after function template specialization. Needing to provide a different implementation for each of the calls fits the bill. There is however one caveat, and it's that a specialization may not alter the signature of the primary template being specialized, only the implementation. This means we cannot do e.g.
template<int t> int test(); // Primary
template<> int test<0>() { return 8; } // OK, signature matches
template<> float test<1>() { return 8.8; } // ERROR
But we are not toasted yet. The signature of the specialization has to match the one that primary will get for a specific argument. So if we make the return type dependent on the template parameter, and resolve to the correct type, we could define our specialization just fine.
template<int t> auto test() -> /* Magic involving t that resolves to int, float, string */;
template<> int test<0>() { return 8; }
template<> float test<1>() { return 8.8; }
template<> std::string test<2>() { return "8.9"; }
Does something like that exist? Yes, and you hinted at it. We can use std::tuple. It has a std::tuple_element utility that can map an integer to one of a type sequence (the tuple's elements). With a little helper, we can construct our code to work the way you wish:
using types = std::tuple<int, float, std::string>;
template<int t> auto test() -> std::tuple_element_t<t, types>;
template<> int test<0>() { return 8; }
template<> float test<1>() { return 8.8; }
template<> std::string test<2>() { return "8.9"; }
Now every specialization matches the signature the primary would end up with. And so we get an approval from our compiler.
See it live
The #StoryTeller and #formerlyknownas_463035818 have provided a well-explained template specialization way of doing it. Alternatively, one can combine the three functions to one single function using if-constexpr and with a decltype(auto) return in c++17.
#include <iostream>
#include <string>
#include <cstring>
using namespace std::literals;
template<int t>
constexpr decltype(auto) test() noexcept
{
if constexpr (t == 0) return 8;
else if constexpr (t == 1) return 8.8f;
else if constexpr (t == 2) return "8.9"s;
}
(See live online)
You declared the same template 3 times, while you actually want specialisations. As far as I know you cannot specialize on return type directly (*). However, there is nothing that cannot be solved with an additional layer of indirection. You can do something along the line of:
#include <string>
template <int> struct return_type_tag {};
template <> struct return_type_tag<0> { using type = int; };
template <> struct return_type_tag<1> { using type = float; };
template <> struct return_type_tag<2> { using type = std::string; };
template <int x> typename return_type_tag<x>::type test();
template<> int test<0>() { return 8; }
template<> float test<1>() { return 8.8; }
template<> std::string test<2>() { return "8.9"; }
int main()
{
int a = test<0>();
float b = test<1>();
std::string c = test<2>();
return 0;
}
(*) actually you can, with a small trick, see this answer. The only benefit of my approach is that it already worked pre-c++11.
I am trying to write a template class which may or may not define a particular member function depending on its template parameter type. Further the return type of this member function depends on the return type of of a member of the template paramter (if defined).
Below is a minimal example of my code
#include <iostream>
#include <type_traits>
template <typename T>
struct has_foo_int {
private:
template <typename U>
static decltype(std::declval<U>().foo(0), void(), std::true_type()) test(int);
template <typename>
static std::false_type test(...);
public:
typedef decltype(test<T>(0)) test_type;
enum { value = test_type::value };
};
template <typename T, bool HasFooInt>
struct foo_int_return_type;
template<typename T>
struct foo_int_return_type<T,false> {};
template<typename T>
struct foo_int_return_type<T,true> {
using type = decltype(std::declval<T>().foo(0));
};
template<typename T>
struct mystruct
{
T val;
//auto someMethod(int i) -> decltype(std::declval<T>().foo(0)) // error: request for member ‘foo’ in ‘std::declval<double>()’, which is of non-class type ‘double’
//auto someMethod(int i) -> typename foo_int_return_type<T,has_foo_int<T>::value>::type // error: no type named ‘type’ in ‘struct foo_int_return_type<double, false>’
template<typename R=typename foo_int_return_type<T,has_foo_int<T>::value>::type> R someMethod(int i) // error: no type named ‘type’ in ‘struct foo_int_return_type<double, false>’
{
return val.foo(i);
}
};
struct with_foo_int {
int foo(int i){
return i+1;
}
};
using namespace std;
int main(void)
{
mystruct<with_foo_int> ms1;
cout << ms1.someMethod(41) << endl;
mystruct<double> ms2;
return 0;
}
What I would like to happen is that the code compiles fine and outputs 42 for ms1.someFunc(41). I would also expect that if one accidentally tried to call someFunc on ms2 that it would fail to compile.
Unfortunately each of the alternatives I have tried has failed. The first and second, I think I understand why they wouldn't work.
I read here that SFINAE only works for template functions so I tried giving a dummy template parameter to work out the return type but this too fails in the same way.
I'm clearly not understanding something here, what am I missing? Is it possible to achieve what I'm trying to do?
Thanks.
P.s. I'm using g++ 4.7.3
P.p.s I have also tried std::enable_if but get much the same results as with my foo_int_return_type struct.
Here is a short, tidy and documented way of doing what you are attempting,
with some possible bugs addressed thereafter.
#include <type_traits>
/*
Template `has_mf_foo_accepts_int_returns_int<T>`
has a static boolean public member `value` that == true
if and only if `T` is a class type that has a public
member function or member function overload
`int T::foo(ArgType) [const]` where `ArgType`
is a type to which `int` is implicitly convertible.
*/
template <typename T>
struct has_mf_foo_accepts_int_returns_int {
/* SFINAE success:
We know now here `int *` is convertible to
"pointer to return-type of T::foo(0)"
*/
template<typename A>
static constexpr bool test(
decltype(std::declval<A>().foo(0)) *prt) {
/* Yes, but is the return-type of `T::foo(0)`
actually *the same* as `int`?...
*/
return std::is_same<int *,decltype(prt)>::value;
}
// SFINAE failure :(
template <typename A>
static constexpr bool test(...) {
return false;
}
/* SFINAE probe.
Can we convert `(int *)nullptr to
"pointer to the return type of T::foo(0)"?
*/
static const bool value = test<T>(static_cast<int *>(nullptr));
};
template<typename T>
struct mystruct
{
using has_good_foo = has_mf_foo_accepts_int_returns_int<T>;
T val;
/* SFINAE:
`template<typename R> R someMethod(R)` will be this if and only
if `R` == `int` and `has_good_foo` == true.
*/
template<typename R = int>
typename std::enable_if<
(has_good_foo::value && std::is_same<R,int>::value),R
>::type
someMethod(R i) {
return val.foo(i);
}
/* SFINAE:
`template<typename R> R someMethod(R)` will be this if and only
if `R` != `int` or `has_good_foo` != true.
*/
template<typename R = int>
typename std::enable_if<
!(has_good_foo::value && std::is_same<R,int>::value),R
>::type
someMethod(R i) {
static_assert(has_good_foo::value && std::is_same<R,int>::value,
"mystruct<T> does not implement someMethod(R)");
return i;
}
};
// Testing...
#include <iostream>
struct with_foo_int
{
int foo(int i) {
return i + 1;
}
};
using namespace std;
int main(void)
{
mystruct<with_foo_int> ms1;
cout << ms1.someMethod(41) << endl;
mystruct<double> ms2;
cout << ms2.someMethod(41) << endl; // static_assert failure
return 0;
}
This solution faithfully reproduces a couple of possible loopholes in your
own attempt as posted:-
1) It looks as if you may believe that evaluating std::declval<U>().foo(0) is
a SFINAE way of determining whether U::foo exists and takes a single argument
of type int. It doesn't. It is merely a SFINAE way of determining whether
U::foo(ArgType) exists where ArgType is anything to which 0 is
implicitly convertible. Thus ArgType could be any pointer-or-arithmetic
type, not just int.
2) You may not have considered that std::declval<U>().foo(0) will be satisfied
if either or both of U::foo(ArgType) U::foo(ArgType) const exists. You
may well care whether you call a const or a non-const member function on
U, and you would certainly care which of two member function you call. If
with_foo_int were defined as:
struct with_foo_int
{
int foo(int i) const {
return i + 1;
}
int foo(int i) {
return i + 2;
}
};
then the solution given would call the non-const overload and
ms1.someMethod(41) would == 43.
2) Is easily dealt with. If you wish to ensure that you can only call
T::foo(ArgType) const then add a const qualifier to mystruct::someMethod.
If you don't care or wish only to call T::foo(ArgType) then leave things
as they are.
1) is a little harder to solve, because you must craft a SNIFAE probe for
T::foo that is satisfied only if it has the right signature, and that
signature will either be const qualified or not. Let's assume you want
int T::foo(int) const. In that case, replace template
has_mf_foo_accepts_int_returns_int with:
/* Template `has_mf_foo_arg_int_returns_int<T>
has a static boolean public member `value` that == true
if and only if `T` is a class type that has an un-overloaded
a public member `int T::foo(int) const`.
*/
template< typename T>
struct has_mf_foo_arg_int_returns_int
{
/* SFINAE foo-has-correct-sig :) */
template<typename A>
static std::true_type test(int (A::*)(int) const) {
return std::true_type();
}
/* SFINAE foo-exists :) */
template <typename A>
static decltype(test(&A::foo))
test(decltype(&A::foo),void *) {
/* foo exists. What about sig? */
typedef decltype(test(&A::foo)) return_type;
return return_type();
}
/* SFINAE game over :( */
template<typename A>
static std::false_type test(...) {
return std::false_type();
}
/* This will be either `std::true_type` or `std::false_type` */
typedef decltype(test<T>(0,0)) type;
static const bool value = type::value; /* Which is it? */
};
and in template mystruct replace:
using has_good_foo = has_mf_foo_accepts_int_returns_int<T>;
with:
using has_good_foo = has_mf_foo_arg_int_returns_int<T>;
(Template has_mf_foo_arg_int_returns_int is adapted
from my other answer and
you can read how it works there.)
What you gain in SFINAE-precision from the latter approach comes at
a price. The approach requires you to attempt to take the address of T::foo,
to see if it exists. But C++ will not give you the address of an overloaded
member function, so this approach will fail if T::foo is overloaded.
The code here will compile (or appropriately static_assert) with
GCC >= 4.7.2 clang >= 3.2.
Here is an example case of what I'm trying to do (it is a "test" case just to illustrate the problem) :
#include <iostream>
#include <type_traits>
#include <ratio>
template<int Int, typename Type>
constexpr Type f(const Type x)
{
return Int*x;
}
template<class Ratio, typename Type,
class = typename std::enable_if<Ratio::den != 0>::type>
constexpr Type f(const Type x)
{
return (x*Ratio::num)/Ratio::den;
}
template</*An int OR a type*/ Something, typename Type>
constexpr Type g(const Type x)
{
return f<Something, Type>(x);
}
int main()
{
std::cout<<f<1>(42.)<<std::endl;
std::cout<<f<std::kilo>(42.)<<std::endl;
}
As you can see, there are two versions of the f() function : the first one takes an int as a template parameter, and the second one takes a std::ratio. The problem is the following :
I would like to "wrap" this function through g() which can take an int OR a std::ratio as first template parameter and call the good version of f().
How to do that without writing two g() functions ? In other words, what do I have to write instead of /*An int OR a type*/ ?
Here's how I would do it, but I've changed your interface slightly:
#include <iostream>
#include <type_traits>
#include <ratio>
template <typename Type>
constexpr
Type
f(int Int, Type x)
{
return Int*x;
}
template <std::intmax_t N, std::intmax_t D, typename Type>
constexpr
Type
f(std::ratio<N, D> r, Type x)
{
// Note use of r.num and r.den instead of N and D leads to
// less probability of overflow. For example if N == 8
// and D == 12, then r.num == 2 and r.den == 3 because
// ratio reduces the fraction to lowest terms.
return x*r.num/r.den;
}
template <class T, class U>
constexpr
typename std::remove_reference<U>::type
g(T&& t, U&& u)
{
return f(static_cast<T&&>(t), static_cast<U&&>(u));
}
int main()
{
constexpr auto h = g(1, 42.);
constexpr auto i = g(std::kilo(), 42.);
std::cout<< h << std::endl;
std::cout<< i << std::endl;
}
42
42000
Notes:
I've taken advantage of constexpr to not pass compile-time constants via template parameters (that's what constexpr is for).
g is now just a perfect forwarder. However I was unable to use std::forward because it isn't marked up with constexpr (arguably a defect in C++11). So I dropped down to use static_cast<T&&> instead. Perfect forwarding is a little bit overkill here. But it is a good idiom to be thoroughly familiar with.
How to do that without writing two g() functions ?
You don't. There is no way in C++ to take either a type or a value of some type, except through overloading.
It is not possible to have a template parameter taking both type and non-type values.
Solution 1:
Overloaded functions.
Solution 2:
You can store values in types. Ex:
template<int n>
struct store_int
{
static const int num = n;
static const int den = 1;
};
template<class Ratio, typename Type,
class = typename std::enable_if<Ratio::den != 0>::type>
constexpr Type f(const Type x)
{
return (x*Ratio::num)/Ratio::den;
}
template<typename Something, typename Type>
constexpr Type g(const Type x)
{
return f<Something, Type>(x);
}
But with this solution you will have to specify g<store_int<42> >(...) instead of g<42>(...)
If the function is small, I advise you to use overloading.
How do I avoid implicit casting on non-constructing functions?
I have a function that takes an integer as a parameter,
but that function will also take characters, bools, and longs.
I believe it does this by implicitly casting them.
How can I avoid this so that the function only accepts parameters of a matching type, and will refuse to compile otherwise?
There is a keyword "explicit" but it does not work on non-constructing functions. :\
what do I do?
The following program compiles, although I'd like it not to:
#include <cstdlib>
//the function signature requires an int
void function(int i);
int main(){
int i{5};
function(i); //<- this is acceptable
char c{'a'};
function(c); //<- I would NOT like this to compile
return EXIT_SUCCESS;
}
void function(int i){return;}
*please be sure to point out any misuse of terminology and assumptions
Define function template which matches all other types:
void function(int); // this will be selected for int only
template <class T>
void function(T) = delete; // C++11
This is because non-template functions with direct matching are always considered first. Then the function template with direct match are considered - so never function<int> will be used. But for anything else, like char, function<char> will be used - and this gives your compilation errrors:
void function(int) {}
template <class T>
void function(T) = delete; // C++11
int main() {
function(1);
function(char(1)); // line 12
}
ERRORS:
prog.cpp: In function 'int main()':
prog.cpp:4:6: error: deleted function 'void function(T) [with T = char]'
prog.cpp:12:20: error: used here
This is C++03 way:
// because this ugly code will give you compilation error for all other types
class DeleteOverload
{
private:
DeleteOverload(void*);
};
template <class T>
void function(T a, DeleteOverload = 0);
void function(int a)
{}
You can't directly, because a char automatically gets promoted to int.
You can resort to a trick though: create a function that takes a char as parameter and don't implement it. It will compile, but you'll get a linker error:
void function(int i)
{
}
void function(char i);
//or, in C++11
void function(char i) = delete;
Calling the function with a char parameter will break the build.
See http://ideone.com/2SRdM
Terminology: non-construcing functions? Do you mean a function that is not a constructor?
8 years later (PRE-C++20, see edit):
The most modern solution, if you don't mind template functions -which you may mind-, is to use a templated function with std::enable_if and std::is_same.
Namely:
// Where we want to only take int
template <class T, std::enable_if_t<std::is_same_v<T,int>,bool> = false>
void func(T x) {
}
EDIT (c++20)
I've recently switched to c++20 and I believe that there is a better way. If your team or you don't use c++20, or are not familiar with the new concepts library, do not use this. This is much nicer and the intended method as outlines in the new c++20 standard, and by the writers of the new feature (read a papers written by Bjarne Stroustrup here.
template <class T>
requires std::same_as(T,int)
void func(T x) {
//...
}
Small Edit (different pattern for concepts)
The following is a much better way, because it explains your reason, to have an explicit int. If you are doing this frequently, and would like a good pattern, I would do the following:
template <class T>
concept explicit_int = std::same_as<T,int>;
template <explicit_int T>
void func(T x) {
}
Small edit 2 (the last I promise)
Also a way to accomplish this possibility:
template <class T>
concept explicit_int = std::same_as<T,int>;
void func(explicit_int auto x) {
}
Here's a general solution that causes an error at compile time if function is called with anything but an int
template <typename T>
struct is_int { static const bool value = false; };
template <>
struct is_int<int> { static const bool value = true; };
template <typename T>
void function(T i) {
static_assert(is_int<T>::value, "argument is not int");
return;
}
int main() {
int i = 5;
char c = 'a';
function(i);
//function(c);
return 0;
}
It works by allowing any type for the argument to function but using is_int as a type-level predicate. The generic implementation of is_int has a false value but the explicit specialization for the int type has value true so that the static assert guarantees that the argument has exactly type int otherwise there is a compile error.
Maybe you can use a struct to make the second function private:
#include <cstdlib>
struct NoCast {
static void function(int i);
private:
static void function(char c);
};
int main(){
int i(5);
NoCast::function(i); //<- this is acceptable
char c('a');
NoCast::function(c); //<- Error
return EXIT_SUCCESS;
}
void NoCast::function(int i){return;}
This won't compile:
prog.cpp: In function ‘int main()’:
prog.cpp:7: error: ‘static void NoCast::function(char)’ is private
prog.cpp:16: error: within this context
For C++14 (and I believe C++11), you can disable copy constructors by overloading rvalue-references as well:
Example:
Say you have a base Binding<C> class, where C is either the base Constraint class, or an inherited class. Say you are storing Binding<C> by value in a vector, and you pass a reference to the binding and you wish to ensure that you do not cause an implicit copy.
You may do so by deleting func(Binding<C>&& x) (per PiotrNycz's example) for rvalue-reference specific cases.
Snippet:
template<typename T>
void overload_info(const T& x) {
cout << "overload: " << "const " << name_trait<T>::name() << "&" << endl;
}
template<typename T>
void overload_info(T&& x) {
cout << "overload: " << name_trait<T>::name() << "&&" << endl;
}
template<typename T>
void disable_implicit_copy(T&& x) = delete;
template<typename T>
void disable_implicit_copy(const T& x) {
cout << "[valid] ";
overload_info<T>(x);
}
...
int main() {
Constraint c;
LinearConstraint lc(1);
Binding<Constraint> bc(&c, {});
Binding<LinearConstraint> blc(&lc, {});
CALL(overload_info<Binding<Constraint>>(bc));
CALL(overload_info<Binding<LinearConstraint>>(blc));
CALL(overload_info<Binding<Constraint>>(blc));
CALL(disable_implicit_copy<Binding<Constraint>>(bc));
// // Causes desired error
// CALL(disable_implicit_copy<Binding<Constraint>>(blc));
}
Output:
>>> overload_info(bc)
overload: T&&
>>> overload_info<Binding<Constraint>>(bc)
overload: const Binding<Constraint>&
>>> overload_info<Binding<LinearConstraint>>(blc)
overload: const Binding<LinearConstraint>&
>>> overload_info<Binding<Constraint>>(blc)
implicit copy: Binding<LinearConstraint> -> Binding<Constraint>
overload: Binding<Constraint>&&
>>> disable_implicit_copy<Binding<Constraint>>(bc)
[valid] overload: const Binding<Constraint>&
Error (with clang-3.9 in bazel, when offending line is uncommented):
cpp_quick/prevent_implicit_conversion.cc:116:8: error: call to deleted function 'disable_implicit_copy'
CALL(disable_implicit_copy<Binding<Constraint>>(blc));
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Full Source Code: prevent_implicit_conversion.cc
Well, I was going to answer this with the code below, but even though it works with Visual C++, in the sense of producing the desired compilation error, MinGW g++ 4.7.1 accepts it, and invokes the rvalue reference constructor!
I think it must be a compiler bug, but I could be wrong, so – anyone?
Anyway, here's the code, which may turn out to be a standard-compliant solution (or, it may turn out that that's a thinko on my part!):
#include <iostream>
#include <utility> // std::is_same, std::enable_if
using namespace std;
template< class Type >
struct Boxed
{
Type value;
template< class Arg >
Boxed(
Arg const& v,
typename enable_if< is_same< Type, Arg >::value, Arg >::type* = 0
)
: value( v )
{
wcout << "Generic!" << endl;
}
Boxed( Type&& v ): value( move( v ) )
{
wcout << "Rvalue!" << endl;
}
};
void function( Boxed< int > v ) {}
int main()
{
int i = 5;
function( i ); //<- this is acceptable
char c = 'a';
function( c ); //<- I would NOT like this to compile
}
I first tried PiotrNycz's approach (for C++03, which I'm forced to use for a project), then I tried to find a more general approach and came up with this ForcedType<T> template class.
template <typename T>
struct ForcedType {
ForcedType(T v): m_v(v) {}
operator T&() { return m_v; }
operator const T&() const { return m_v; }
private:
template <typename T2>
ForcedType(T2);
T m_v;
};
template <typename T>
struct ForcedType<const T&> {
ForcedType(const T& v): m_v(v) {}
operator const T&() const { return m_v; }
private:
template <typename T2>
ForcedType(const T2&);
const T& m_v;
};
template <typename T>
struct ForcedType<T&> {
ForcedType(T& v): m_v(v) {}
operator T&() { return m_v; }
operator const T&() const { return m_v; }
private:
template <typename T2>
ForcedType(T2&);
T& m_v;
};
If I'm not mistaken, those three specializations should cover all common use cases. I'm not sure if a specialization for rvalue-reference (on C++11 onwards) is actually needed or the by-value one suffices.
One would use it like this, in case of a function with 3 parameters whose 3rd parameter doesn't allow implicit conversions:
function(ParamType1 param1, ParamType2 param2, ForcedType<ParamType3> param3);
I am trying to build a statically bound delegate class, where the member function is bound at compile time, thereby aiding optimisation.
I have the following code which works exactly how I want it to:
#include <iostream>
namespace thr {
template<typename T, T func>
struct delegate;
template<typename R,
typename C,
typename... A,
R (C::* mem_fun)(A...)>
struct delegate<R(C::*)(A...), mem_fun>
{
delegate(C* obj_)
: _obj(obj_)
{}
R operator()(A... a)
{
return (_obj->*mem_fun)(a...);
}
private:
C* _obj;
};
} // namespace thr
struct foo
{
double bar(int i, int j)
{
return (double)i / (double)j;
}
};
int main()
{
foo f;
typedef thr::delegate<decltype(&foo::bar), &foo::bar> cb;
cb c(&f);
std::cout << c(4, 3);
return 0;
}
However, the usage is not very elegant:
thr::delegate<decltype(&foo::bar), &foo::bar>
I would like to use a function template which deduces the template parameters and returns a delegate instance; something along the lines of (this code does not compile):
template<typename C, typename T, T func>
thr::delegate<T, func> bind(T func, C* obj)
{
return thr::delegate<decltype(func), func>(obj);
}
This would allow for more elegant syntax:
auto cb = bind(&foo::bar, &f);
Is it possible to deduce a non-type parameter in a function template?
Is what I'm trying to achieve even possible?
Would std::function help? http://www2.research.att.com/~bs/C++0xFAQ.html#std-function Your example looks quite close.
I think the compiler supplied STL does pretty horrible things to make it work smoothly. You may want to have a look at as an example before giving up.
Edit: I went out and tried what you try to accomplish. My conclusion is a compile error:
The return type of the bind (delegate) must name the pointer to member because it is your own requirement.
bind should accept the name of the pointer to member to be elegant (i.e. your requirement)
Compiler requires you to not shadow the template parameter with a function parameter or use the name in both parameters and return type.
Therefore one of your requirements must go.
Edit 2: I took the liberty of changing your delegate so bind works as you wish. bind might not be your priority though.
#include <iostream>
namespace thr {
template<typename C,typename R,typename... A>
struct delegate
{
private:
C* _obj;
R(C::*_f)(A...);
public:
delegate(C* obj_,R(C::*f)(A...))
: _obj(obj_),_f(f)
{}
R operator()(A... a)
{
return (_obj->*_f)(a...);
}
};
} // namespace thr
template<class C,typename R,typename... A> thr::delegate<C,R,A...> bind(R(C::*f)(A...),C* obj){
return thr::delegate<C,R,A...>(obj,f);
}
struct foo
{
double bar(int i, int j)
{
return (double)i / (double)j;
}
};
int main()
{
foo f;
auto c = bind(&foo::bar, &f);
std::cout << c(4, 6);
return 0;
}
It is possible to deduce other entities than types in a function signature, but function parameters themselves cannot then be used as template parameters.
Given:
template <size_t I> struct Integral { static size_t const value = I; };
You can have:
template <size_t N>
Integral<N> foo(char const (&)[N]);
But you cannot have:
Integral<N> bar(size_t N);
In the former case, N as the size of the array is part of the type of the argument, in the latter case, N is the argument itself. It can be noticed that in the former case, N appeared in the template parameters list of the type signature.
Therefore, if indeed what you want is possible, the member pointer value would have to appear as part of the template parameter list of the function signature.
There may be a saving grace using constexpr, which can turn a regular value into a constant fit for template parameters:
constexpr size_t fib(size_t N) { return N <= 1 ? 1 : fib(N-1) + fib(N-2); }
Integral<fib(4)> works;
But I am not savvy enough to go down that road...
I do however have a simple question: why do you think this will speed things up ? Compilers are very good at constant propagation and inlining, to the point of being able to inline calls to virtual functions when they can assess the dynamic type of variables at compilation. Are you sure it's worth sweating over this ?