NodePort not working with AWS EKS server endpoint - amazon-web-services

eks server endpoint is xxxxxxxxxxx.xxx.eks.amazonaws.com and I've created a yml file with a deployment and service object.
[ec2-user#ip-]$ kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
fakeserver NodePort 10.100.235.246 <none> 6311:30002/TCP 1h
kubernetes ClusterIP 10.100.0.1 <none> 443/TCP 1d
When I browse xxxxxxxxxxx.xxx.eks.amazonaws.com:30002 returns too long to respond. security groups have all traffic in inbound rules.

You should be using your Worker Node's IP (one of the nodes if you have more than one), not the EKS server endpoint. The EKS server endpoint is the master plane, meant to process requests pertaining to creating/deleting pods, etc.
You also need to make sure that the Security Group of your Node's will allow the traffic.
With this in place you should be able to make the request to your NodePort service.
For Example:
http://your-workernodeIp:NodePortNumber

For temp solution
you need run kubectl port-forward to redirect it to your local and access with https://localhost:30002
Remember: kubectl port-forward command binds the address 127.0.0.1 only, which means you can't visit the forward port from outside the server. So you have to run it locally
$ kubectl port-forward $(kubectl get pod -l "app=fakeserver" -o jsonpath={.items[0].metadata.name}) 30002
Access via loadbalancer
If you need access it permanently, you need change service type to LoadBalancer, then access this service via its loadbalancer url or you can you define another route53 DNS to redirect to this loadbalancer.

The service that you have created is of type - Node-Port. Did you try with :30002
If it also returns the same error, then its an issue that your deployment.
Check the port exposed on the container and the target port. It should be same.

Related

External DNS + Ingress Nginx + AWS ALB

I got the following setup:
Ingress-Nginx-Controller (serviceType "NodePort")
AWS-Load-Balancer-Controller
External-DNS
I am exposing the Ingress-Nginx-Controller via an Ingress, backed by the AWS Load Balancer Controller both public and private. I chose this route, since it was pretty easy to limit the inbound CIDRs. And nginx ingress cannot create an ALB but only Classic LB or NLB.
kubectl -n ingress-nginx get ing
NAME CLASS HOSTS ADDRESS PORTS AGE
alb-ingress-connect-nginx alb * xxxx.region.elb.amazonaws.com 80 2d8h
This ingress forwards all traffic to my nginx controller.
The service looks like
kubectl -n ingress-nginx get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
ingress-nginx-controller NodePort a.b.c.d
I am trying to automatically setup dns records for my deployment via External-DNS. Therefore, I am creating an ingress for my deployment with ingress-class nginx and specified hostname.
Creating the records works, however it uses the IP of my ingress-nginx-controller service (a.b.c.d) instead of the loadbalancer's address.
Now my question: Is it possible to for external-dns to lookup the address of the nginx ingress or does this work only if the Nginx is exposed as service of type "LoadBalancer"?
Thanks for any help
I am able to figure this out by using --publish-status-address in nginx controller to point to ALB.
If you are using 2 ALBs (public and private), you need to create 2 nginx controllers with --publish-status-address points to each ALB. Also, remember to disable --publish-service parameter. And use different electionID for each controller if you have installed nginx controllers using Helm

Target health check fails - AWS Network Load Balancer

NOTE: I tried to include screenshots but stackoverflow does not allow me to add images with preview so I included them as links.
I deployed a web app on AWS using kOps.
I have two nodes and set up a Network Load Balancer.
The target group of the NLB has two nodes (each node is an instance made from the same template).
Load balancer actually seems to be working after checking ingress-nginx-controller logs.
The requests are being distributed over pods correctly. And I can access the service via ingress external address.
But when I go to AWS Console / Target Group, one of the two nodes is marked as and I am concerned with that.
Nodes are running correctly.
I tried to execute sh into nginx-controller and tried curl to both nodes with their internal IP address.
For the healthy node, I get nginx response and for the unhealthy node, it times out.
I do not know how nginx was installed on one of the nodes and not on the other one.
Could anybody let me know the possible reasons?
I had exactly the same problem before and this should be documented somewhere on AWS or Kubernetes. The answer is copied from AWS Premium Support
Short description
The NGINX Ingress Controller sets the spec.externalTrafficPolicy option to Local to preserve the client IP. Also, requests aren't routed to unhealthy worker nodes. The following troubleshooting implies that you don't need to maintain the cluster IP address or preserve the client IP address.
Resolution
If you check the ingress controller service you will see the External Traffic Policy field set to Local.
$ kubectl -n ingress-nginx describe svc ingress-nginx-controller
Output:
Name: ingress-nginx-controller
Namespace: ingress-nginx
...
External Traffic Policy: Local
...
This Local setting drops packets that are sent to Kubernetes nodes that aren't running instances of the NGINX Ingress Controller. Assign NGINX pods (from the Kubernetes website) to the nodes that you want to schedule the NGINX Ingress Controller on.
Update the pec.externalTrafficPolicy option to Cluster
$ kubectl -n ingress-nginx patch service ingress-nginx-controller -p '{"spec":{"externalTrafficPolicy":"Cluster"}}'
Output:
service/ingress-nginx-controller patched
By default, NodePort services perform source address translation (from the Kubernetes website). For NGINX, this means that the source IP of an HTTP request is always the IP address of the Kubernetes node that received the request. If you set a NodePort to the value of the externalTrafficPolicy field in the ingress-nginx service specification to Cluster, then you can't maintain the source IP address.

kubernetes LoadBalancer service

Trying to teach myself on how to use Kubernetes, and having some issues.
I was able to set up a cluster, deploy the nginx image and then access nginx using a service of type NodePort (once I added the port to the security group inbound rules of the node).
My next step was to try to use a service of type LoadBalancer to try to access nginx.
I set up a new cluster and deployed the nginx image.
kubectl \
create deployment my-nginx-deployment \
--image=nginx
I then set up the service for the LoadBalancer
kubectl expose deployment my-nginx-deployment --type=LoadBalancer --port=80 --target-port=8080 --name=nginxpubic
Once it was done setting up, I tried to access nginx using the LoadBalancer Ingress (Which I found from describing the LoadBalancer service). I received a This page isn’t working error.
Not really sure where I went wrong.
results of kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 100.64.0.1 <none> 443/TCP 7h
nginxpubic LoadBalancer 100.71.37.139 a5396ba70d45d11e88f290658e70719d-1485253166.us-west-2.elb.amazonaws.com 80:31402/TCP 7h
From the nginx dockerhub page , I see that the container is using port 80.
https://hub.docker.com/_/nginx/
It should be like this:
kubectl expose deployment my-nginx-deployment --type=LoadBalancer --port=80 --target-port=80 --name=nginxpubic
Also,
make sure the service type loadbalancer is available in your environement.
Known Issues for minikube installation
Features that require a Cloud Provider will not work in Minikube. These include:
LoadBalancers
Features that require multiple nodes. These include:
Advanced scheduling policies

How to configure an AWS Elastic IP to point to an OpenShift Origin running pod?

We have set up OpenShift Origin on AWS using this handy guide. Our eventual
hope is to have some pods running REST or similar services that we can access
for development purposes. Thus, we don't need DNS or anything like that at this
point, just a public IP with open ports that points to one of our running pods.
Our first proof of concept is trying to get a jenkins (or even just httpd!) pod
that's running inside OpenShift to be exposed via an allocated Elastic IP.
I'm not a network engineer by any stretch, but I was able to successuflly get
an Elastic IP connected to one of my OpenShift "worker" instances, which I
tested by sshing to the public IP allocated to the Elastic IP. At this point
we're struggling to figure out how to make a pod visible that allocated Elastic IP,
owever. We've tried a kubernetes LoadBalancer service, a kubernetes Ingress,
and configuring an AWS Network Load Balancer, all without being able to
successfully connect to 18.2XX.YYY.ZZZ:8080 (my public IP).
The most promising success was using oc port-forward seemed to get at least part way
through, but frustratingly hangs without returning:
$ oc port-forward --loglevel=7 jenkins-2-c1hq2 8080 -n my-project
I0222 19:20:47.708145 73184 loader.go:354] Config loaded from file /home/username/.kube/config
I0222 19:20:47.708979 73184 round_trippers.go:383] GET https://ec2-18-2AA-BBB-CCC.us-east-2.compute.amazonaws.com:8443/api/v1/namespaces/my-project/pods/jenkins-2-c1hq2
....
I0222 19:20:47.758306 73184 round_trippers.go:390] Request Headers:
I0222 19:20:47.758311 73184 round_trippers.go:393] X-Stream-Protocol-Version: portforward.k8s.io
I0222 19:20:47.758316 73184 round_trippers.go:393] User-Agent: oc/v1.6.1+5115d708d7 (linux/amd64) kubernetes/fff65cf
I0222 19:20:47.758321 73184 round_trippers.go:393] Authorization: Bearer Pqg7xP_sawaeqB2ub17MyuWyFnwdFZC5Ny1f122iKh8
I0222 19:20:47.800941 73184 round_trippers.go:408] Response Status: 101 Switching Protocols in 42 milliseconds
I0222 19:20:47.800963 73184 round_trippers.go:408] Response Status: 101 Switching Protocols in 42 milliseconds
Forwarding from 127.0.0.1:8080 -> 8080
Forwarding from [::1]:8080 -> 8080
( oc port-forward hangs at this point and never returns)
We've found a lot of information about how to get this working under GKE, but
nothing that's really helpful for getting this working for OpenShift Origin on
AWS. Any ideas?
Update:
So we realized that sysdig.com's blog post on deploying OpenShift Origin on AWS was missing some key AWS setup information, so based on OpenShift Origin's Configuring AWS page, we set the following env variables and re-ran the ansible playbook:
$ export AWS_ACCESS_KEY_ID='AKIASTUFF'
$ export AWS_SECRET_ACCESS_KEY='STUFF'
$ export ec2_vpc_subnet='my_vpc_subnet'
$ ansible-playbook -c paramiko -i hosts openshift-ansible/playbooks/byo/config.yml --key-file ~/.ssh/my-aws-stack
I think this gets us closer, but creating a load-balancer service now gives us an always-pending IP:
$ oc get services
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
jenkins-lb 172.30.XX.YYY <pending> 8080:31338/TCP 12h
The section on AWS Applying Configuration Changes seems to imply I need to use AWS Instance IDs rather than hostnames to identify my nodes, but I tried this and OpenShift Origin fails to start if I use that method. Still at a loss.
It may not satisfy the "Elastic IP" part but how about using AWS cloud provider ELB to expose the IP/port to the pod via a service to the pod with LoadBalancer option?
Make sure to configure the AWS cloud provider for the cluster (References)
Create a svc to the pod(s) with type LoadBalancer.
For instance to expose a Dashboard via AWS ELB.
kind: Service
apiVersion: v1
metadata:
labels:
k8s-app: kubernetes-dashboard
name: kubernetes-dashboard
namespace: kube-system
spec:
type: LoadBalancer <-----
ports:
- port: 443
targetPort: 8443
selector:
k8s-app: kubernetes-dashboard
Then the svc will be exposed as an ELB and the pod can be accessed via the ELB public DNS name a53e5811bf08011e7bae306bb783bb15-953748093.us-west-1.elb.amazonaws.com.
$ kubectl (oc) get svc kubernetes-dashboard -n kube-system -o wide
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR
kubernetes-dashboard LoadBalancer 10.100.96.203 a53e5811bf08011e7bae306bb783bb15-953748093.us-west-1.elb.amazonaws.com 443:31636/TCP 16m k8s-app=kubernetes-dashboard
References
K8S AWS Cloud Provider Notes
Reference Architecture OpenShift Container Platform on Amazon Web Services
DEPLOYING OPENSHIFT CONTAINER PLATFORM 3.5 ON AMAZON WEB SERVICES
Configuring for AWS
Check this guide out: https://github.com/dwmkerr/terraform-aws-openshift
It's got some significant advantages vs. the one you referring to in your post. Additionally, it has a clear terraform spec that you can modify and reset to using an Elastic IP (haven't tried myself but should work).
Another way to "lock" your access to the installation is to re-code the assignment of the Public URL to the master instance in the terraform script, e.g., to a domain that you own (the default script sets it to an external IP-based value with "xip.io" added - works great for testing), then set up a basic ALB that forwards https 443 and 8443 to the master instance that the install creates (you can do it manually after the install is completed, also need a second dummy Subnet; dummy-up the healthcheck as well) and link the ALB to your domain via Route53. You can even use free Route53 wildcard certs with this approach.

Kubernetes Cluster on AWS with Kops - NodePort Service Unavailable

I am having difficulties accessing a NodePort service on my Kubernetes cluster.
Goal
set up ALB Ingress controller so that i can use websockets and http/2
setup NodePort service as required by that controller
Steps taken
Previously a Kops (Version 1.6.2) cluster was created on AWS eu-west-1. The kops addons for nginx ingress was added as well as Kube-lego. ELB ingress working fine.
Setup the ALB Ingress Controller with custom AWS keys using IAM profile specified by that project.
Changed service type from LoadBalancer to NodePort using kubectl replace --force
> kubectl describe svc my-nodeport-service
Name: my-node-port-service
Namespace: default
Labels: <none>
Selector: service=my-selector
Type: NodePort
IP: 100.71.211.249
Port: <unset> 80/TCP
NodePort: <unset> 30176/TCP
Endpoints: 100.96.2.11:3000
Session Affinity: None
Events: <none>
> kubectl describe pods my-nodeport-pod
Name: my-nodeport-pod
Node: <ip>.eu-west-1.compute.internal/<ip>
Labels: service=my-selector
Status: Running
IP: 100.96.2.11
Containers:
update-center:
Port: 3000/TCP
Ready: True
Restart Count: 0
(ssh into node)
$ sudo netstat -nap | grep 30176
tcp6 0 0 :::30176 :::* LISTEN 2093/kube-proxy
Results
Curl from ALB hangs
Curl from <public ip address of all nodes>:<node port for service> hangs
Expected
Curl from both ALB and directly to the node:node-port should return 200 "Ok" (the service's http response to the root)
Update:
Issues created on github referencing above with some further details in some cases:
https://github.com/kubernetes/kubernetes/issues/50261
https://github.com/coreos/alb-ingress-controller/issues/169
https://github.com/kubernetes/kops/issues/3146
By default Kops does not configure the EC2 instances to allows NodePort traffic from outside.
In order for traffic outside of the cluster to reach the NodePort you must edit the configuration for your EC2 instances that are your Kubernetes nodes in the EC2 Console on AWS.
Once in the EC2 console click "Security groups." Kops should have annotated the original Security groups that it made for your cluster as nodes.<your cluster name> and master.<your cluster name>
We need to modify these Security Groups to forward traffic from the default port range for NodePorts to the instances.
Click on the security group, click on rules and add the following rule.
Port range to open on the nodes and master: 30000-32767
This will allow anyone on the internet to access a NodePort on your cluster, so make sure you want these exposed.
Alternatively instead of allowing it from any origin you can allow it only from the security group created by for the ALB by the alb-ingress-controller. However, since these can be re-created it will likely be necessary to modify the rule on modifications to the kubernetes service. I suggest specifying the NodePort explicitly to it is a predetermined known NodePort rather than a randomly assigned one.
The SG of master is not needed to open the nodeport range in order to make : working.
So only the Worker's SG needs to open the port range.