Base Case in Recursive Staircase? - c++

I was solving this Question:
A child is running up a staircase with n steps and can hop either 1 step, 2 steps, or 3 steps at a time. Implement a method to count how many possible ways the child can run up the stairs.
I tried to solve this using this :
#include <iostream>
using namespace std;
int ways(int N){
if(N == 1 || N == 2) {
return N;
}else if(N <= 0) {
return 0;
}
return ways(N-1)+ways(N-2)+ways(N-3);
}
int main() {
cout<<ways(4);
return 0;
}
Output : 4
Expected Output : 7
I am taking f(0<=N) = 0, f(1) = 1 and f(2) = 2, where f(x) is number of ways to climb xth Stair.
But, it is giving wrong output. I then looked at the solution at observed that f(0) = 1 was also considered, which according to me should be f(0) = 0 as there are no ways to climb 0th Stair.

change following:
if(N == 1 || N == 0) {
return 1;
} else if(N == 2) {
return 2;
}
Consider scenario when three steps are there. last return will execute
ways(n-1) + ways(n-2) + ways(n-3)
which means
ways(2) + ways(1) + ways(0)
Here third part represents how many ways can child climb using 3 stairs at time. That would be returned as 0 but that should be 1. He can climb three stairs in using 3 steps in 1 way

Related

How to make my CodeChef solution code faster?

I am a beginner currently in first semester. I have been practising on Code Chef and am stuck at this problem. They are asking to reduce the execution time of my code. The problem goes as follows:
Meliodas and Ban are fighting over chocolates. Meliodas has X chocolates, while Ban has Y. Whoever has lesser number of chocolates eats as many chocolates as he has from the other's collection. This eatfest war continues till either they have the same number of chocolates, or at least one of them is left with no chocolates.
Can you help Elizabeth predict the total no of chocolates they'll be left with at the end of their war?
Input:
First line will contain T, number of testcases. Then the testcases follow.
Each testcase contains of a single line of input, which contains two integers X,Y, the no of chocolates Meliodas and Ban have, respectively.
Output:
For each testcase, output in a single line the no of chocolates that remain after Ban and Meliodas stop fighting.
Sample Input:
3
5 3
10 10
4 8
Sample Output:
2
20
8
My code is as follows:
#include <iostream>
using namespace std;
int main()
{
unsigned int t,B,M;
cin>>t;
while(t--)
{
cin>>M>>B;
if(B==M)
{
cout<<B+M<<endl;
}
else
{
for(int i=1;B!=M;i++)
{
if(B>M)
B=B-M;
else
M=M-B;
}
cout<<M+B<<endl;
}
}
return 0;
}
Assuming that Band Mare different from 0, this algorithm corresponds to one version of the Euclidean algorithm. Therefore, you can simply:
std::cout << 2 * std::gcd(B, M) << "\n";
If at least one of the quantity is equal to 0, then just print B + M.
After realizing that your code was correct, I wondered where could be any algorithmic improvement. And I realized that eating as many chocolate from the peer as one has was in fact close to a modulo operation. If both number are close, a minus operation could be slightly faster than a modulo one, but if one number is high, while the other is 1, you immediately get it instead of looping a great number of times...
The key to prevent stupid errors is to realize that if a modulo is 0, that means that the high number is a multiple of the small one and we must stop immediately writing twice the lower value.
And care should be taken that if one of the initial counts are 0, the total number will never change.
So the outer loop should become:
if(B==M || B == 0 || M == 0)
{
cout<<B+M<<"\0";
}
else {
for (;;) {
if (M < B) {
B = B % M;
if (B == 0) {
cout << M * 2 << '\n';
break;
}
}
else {
M = M % B;
if (M == 0) {
cout << B * 2 << '\n';
break;
}
}
}
}
...
Note: no infinite loop is possible here because a modulo ensures that for example is M > B > 0' after M = M % Byou will haveB > M >= 0and as the case== 0` is explicitely handled the number of loops cannot be higher than the lower number.

Recursion solution for a number raised to an exponent

Hey I have a problem were I have to solve x^n in a number of ways. One of them involves using a recursion formula and its giving me a hard time. So one of the ways I used recursion for x^n for n>=0
int power2(int base, int power){
if (power == 0)
return 1;
else if ( power == 1)
return base;
else
return (base * power2(base, power - 1));
}
this makes sense to me So when i set X = 2 and N = 4, it is decreasing the power, which is acting as a counter, and doing 2x2 power raised to 3, 4*2, power raised to 2, 8 *2 = 16. Than the power is raised to 1, and I have a base case were if the power is raised to 1 it just returns base. However for my next one I have to solve it using three formulas.
x0 = 1
xn if n is even = [xn/2]2
xn if n is odd = x * [xn/2]2
So what I have so far is
int power3(int base, int power){
if(power == 0){
return 1;
}
else if ( power == 1)
return base;
// if power is even
if (power % 2 == 0){
return base*(power3(base,(power/2)));
}
// if power is odd
else{
return 0;
}
}
So im just trying to get even numbers to work first, and when I set x=2 and n=4 it returns 8. Which makes sense to me, since when the power is 4/2 will only loop twice for being >1. So i really am trying to figure out a way to get this to loop one more time while staying true to the formula I was given.and when I added the odd base case now the program will work up untill n^5 but n^6 returns 32
You got a little problem with the interpretation of the formula.
x^n if n is even = [x^n/2]2 doesn't mean:
base*(power3(base,(power/2))) //meaning x * [x^n/2]
rather you'd have
(power3(base,(power/2))) * 2
looking at your formula again it isn't correct even and should be x^n if n is even = [x^n/2]^2
so as code:
(power3(base,(power/2))) * (power3(base,(power/2)))
or:
(power3(base * base,(power/2)))
Your whole function should probably be like this:
int power3(int base, int power){
if(power == 0){
return 1;
}
else if ( power == 1) // you don't really need this case,
return base; // power == 0 is enough as base case
// if power is even
if (power % 2 == 0){
return (power3(base * base,(power/2)));
}
// if power is odd
else{
return base * (power3(base * base,(power/2)));
}
}
Ok, since you seem to still be confused with the odd powers.
Your power variable is int so you get integer division meaning 3/2 = 1 instead of 1.5 (everything behind the decimal point gets truncated).
Now lets look at the odd case in the function:
return base * (power3(base * base,(power/2)));
lets assume base == 4 and power == 5
return 4 * (power3(4 * 4,(5/2))); // 5/2 evaluates to 2
is the same as saying return 4 * (power3(4, 5 - 1))
and then having return (power3(4 * 4, 4 /2)) since we now got an even case.
We basically just do these 2 steps as 1. I think my explanation sounds a bit weird but hope it helps.

Long Hand Multiplication In C++

I am trying to implement Long Hand Multiplication method for 8 bit binary numbers stored in two arrays BeforeDecimal1 and BeforeDecimal2. The problem is I always get the wrong result. I tried to figure out the issue but couldn't do it. Here is the code:
This is a much more refined code then previous one. It is giving me result but the result is not correct.
int i=0,carry=0;
while(true)
{
if(BeforeDecimal2[i]!=0)
for(int j=7;j>=0;j--)
{
if(s[j]==1 && BeforeDecimal1[j]==1 && carry==0)
{
cout<<"Inside first, j= "<<j<<endl;
carry=1;
s[j]=0;
}
else
if(s[j]==1 && BeforeDecimal1[j]==0 && carry==1)
{
cout<<"Inside second, j= "<<j<<endl;
carry=1;
s[j]=0;
}
else
if(s[j]==0 && BeforeDecimal1[j]==0 && carry==1)
{
cout<<"Inside third, j= "<<j<<endl;
carry=0;
s[j]=1;
}
else
if(s[j]==0 && BeforeDecimal1[j]==0 && carry==0)
{
cout<<"Inside fourth, j= "<<j<<endl;
carry=0;
s[j]=0;
}
else
if(s[j]==0 && BeforeDecimal1[j]==1 && carry==0)
{
cout<<"Inside fifth, j= "<<j<<endl;
carry=0;
s[j]=1;
}
else
if(s[j]==1 && BeforeDecimal1[j]==1 && carry==1)
{
//cout<<"Inside fifth, j= "<<j<<endl;
carry=1;
s[j]=1;
}
else
if(s[j]==1 && BeforeDecimal1[j]==0 && carry==0)
{
//cout<<"Inside fifth, j= "<<j<<endl;
carry=0;
s[j]=1;
}
else
if(s[j]==0 && BeforeDecimal1[j]==1 && carry==1)
{
//cout<<"Inside fifth, j= "<<j<<endl;
carry=1;
s[j]=0;
}
}
for(int h=7;h>=0;h--)
{
if(h==0)
{
BeforeDecimal1[0]=0; // that is inserting zeros from the right
}
else
{
BeforeDecimal1[h]=BeforeDecimal1[h-1];
BeforeDecimal1[h-1]=0;
}
}
if(i==3)
break;
i++;
}
Regards
Maybe it would be easiest to back up and start with 8-bit binary numbers stored as 8-bit binary numbers. Much like when we do decimal multiplication, we start with a number of digits. We take the values of multiplying by those individual digits, and add them together to get the final result. The difference (or one obvious difference) is this since we're working in binary, all our digits represent powers of two, so we can get each intermediate result by simply bit shifting the input.
Since it's binary, we have only two possibilities for each digit: if it's a 0, then we need to add 0 times the other number shifted left the appropriate number of places. Obviously, 0 time whatever is still 0, so we simply do nothing in this case. The other possibility is that we have a 1, in which case we add 1 times the other number shifted left the appropriate number of places.
For example, let's consider something like 17 x 5, or (in binary) 10001 x 101.
10001
101
------
10001
+ 1000100
--------
= 1010101
Converting that to something more recognizable, we get 0x55, or 85d.
In code, that process comes out fairly short and simple. Start with a result of 0. Check whether the least significant bit in one operand is set. If so, add the other operand to the result. Shift the one operand right a bit and the other left a bit, and repeat until the operand you're shifting to the right equals 0:
unsigned short mul(unsigned char input1, unsigned char input2) {
unsigned short result = 0;
while (input2 != 0) {
if (input2 & 1)
result += input1;
input1 <<= 1;
input2 >>= 1;
}
return result;
}
If you want to deal with signed numbers, it's generally easiest to figure up the sign of the result separately, and do the multiplication on the absolute values.
You have problem in following lines of code
if(reverse==0)
{
totalReverse=totalReverse-1;
reverse=totalReverse;
}
after some iterations of the inner for loop (index j based) the values of reverse goes should goes to negative and when reverse less than 3 then there should be exception thrown.
Are you running this code without exception handling?
to me this smells like shift and add. is there a requirement that you may use operations simulating logical gates only?
for your full adder you have 3 inputs s(s[j]), b(BeforeDecimal1[j]), c(carry), and two outputs ns(new s[j]), nc (new carry)
the table looks like this
s b c ns nc
0 0 0 0 0 handled in v5 clause 4
0 0 1 1 0 handled in v5 clause 3
0 1 0 1 0 handled in v6 clause 5
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1 handled in v5 clause 2
1 1 0 0 1 handled in v5 clause 1
1 1 1 1 1
your code covers only 4 (now 5) of these 8 clauses
to avoid the ugly if-else-if rake i recommend to use temporary result variables (carry and s still valid in the next if clause)
when you analyze the table you could also do (pseudo bool notation)
nc = s && b || s && c || b && c;
ns = s XOR b XOR c; // there is no XOR in C++: axb = a&&!b || !a&&b
arithmetic notation
nc = (s + b + c) / 2;
ns = (s + b + c) % 2;
// [...]
for(int j=7;j>=0;j--)
{
// start changed code
const int sum = s[j] + BeforeDecimal1[j] + carry;
s[j]=sum % 2;
carry=sum / 2;
// end changed code
}
// [...]
here is a nice simulation of your problem Sequential Multiplication
Unless your requirement precisely states otherwise, which isn't clear from your question or any of your comments so far, it is not necessary to process arrays of bits. Arrays of bytes are much more efficient in both space and time.
You don't need this exhaustive explosion of cases either. The only special case is where either operand is zero, i.e. a[i]|b[i] == 0, when
result[i] = carry;
carry = 0;
All other cases can be handled by:
result[i] = a[i]*b[i]+carry;
carry = (result[i] >>> 8) & 1;
result[i] &= 0xff;
I don't see much point in the names BeforeDecimal1 and BeforeDecimal2 either.

What are the base cases for Coin Change using Recursion?

I am basically trying to solve the coin change problem through recursion and here is what i have so far -:
#include<iostream>
#include<conio.h>
using namespace std;
int a[]={1,2,5,10,20,50,100,200},count=0;
//i is the array index we are working at
//a[] contains the list of the denominations
//count keeps track of the number of possibilities
void s(int i,int sum) //the function that i wrote
{
if (!( i>7 || sum<0 || (i==7 && sum!=0) )){
if (sum==0) ++count;
s(i+1,sum);
s(i,sum-a[i]);
}
}
int c(int sum,int i ){ //the function that I took from the algorithmist
if (sum == 0)
return 1;
if (sum < 0)
return 0;
if (i <= 0 && sum > 0 )
return 1;
return (c( sum - a[i], i ) + c( sum, i - 1 ));
}
int main()
{
int a;
cin>>a;
s(0,a);
cout<<c(a,7)<<endl<<count;
getch();
return 0;
}
The first function that is s(i,sum) has been written by me and the second function that is c(sum,i) has been taken from here - (www.algorithmist.com/index.php/Coin_Change).
The problem is that count always return a way higher value than expected. However, the algorithmist solution gives a correct answer but I cannot understand this base case
if (i <= 0 && sum > 0 ) return 1;
If the index (i) is lesser than or equal to zero and sum is still not zero shouldn't the function return zero instead of one?
Also I know that the algorithmist solution is correct because on Project Euler, this gave me the correct answer.
I guess that your problem is "Assuming that I have unlimited support of coins, on how many ways can I change the given sum"?
The algoritimists solution you gave assumes also, that the smallest denomination is 1. Otherwise it will won't work correctly.
Now your question:
if (i <= 0 && sum > 0 ) return 1;
Notice, that the only possibility that i<0 is that you called it with this value - no recursive call will be made with negative value of i. Such case (i<0) is an error so no result is proper (maybe assertion or exception would be better).
Now if i=0, assuming that at index 0 there is coin of value 1 means that there is only one way to exchange sum with this denomination - give sum coins of value 1. Right?
After a moment of thought I found out how to remove assumption that a[0] == 1. Change
if (i <= 0 && sum > 0 ) return 1;
into
if (i <= 0 && sum > 0 ) return sum % a[0] == 0 ? 1 : 0;
I believe the algorithm to be biased towards the choice of denominations, and assumes that there will be only one coin of the smallest denomination. Consider as a counter example of the correctness that there was no 2 coins, just 1,5,... And that the target to return was 4:
(4,1)
(-1,1) -> cut, sum<0 a[1]==5
(4,0) -> i==0 => 1
Either that or you misimplemented the algorithm (can there be an off by one error? Could it be i<0, or the original array be 1-based?)

Fibonacci Function Question

I was calculating the Fibonacci sequence, and stumbled across this code, which I saw a lot:
int Fibonacci (int x)
{
if (x<=1) {
return 1;
}
return Fibonacci (x-1)+Fibonacci (x-2);
}
What I don't understand is how it works, especially the return part at the end: Does it call the Fibonacci function again? Could someone step me through this function?
Yes, the function calls itself. For example,
Fibonacci(4)
= Fibonacci(3) + Fibonacci(2)
= (Fibonacci(2) + Fibonacci(1)) + (Fibonacci(1) + Fibonacci(0))
= ((Fibonacci(1) + Fibonacci(0)) + 1) + (1 + 1)
= ((1 + 1) + 1) + 2
= (2 + 1) + 2
= 3 + 2
= 5
Note that the Fibonacci function is called 9 times here. In general, the naïve recursive fibonacci function has exponential running time, which is usually a Bad Thing.
This is a classical example of a recursive function, a function that calls itself.
If you read it carefully, you'll see that it will call itself, or, recurse, over and over again, until it reaches the so called base case, when x <= 1 at which point it will start to "back track" and sum up the computed values.
The following code clearly prints out the trace of the algorithm:
public class Test {
static String indent = "";
public static int fibonacci(int x) {
indent += " ";
System.out.println(indent + "invoked with " + x);
if (x <= 1) {
System.out.println(indent + "x = " + x + ", base case reached.");
indent = indent.substring(4);
return 1;
}
System.out.println(indent + "Recursing on " + (x-1) + " and " + (x-2));
int retVal = fibonacci(x-1) + fibonacci(x-2);
System.out.println(indent + "returning " + retVal);
indent = indent.substring(4);
return retVal;
}
public static void main(String... args) {
System.out.println("Fibonacci of 3: " + fibonacci(3));
}
}
The output is the following:
invoked with 3
Recursing on 2 and 1
invoked with 2
Recursing on 1 and 0
invoked with 1
x = 1, base case reached.
invoked with 0
x = 0, base case reached.
returning 2
invoked with 1
x = 1, base case reached.
returning 3
Fibonacci of 3: 3
A tree depiction of the trace would look something like
fib 4
fib 3 + fib 2
fib 2 + fib 1 fib 1 + fib 0
fib 1 + fib 0 1 1 1
1 1
The important parts to think about when writing recursive functions are:
1. Take care of the base case
What would have happened if we had forgotten if (x<=1) return 1; in the example above?
2. Make sure the recursive calls somehow decrease towards the base case
What would have happened if we accidentally modified the algorithm to return fibonacci(x)+fibonacci(x-1);
return Fibonacci (x-1)+Fibonacci (x-2);
This is terribly inefficient. I suggest the following linear alternative:
unsigned fibonacci(unsigned n, unsigned a, unsigned b, unsigned c)
{
return (n == 2) ? c : fibonacci(n - 1, b, c, b + c);
}
unsigned fibonacci(unsigned n)
{
return (n < 2) ? n : fibonacci(n, 0, 1, 1);
}
The fibonacci sequence can be expressed more succinctly in functional languages.
fibonacci = 0 : 1 : zipWith (+) fibonacci (tail fibonacci)
> take 12 fibonacci
[0,1,1,2,3,5,8,13,21,34,55,89]
This is classic function recursion. http://en.wikipedia.org/wiki/Recursive_function should get you started. Essentially if x less than or equal to 1 it returns 1. Otherwise it it decreases x running Fibonacci at each step.
As your question is marked C++, I feel compelled to point out that this function can also be achieved at compile-time as a template, should you have a compile-time variable to use it with.
template<int N> struct Fibonacci {
const static int value = Fibonacci<N - 1>::value + Fibonacci<N - 2>::value;
};
template<> struct Fibonacci<1> {
const static int value = 1;
}
template<> struct Fibonacci<0> {
const static int value = 1;
}
Been a while since I wrote such, so it could be a little out, but that should be it.
Yes, the Fibonacci function is called again, this is called recursion.
Just like you can call another function, you can call the same function again. Since function context is stacked, you can call the same function without disturbing the currently executed function.
Note that recursion is hard since you might call the same function again infinitely and fill the call stack. This errors is called a "Stack Overflow" (here it is !)
In C and most other languages, a function is allowed to call itself just like any other function. This is called recursion.
If it looks strange because it's different from the loop that you would write, you're right. This is not a very good application of recursion, because finding the n th Fibonacci number requires twice the time as finding the n-1th, leading to running time exponential in n.
Iterating over the Fibonacci sequence, remembering the previous Fibonacci number before moving on to the next improves the runtime to linear in n, the way it should be.
Recursion itself isn't terrible. In fact, the loop I just described (and any loop) can be implemented as a recursive function:
int Fibonacci (int x, int a = 1, int p = 0) {
if ( x == 0 ) return a;
return Fibonacci( x-1, a+p, a );
} // recursive, but with ideal computational properties
Or if you want to be more quick but use more memory use this.
int *fib,n;
void fibonaci(int n) //find firs n number fibonaci
{
fib= new int[n+1];
fib[1] = fib[2] = 1;
for(int i = 3;i<=n-2;i++)
fib[i] = fib[i-1] + fib[i-2];
}
and for n = 10 for exemple you will have :
fib[1] fib[2] fib[3] fib[4] fib[5] fib[6] fib[7] fib[8] fib[9] fib[10]
1 1 2 3 5 8 13 21 34 55``