If I want to use std::any I can use it with RTTI switched off. The following example compiles and runs as expected also with -fno-rtti with gcc.
int main()
{
std::any x;
x=9.9;
std::cout << std::any_cast<double>(x) << std::endl;
}
But how std::any stores the type information? As I see, if I call std::any_cast with the "wrong" type I got std::bad_any_cast exception as expected.
How is that realized or is this maybe only a gcc feature?
I found that boost::any did also not need RTTI, but I found also not how that is solved. Does boost::any need RTTI?.
Digging into the STL header itself gives me no answer. That code is nearly unreadable to me.
TL;DR; std::any holds a pointer to a static member function of a templated class. This function can perform many operations and is specific to a given type since the actual instance of the function depends on the template arguments of the class.
The implementation of std::any in libstdc++ is not that complex, you can have a look at it:
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/std/any
Basically, std::any holds two things:
A pointer to a (dynamically) allocated storage;
A pointer to a "storage manager function":
void (*_M_manager)(_Op, const any*, _Arg*);
When you construct or assign a new std::any with an object of type T, _M_manager points to a function specific to the type T (which is actually a static member function of class specific to T):
template <typename _ValueType,
typename _Tp = _Decay<_ValueType>,
typename _Mgr = _Manager<_Tp>, // <-- Class specific to T.
__any_constructible_t<_Tp, _ValueType&&> = true,
enable_if_t<!__is_in_place_type<_Tp>::value, bool> = true>
any(_ValueType&& __value)
: _M_manager(&_Mgr::_S_manage) { /* ... */ }
Since this function is specific to a given type, you don't need RTTI to perform the operations required by std::any.
Furthermore, it is easy to check that you are casting to the right type within std::any_cast. Here is the core of the gcc implementation of std::any_cast:
template<typename _Tp>
void* __any_caster(const any* __any) {
if constexpr (is_copy_constructible_v<decay_t<_Tp>>) {
if (__any->_M_manager == &any::_Manager<decay_t<_Tp>>::_S_manage) {
any::_Arg __arg;
__any->_M_manager(any::_Op_access, __any, &__arg);
return __arg._M_obj;
}
}
return nullptr;
}
You can see that it is simply an equality check between the stored function inside the object you are trying to cast (_any->_M_manager) and the manager function of the type you want to cast to (&any::_Manager<decay_t<_Tp>>::_S_manage).
The class _Manager<_Tp> is actually an alias to either _Manager_internal<_Tp> or _Manager_external<_Tp> depending on _Tp.
This class is also used for allocation / construction of object for the std::any class.
Manual implementation of a limited RTTI is not that hard. You're gonna need static generic functions. That much I can say without providing a complete implementation.
here is one possibility:
class meta{
static auto id(){
static std::atomic<std::size_t> nextid{};
return ++nextid;//globally unique
};
std::size_t mid=0;//per instance type id
public:
template<typename T>
meta(T&&){
static const std::size_t tid{id()};//classwide unique
mid=tid;
};
meta(meta const&)=default;
meta(meta&&)=default;
meta():mid{}{};
template<typename T>
auto is_a(T&& obj){return mid==meta{obj}.mid;};
};
This is my first observation; far from ideal, missing many details. One may use one instance of meta as a none-static data member of his supposed implementation of std::any.
One of possible solutions is generating unique id for every type possibly stored in any (I assume You know moreless how any internally works). The code that can do it may look something like this:
struct id_gen{
static int &i(){
static int i = 0;
return i;
}
template<class T>
struct gen{
static int id() {
static int id = i()++;
return id;
}
};
};
With this implemented You can use the id of the type instead of RTTI typeinfo to quickly check the type.
Notice the usage of static variables inside functions and static functions. This is done to avoid the problem of undefined order of static variable initialization.
Related
I have a template function that I want to store a pointer to inside a std::vector.
The function looks like this:
template<typename T> void funcName(T& aT, std::vector<std::string>& fileName){...}
Now I want to store multiple pointers to functions of this kind inside a std::vector. For non-template functions I would do it like this:
typedef std::vector<std::string> string_vt;
typedef void func_t(T&, string_vt&);
typedef func_t* funcPointer;
typedef std::vector<funcPointer> funcPointer_vt;
But what is the correct syntax for template functions? How can I store them?
EDIT: First of all, thank you for your fast response. This was my first Question on Stack Overflow, so I am sorry for not providing enough information.
The set of T is finite, it can either be of type ClassA or type classB. In these function templates I want to do changes to T (so either ClassA or ClassB) with some hard coded data. I have 8 of these functions, which basically initiate a default constructed T with data specific to the function. In my program, I want to initiate 2*8 default constructed T's (8 ClassA and 8 ClassB). Therefore I run a for loop, calling one function after the other, to initiate my T objects with the function's body data.
for(int i = 0; i < initT.size(); ++i){
init_T[i]<T>(someT, fileName);
}
The for loop has as much iterations as there are function pointers inside the vector. At every iteration the function is called with some previously default constructed T and some other parameter. At the end the goal is to have 8 initiated T's with data specific to the function.
EDIT2: In case it helps, here is some actual source code. Inside the following function template I want to access my vector of function pointers in order to call the respective function.
template<typename T_Relation, typename T_Relation_Vec, bool row>
void bulk_load(initRelation_vt& aInitFunctions, T_Relation_Vec& aRel_Vec, const bool aMeasure, const uint aRuns, const char* aPath)
{
for(size_t i = 0; i < aRuns; ++i)
{
MemoryManager::freeAll();
aRel_Vec.clear();
string_vt fileNames;
for(size_t j = 0; j < aInitFunctions.size(); ++j)
{
aRel_Vec.emplace_back(T_Relation());
aInitFunctions[j]<T_Relation>(aRel_Vec[j], fileNames);
BulkLoader bl(fileNames[j].c_str(), tuples, aRel_Vec[j], delimiter, seperator);
Measure lMeasure;
if(aMeasure)
{
lMeasure.start();
}
try
{
bl.bulk_load();
if(row)
{
BulkInsertSP bi;
bi.bulk_insert(bl, aRel_Vec[j]);
}
else
{
BulkInsertPAX bi;
bi.bulk_insert(bl, aRel_Vec[j]);
}
}
catch(std::exception& ex)
{
std::cerr << "ERROR: " << ex.what() << std::endl;
}
lMeasure.stop();
if(aMeasure)
{
std::ofstream file;
file.open (aPath, std::ios::out | std::ios::app);
//print_result(file, flag, lMeasure.mTotalTime());
file.close();
}
}
}
}
This line is where the vector of function template pointers is accessed.
aInitFunctions[j]<T_Relation>(aRel_Vec[j], fileNames);
Templates are an advanced technique for static polymorphism. In a typed language, like C++, without static polymorphism you would have to separately define every entity used and precisely indicate every entity referred to.
Mechanisms of static polymorphism in C++ allow to automate indication of function or method and defer it until build via overloading. It allows you to define multiple entities sharing some characteristics at once via templates and defer definition of particular specializations until build, inferred from use.
(Notice that in various scenarios, static polymorphism allows separate code, so that changes to use and to definition are independent, which is very useful.)
The important implication of this mechanism is that every specialization of your template may be of different type. It is unclear, as of when I'm responding, whether you want to store pointers to a single or multiple types of specialization in one type of container. The possibilities depend also on parameter and result types of the function template.
A function in C++ has a type that is a combination of list of its parameter types and its return type. In other words, two functions that take and return the same types are of the same type. If your function template neither took or returned template parameter type (ie. T) nor templated type (eg. std::vector<T>), every specialization of this function template would be taking and returning the same types and would therefore be a function of the same type.
template <typename T>
int func() { ... }
This (arguably useless) function template takes no arguments and returns int, whatever T is used to specialize the template. Therefore a pointer to it could be used wherever the parameter is defined as int (*f)(). In this case you could keep pointer to any specialization in one vector.
typedef std::vector<std::string> string_vt;
typedef int func_t();
typedef func_t* funcPointer;
typedef std::vector<funcPointer> funcPointer_vt;
funcPointer x = &func<int>;
funcPointer y = &func<float>;
As can be seen, every specialization of your function template is of the same type and both pointers fit in the same container.
Next case - what if function header depends on a template parameter? Every specialization would have a different signature, that is a different function type. The pointers to all of them would be of different types - so it wouldn't be possible to even typedef this pointer once.
template <typename T>
void func(std::vector<T> param) { ... }
In this case function template specialization is of different type depending on T used to specialize.
typedef int func_t_int(std::vector<int>);
typedef func_t_int* funcPointerInt;
typedef std::vector<funcPointerInt> funcPointerInt_vt;
typedef float func_t_float(std::vector<float>);
typedef func_t_float* funcPointerFloat;
typedef std::vector<funcPointerFloat> funcPointerFloat_vt;
funcPointerInt x = &func<int>;
funcPointerFloat x = &func<float>;
Specializations are of different types, because they take different type of vectors. Pointers do not fit in the same container.
It's mention-worthy at this point, that in this case it's not necessary to define every pointer type separately. They could be a template type:
template <typename T>
using funcPointer = void (*)(std::vector<T>);
Which now allows funcPointer<int> to be used as a type qualifier, in place of earlier funcPointerInt.
funcPointer<float> y = &func<float>;
In more complicated situations a template could be created, whose every specialization is of a different type, and then would use a single instance of concrete vector to store various pointers to functions of type of only one of the specializations of your template. Although a simple template like in the example can only produce a single function per type, because every specialization yields one type of function and one function of that type, it's not impossible to conceive a scenario where various pointers to functions are obtained, both to specializations and usual functions, perhaps from various sources. So the technique could be useful.
But yet another scenario is that despite every specialization of the template being of different type, there's a need to store pointers to various specializations in single std::vector. In this case dynamic polymorphism will be helpful. To store values of different types, fe. pointers to functions of different types, in one type of variable, requires inheritance. It is possible to store any subclass in a field defined as superclass. Note however, that this is unlikely to accomplish anything really and probably not what you're really looking for.
I see two general possibilities now. Either use a class template with a method, which inherits from a non-template class.
template <typename T>
class MyClass : BaseClass
{
public:
T operator()(const T& param, int value);
}
MyClass<int> a;
MyClass<float> b;
BaseClass* ptr = &a;
ptr = &b;
While every specialization of this class may be of a different type, they all share superclass BaseClass, so a pointer to a BaseClass can actually point to any of them, and a std::vector<funcPointerBase> can be used to store them. By overloading operator() we have create an object that mimics a function. The interesting property of such a class is that it can have multiple instances created with parameter constructors. So effectively class template produces specializations of multiple types, and in turn every specialized class can produce instances of varying parametrization.
template <typename T>
class MyClass : BaseClass
{
int functor_param;
public:
MyClass(int functor_param);
T operator()(const T& param, int value);
}
This version allows creation of instances that work differently:
MyClass<int> a(1);
MyClass<int> b(2);
MyClass<float> c(4);
MyClass<int>* ptr = &a;
ptr = &b;
ptr = &c;
I am no expert on functors, just wanted to present the general idea. If it seems interesting, I suggest researching it now.
But technically we're not storing function pointers, just regular object pointers. Well, as stated before, we need inheritance to use one type of variable to store values of various types. So if we're not using inheritance to exchange our procedural functions for something dynamically polymorphic, we must do the same to pointers.
template <typename T>
T func(std::pair < T, char>) {}
template <typename T>
using funcPointer = T(*)(std::pair<T, char>);
template <typename T>
class MyPointer : BasePointer
{
funcPointer<T> ptr;
public:
MyPointer(funcPointer<T> ptr);
T()(std::pair <T, char>) operator*(std::pair <T, char> pair)
{
*ptr(pair);
}
};
This, again, allows creation of single std::vector<BasePointer> to store all possible pseudo-function-pointers.
Now the very important bit. How would You go about calling those, in either scenario? Since in both cases they are stored in a single std::vector<>, they are treated as if they were of the base type. A specific function call needs parameters of specific type and returns a specific type. If there was anything that all subclasses can do in the same way, it could be exposed by defining such a method in base class (in either scenario using functors or pointer..ors?), but a specific specialized function call is not that kind of thing. Every function call that You would want to perform in the end, after all this struggle, would be of a different type, requiring different type of parameters and/or returning different type of value. So they could never all fit into the same place in usual, not templated code, the same circumstances in execution. If they did, then dynamic polymorphism wouldn't be necessary to solve this problem in the first place.
One thing that could be done - which is greatly discouraged and probably defeats the purpose of dynamic polymorphism - is to detect subclass type at runtime and proceed accordingly. Research that, if you're convinced you have a good case for using this. Most likely though, it's probably a big anti-pattern.
But technically, anything you may want to do is possible somehow.
If I have correctly understood you, I may have a really simple and efficient solution:
template<class...Ts>
struct functor{
//something like a dynamic vtable
std::tuple<void(*)(Ts&,std::vector<std::string>&)...> instantiated_func_ptr;
template<class T>
void operator ()(T& aT,std::vector<std::string>& fileName){
get<void(*)(T&,std::vector<std::string>&)>(instantiated_func_ptr)
(aT,fileName);
}
};
VoilĂ !!
Until c++17, get<typename> is not defined so we have to define it (before the definition of the template functor above):
template<class T,class...Ts>
struct find_type{
//always fail if instantiated
static_assert(sizeof...(Ts)==0,"type not found");
};
template<class T,class U,class...Ts>
struct find_type<T,U,Ts...>:std::integral_constant<size_t,
find_type<T,Ts...>::value+1>{};
template<class T,class...Ts>
struct find_type<T,T,Ts...>:std::integral_constant<size_t,0>{};
template<class T,class...Ts>
constexpr decltype(auto) get(const std::tuple<Ts...>& t){
return get<find_type<T,Ts...>::value>(t);
}
And an example to show how to use it:
struct A{
void show() const{
std::cout << "A" << "\n";
}
};
struct B{
void show() const{
std::cout << "B" << "\n";
}
};
template<class T>
void func1(T& aT,std::vector<std::string>& fileName){
std::cout << "func1: ";
aT.show();
}
template<class T>
void func2(T& aT,std::vector<std::string>& fileName){
std::cout << "func2: ";
aT.show();
}
template<class T>
void func3(T& aT,std::vector<std::string>& fileName){
std::cout << "func3: ";
aT.show();
}
using functorAB = functor<A,B>;
int main(){
auto functor1=functorAB{{func1,func1}};//equivalent to functorAB{{func1<A>,func1<B>}}
auto functor2=functorAB{{func2,func2}};
auto functor3=functorAB{{func3,func3}};
auto v=std::vector<functorAB>{functor1,functor2,functor3};
auto a=A{};
auto b=B{};
auto fileNames = std::vector<std::string>{"file1","file2"};
for(auto& tf:v)
tf(a,fileNames);
for(auto& tf:v)
tf(b,fileNames);
}
In practice it is just a reproduction of the virtual call mechanism,
the tuple in functor is kind of virtual table. This code is not
more efficient than if you had written an abstract functor with virtual
operator() for each of your class A and B and then implemented it for each of
your functions... but it is much more concise, easier to maintain and may produce less binary code.
I'm well aware of boost::any and boost::variant, but in this instance they don't fit my needs.
Normally, to contain an object of unknown type, one would derive it from a common base and access the instance through virtual methods. But, what can one do if it's impossible to use a common base?
I know that in this example you would have to know the contained type, but bear with me. std::vector is a template class with top level class also being a template. As far as I know it cannot be given a non-template base without modifying the STL headers. Now, lets say I want to create a vector of a single type but the containing class doesn't care about the type, but it does require access to some of the 'common' methods, size() and pop_back() for example.
Using boost::any, the type has been erased, making it almost impossible to dereference the contained object. boost::variant and tuple require knowing before hand what types may be inserted, causing the containing class to itself be a template.
What I have so far is something like this:
struct container
{
virtual ~container() = 0;
virtual void pop_back() = 0;
virtual size_t size() = 0;
...
}
template < typename T >
struct contained
{
std::vector< T > _vec;
contained ( size_t n, T _what ) : _vec( n, _what ) {}
virtual void pop_back() { _vec.pop_back(); }
...
}
class some_class
{
container* _cont;
template < typename T >
void create ( T _first ) { _cont = new contained< T >(1,_first); }
...
}
Here the client can call on create() and the template parameter should be determined automatically. Not a great example I know, but I'm trying to hide the template parameters from the client. Without doing this, some_class would have to also keep track of what type is being stored.
My method relies on virtual calls which causes a performance loss, especially when the internal class has virtual methods of it's own.
Are there any other types of containers that would better suit my needs?
Ideally, I'd like something like this
container = std::vector< T >;
container.pop_back();
container.push_back( T2 ); // compile error if types don't match
Where internally it would track the type and do a simple cast rather than rely on virtual methods. Almost like auto with the difference being that once declared it's type can change.
Edit:
In reality, I want to create a wrapper around std::basic_filebuf. This wrapper class opens the file with char,wchar_t or unsigned long based on the BOM. The wrapper is also derived from basic_filebuf with the template parameter being whatever the client chooses. Internally, it converts unicode code points from the file to the clients desired encoding. The problem arises when storing the internal basic_filebuf because it can be declared with any type as the template parameter. I don't want to use template specialization because I want the client to be able to pass in their own basic_filebuf instance.
Must be VS2010 compatible, which has limited features from C++11.
This cannot be combined with compile-time type checking. Based on your "ideally" example:
container c;
if (thingKnownAtRunTime()) {
c = vector<int>;
} else {
c = vector<string>;
}
c.push_back("hello world");
For the filebuf case, though, you might get good enough with something like (warning: untested)
template<typename FILEBUF>
void gensputc(FILEBUF* fb, long long c) {
FILEBUf::char_type c2 = smart_convert<FILEBUf::char_type>(c);
fb->sputc(c2);
}
class FileBufWrapper {
public:
template<typename FILEBUF> FileBufWrapper(FILEBUF* fb) {
fb_ = fb;
sputc_ = gensputc<FILEBUF>;
}
void sputc(long long c) {
sputc_(fb_,c);
}
private:
typedef void(*sputc_t)(void*, long long);
sputc_t sputc_;
void* fb_;
};
The smart_convert function throws a runtime exception if the value cannot be converted to the char type. Also, this needs to be done for every function you intend to call.
If you have access to c++11's std::function and std::bind, this can be made a little cleaner, especially for the cases where you don't need to convert anything.
I need to store multiple types of a template class in a single vector.
Eg, for:
template <typename T>
class templateClass{
bool someFunction();
};
I need one vector that will store all of:
templateClass<int> t1;
templateClass<char> t2;
templateClass<std::string> t3;
etc
As far as I know this is not possible, if it is could someone say how?
If it isn't possible could someone explain how to make the following work?
As a work around I tried to use a base, non template class and inherit the template class from it.
class templateInterface{
virtual bool someFunction() = 0;
};
template <typename T>
class templateClass : public templateInterface{
bool someFunction();
};
I then created a vector to store the base "templateInterface" class:
std::vector<templateInterface> v;
templateClass<int> t;
v.push_back(t);
This produced the following error:
error: cannot allocate an object of abstract type 'templateInterface'
note: because the following virtual functions are pure within 'templateInterface'
note: virtual bool templateInterface::someFunction()
To fix this error I made the function in templateInterface not a pure virtual by providing a function body, this compiled but when calling the function the overide is not used, but instead the body in the virtual function.
Eg:
class templateInterface{
virtual bool someFunction() {return true;}
};
template <typename T>
class templateClass : public templateInterface{
bool someFunction() {return false;}
};
std::vector<templateInterface> v;
templateClass<int> i;
v.push_back(i);
v[0].someFunction(); //This returns true, and does not use the code in the 'templateClass' function body
Is there any way to fix this so that the overridden function is used, or is there another workaround to store multiple template types in a single vector?
Why your code doesn't work:
Calling a virtual function on a value doesn't use polymorphism. It calls the function which is defined for the type of this exact symbol as seen by the compiler, not the runtime type. When you insert sub types into a vector of the base type, your values will be converted into the base type ("type slicing"), which is not what you want. Calling functions on them will now call the function as defined for the base type, since not it is of that type.
How to fix this?
The same problem can be reproduced with this code snippet:
templateInterface x = templateClass<int>(); // Type slicing takes place!
x.someFunction(); // -> templateInterface::someFunction() is called!
Polymorphism only works on a pointer or reference type. It will then use the runtime type of the object behind the pointer / reference to decide which implementation to call (by using it's vtable).
Converting pointers is totally "safe" with regard to type slicing. Your actual values won't be converted at all and polymorphism will work as expected.
Example, analogous to the code snippet above:
templateInterface *x = new templateClass<int>(); // No type slicing takes place
x->someFunction(); // -> templateClass<int>::someFunction() is called!
delete x; // Don't forget to destroy your objects.
What about vectors?
So you have to adopt these changes in your code. You can simply store pointers to actual types in the vector, instead of storing the values directly.
When working with pointers you also have to care about deleting your allocated objects. For this you can use smart pointers which care about deletion automatically. unique_ptr is one such smart pointer type. It deletes the pointee whenever it goes out of scope ("unique ownership" - the scope being the owner). Assuming the lifetime of your objects is bound to the scope this is what you should use:
std::vector<std::unique_ptr<templateInterface>> v;
templateClass<int> *i = new templateClass<int>(); // create new object
v.push_back(std::unique_ptr<templateInterface>(i)); // put it in the vector
v.emplace_back(new templateClass<int>()); // "direct" alternative
Then, call a virtual function on one of these elements with the following syntax:
v[0]->someFunction();
Make sure you make all functions virtual which should be possible to be overridden by subclasses. Otherwise their overridden version will not be called. But since you already introduced an "interface", I'm sure you are working with abstract functions.
Alternative approaches:
Alternative ways to do what you want is to use a variant type in the vector. There are some implementations of variant types, the Boost.Variant being a very popular one. This approach is especially nice if you don't have a type hierarchy (for example when you store primitive types). You would then use a vector type like std::vector<boost::variant<int, char, bool>>
Polymorphism only works through pointers or references. You'll
need the non-template base. Beyond that, you'll need to decide
where the actual objects in container will live. If they're all
static objects (with sufficient lifetime), just using
a std::vector<TemplateInterface*>, and inserting with
v.push_back(&t1);, etc., should do the trick. Otherwise,
you'll probably want to support cloning, and keep clones in the
vector: preferably with Boost pointer containers, but
std::shared_ptr can be used as well.
The solutions given so far are fine though be aware that in case you were returning the template type other than bool in your example , none of these would help as the vtable slots would not be able to be measured before hand. There are actually limits , from a design point of view , for using a template oriented polymorphic solution.
Solution nr. 1
This solution inspired by Sean Parent's C++ Seasoning talk. I highly recommend to check it out on youtube. My solution simplified a bit and the key is to store object in method itself.
One method only
Create a class that will invoke method of stored object.
struct object {
template <class T>
object(T t)
: someFunction([t = std::move(t)]() { return t.someFunction(); })
{ }
std::function<bool()> someFunction;
};
Then use it like this
std::vector<object> v;
// Add classes that has 'bool someFunction()' method
v.emplace_back(someClass());
v.emplace_back(someOtherClass());
// Test our vector
for (auto& x : v)
std::cout << x.someFunction() << std::endl;
Several methods
For several methods use shared pointer to share object between methods
struct object {
template <class T>
object(T&& t) {
auto ptr = std::make_shared<std::remove_reference_t<T>>(std::forward<T>(t));
someFunction = [ptr]() { return ptr->someFunction(); };
someOtherFunction = [ptr](int x) { ptr->someOtherFunction(x); };
}
std::function<bool()> someFunction;
std::function<void(int)> someOtherFunction;
};
Other types
Primitive types (such as int, float, const char*) or classes (std::string etc.) may be wrapped in the same way as object class do but behave differently. For example:
struct otherType {
template <class T>
otherType(T t)
: someFunction([t = std::move(t)]() {
// Return something different
return true;
})
{ }
std::function<bool()> someFunction;
};
So now it is possible to add types that does not have someFunction method.
v.emplace_back(otherType(17)); // Adding an int
v.emplace_back(otherType("test")); // A string
Solution nr. 2
After some thoughts what we basically done in first solution is created array of callable functions. So why not just do the following instead.
// Example class with method we want to put in array
struct myclass {
void draw() const {
std::cout << "myclass" << std::endl;
}
};
// All other type's behaviour
template <class T>
void draw(const T& x) {
std::cout << typeid(T).name() << ": " << x << std::endl;
}
int main()
{
myclass x;
int y = 17;
std::vector<std::function<void()>> v;
v.emplace_back(std::bind(&myclass::draw, &x));
v.emplace_back(std::bind(draw<int>, y));
for (auto& fn : v)
fn();
}
Conclusion
Solution nr. 1 is definitely an interesting method that does not require inheritance nor virtual functions. And can be used to other stuff where you need to store a template argument to be used later.
Solution nr. 2, on the other hand, is simpler, more flexible and probably a better choice here.
If you're looking at a container to store multiple types, then you should explore boost variant from the popular boost library.
I hope the headline isn't too confusing. What I have is a class StorageManager containing a list of objects of classes derived from Storage. Here is an example.
struct Storage {}; // abstract
class StorageManager
{
private:
map<string, unique_ptr<Storage>> List; // store all types of storage
public:
template <typename T>
void Add(string Name) // add new storage with name
{
List.insert(make_pair(Name, unique_ptr<Storage>(new T())));
}
Storage* Get(string Name) // get storage by name
{
return List[Name].get();
}
};
Say Position is a special storage type.
struct Position : public Storage
{
int X;
int Y;
};
Thanks to the great answers on my last question the Add function already works. What I want to improve is the Get function. It reasonable returns a pointer Storage* what I can use like the following.
int main()
{
StorageManager Manager;
Manager.Add<Position>("pos"); // add a new storage of type position
auto Strge = Manager.Get("pos"); // get pointer to base class storage
auto Pstn = (Position*)Strge; // convert pointer to derived class position
Pstn->X = 5;
Pstn->Y = 42;
}
It there a way to get rid of this pointer casting by automatically returning a pointer to the derived class? Maybe using templates?
use:
template< class T >
T* Get(std::string const& name)
{
auto i = List.find(name);
return i == List.end() ? nullptr : static_cast<T*>(i->second.get());
}
And then in your code:
Position* p = Manager.Get<Position>("pos");
I don't see what you can do for your Get member function besides what #BigBoss already pointed out, but you can improve your Add member to return the used storage.
template <typename T>
T* Add(string Name) // add new storage with name
{
T* t = new T();
List.insert(make_pair(Name, unique_ptr<Storage>(t)));
return t;
}
// create the pointer directly in a unique_ptr
template <typename T>
T* Add(string Name) // add new storage with name
{
std::unique_ptr<T> x{new T{}};
T* t = x.get();
List.insert(make_pair(Name, std::move(x)));
return t;
}
EDIT The temporary prevents us from having to dynamic_cast.
EDIT2 Implement MatthieuM's suggestion.
You can also further improve the function by accepting a value of the
type to be inserted, with a default argument, but that might incur an
additional copy.
When you have a pointer or reference to an object of some class, all you know is that the actual runtime object it references is either of that class or of some derived class. auto cannot know the runtime type of an object at compile time, because the piece of code containing the auto variable could be in a function that is run twice -- once handling an object of one runtime type, another handling an object with a different runtime type! The type system can't tell you what exact types are in play in a language with polymorphism -- it can only provide some constraints.
If you know that the runtime type of an object is some particular derived class (as in your example), you can (and must) use a cast. (It's considered preferable to use a cast of the form static_cast<Position*>, since casts are dangerous, and this makes it easier to search for casts in your code.)
But generally speaking, doing this a lot is a sign of poor design. The purpose of declaring a base class and deriving other class types from it is to enable objects of all of these those types to be treated the same way, without casting to a particular type.
If you want to always have the correct derived type at compile time without ever using casts, you have no choice but to use a separate collection of that type. In this case, there is probably no point deriving Position from Storage.
If you can rearrange things so that everything that a caller of StorageManager::Get() needs to do with a Position can be done by calling functions that don't specify Position-specific information (such as co-ordinates), you can make these functions into virtual functions in Storage, and implement Position-specific versions of them in Position. For example, you could make a function Storage::Dump() which writes its object to stdout. Position::Dump() would output X and Y, while the implementations of Dump() for other conceivable derived classes would output different information.
Sometimes you need to be able to work with an object that could be one of several essentially unrelated types. I suspect that may be the case here. In that case, boost::variant<> is a good way to go. This library provides a powerful mechanism called the Visitor pattern, which allows you to specify what action should be taken for each of the types that a variant object could possibly be.
Apart from the fact that this looks like a terrible idea... let's see what we can do to improve the situation.
=> It's a bad idea to require default construction
template <typename T>
T& add(std::string const& name, std::unique_ptr<T> element) {
T& t = *element;
auto result = map.insert(std::make_pair(name, std::move(element)));
if (result.second == false) {
// FIXME: somehow add the name here, for easier diagnosis
throw std::runtime_error("Duplicate element");
}
return t;
}
=> It's a bad idea to downcast blindly
template <typename T>
T* get(std::string const& name) const {
auto it = map.find(name);
return it != map.end() ? dynamic_cast<T*>(it->second.get()) : nullptr;
}
But frankly, this system is quite full of holes. And probably unnecessary in the first place. I encourage you to review the general problem an come up with a much better design.
I want to instantiate a template class with data types that are available at runtime in variables. For example, consider this class:
template <typename T, unsigned int U>
class Allocator
{
public:
T * pointer;
Allocator() { pointer = new T[U]; }
~Allocator() { delete [] pointer; }
};
Now I want to use it like this:
int main()
{
string temp = "int";
unsigned int count = 64;
Allocator<temp, count> a;
return 0;
}
Is there any way of doing this?
I am facing this problem in the context of serializing derived classes with base pointers. I use RTTI to identify the real type of derived class, but the information of the real type is stored in a string. My problem is to be able to dynamic_cast to the type (available as a string at runtime) from the base pointer. Please help.
You can't. Data types must be known at compile time. Maybe using Boost or unions may solve the problem in a non-pretty way.
Good luck!
The absence of a reflection mechanism in C++ makes practically impossible the "dynamic creation" based on data with a direct language support.
The only way is to use a "switch", or any equivalent declarative mechanism, like a factory class owning a dispatch map that associate the strings declaring the type to creation function calls.