I have programmed Raspberry Pi 3 to plot ECG SIgnal. I have used matplotlib library in Python2.7. Arduino board has been used to acquire the analog inputs.
the GUI created contains 2 subplots that reads signal from 2 analog pins of the arduino.
Now i need to detect the R peaks from the live ECG signal.
I have tried several codes to detect but i am unable to detect it in the same plot.
Please suggest how do i add the r-peak detection code in the code below of the real-time ECG signal plotting.
This is my code below:-
import serial
import numpy as np
from matplotlib import pyplot as plt
from matplotlib import animation
ser = serial.Serial('/dev/ttyACM0', 115200)
n = 200
fig = plt.figure(figsize=(12,9))
ax1 = fig.add_subplot(2,1,1)
ax2 = fig.add_subplot(2,1,2)
ch1, = ax1.plot([], [], 'b', label = 'Channel 1')
ch2, = ax2.plot([], [], 'r', label = 'Channel 2')
axes = [ax1, ax2]
for ax in axes:
ax.set_xlim(0, n+1)
ax.set_ylim(0, n-1)
ax.set_ylabel('values')
ax.legend(loc='upper right')
ax.grid(True)
ax1.set_title('Real-time ECG plot')
ax2.set_xlabel('Values')
t = list(range(0,n))
channel1 = [0] * n
channel2 = [0] * n
def init():
ch1.set_data([], [])
ch2.set_data([], [])
return ch1, ch2,
def animate(i):
while (ser.inWaiting() == 0):
pass
arduinoString = ser.readline()
dataArray = arduinoString.split(',')
channel1.append(float(dataArray[0]))
channel2.append(float(dataArray[1]))
channel1.pop(0)
channel2.pop(0)
ch1.set_data(t, channel1)
ch2.set_data(t, channel2)
return ch1, ch2, ch3,
delay = 0
anim = animation.FuncAnimation(fig, animate, init_func=init,interval=delay, blit=True)
plt.show()
ser.close()
Related
Hi I a have a data set which I project onto a sphere such that the magnitude of the data, as a function of theta and phi, is shown using a colour spectrum (which uses "ax.plot_surface", "plt.colorbar" and "facecolors"). My query is that at this stage I am limited to "cm.hot" and "cm.jet". Does anyone know of any other colour schemes which are available for this purpose. Please see my code and the figures below
Code:
from numpy import*
import math
import matplotlib.pyplot as plt
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.cm as cm
#theta inclination angle
#phi azimuthal angle
n_theta = 100 #number of values for theta
n_phi = 100 #number of values for phi
r = 1 #radius of sphere
theta, phi = np.mgrid[0: pi:n_theta*1j,-pi:pi:n_phi*1j ]
x = r*np.sin(theta)*np.cos(phi)
y = r*np.sin(theta)*np.sin(phi)
z = r*np.cos(theta)
inp = []
f = open("data.dat","r")
for line in f:
i = float(line.split()[0])
j = float(line.split()[1])
val = float(line.split()[2])
inp.append([i, j, val])
inp = np.array(inp)
#reshape the input array to the shape of the x,y,z arrays.
c = inp[:,2].reshape((n_phi,n_theta))
#Set colours and render
fig = plt.figure(figsize=(10, 8))
ax = fig.add_subplot(111, projection='3d')
#use facecolors argument, provide array of same shape as z
# cm.<cmapname>() allows to get rgba color from array.
# array must be normalized between 0 and 1
surf = ax.plot_surface(
x,y,z, rstride=1, cstride=1, facecolors=cm.jet(c), alpha=0.9, linewidth=1, shade=False)
ax.set_xlim([-2.0,2.0])
ax.set_ylim([-2.0,2.0])
ax.set_zlim([-2,2])
ax.set_aspect("equal")
plt.title('Plot with cm.jet')
#Label axis.
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
#Creates array for colorbar from 0 to 1.
a = array( [1.0, 0.5, 0.0])
#Creates colorbar
m = cm.ScalarMappable(cmap=cm.jet)
m.set_array(a)
plt.colorbar(m)
plt.savefig('facecolor plots')
f.close()
plt.show()
The following is a list of colormaps provided directly by matplotlib. It's taken from the Colormap reference example.
cmaps = [('Perceptually Uniform Sequential', [
'viridis', 'plasma', 'inferno', 'magma', 'cividis']),
('Sequential', [
'Greys', 'Purples', 'Blues', 'Greens', 'Oranges', 'Reds',
'YlOrBr', 'YlOrRd', 'OrRd', 'PuRd', 'RdPu', 'BuPu',
'GnBu', 'PuBu', 'YlGnBu', 'PuBuGn', 'BuGn', 'YlGn']),
('Sequential (2)', [
'binary', 'gist_yarg', 'gist_gray', 'gray', 'bone', 'pink',
'spring', 'summer', 'autumn', 'winter', 'cool', 'Wistia',
'hot', 'afmhot', 'gist_heat', 'copper']),
('Diverging', [
'PiYG', 'PRGn', 'BrBG', 'PuOr', 'RdGy', 'RdBu',
'RdYlBu', 'RdYlGn', 'Spectral', 'coolwarm', 'bwr', 'seismic']),
('Qualitative', [
'Pastel1', 'Pastel2', 'Paired', 'Accent',
'Dark2', 'Set1', 'Set2', 'Set3',
'tab10', 'tab20', 'tab20b', 'tab20c']),
('Miscellaneous', [
'flag', 'prism', 'ocean', 'gist_earth', 'terrain', 'gist_stern',
'gnuplot', 'gnuplot2', 'CMRmap', 'cubehelix', 'brg', 'hsv',
'gist_rainbow', 'rainbow', 'jet', 'nipy_spectral', 'gist_ncar'])]
To easily view them all you may e.g. use the following 3D colormap viewer (written in PyQt5).
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
from PyQt5 import QtGui, QtCore, QtWidgets
from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas
from matplotlib.figure import Figure
import sys
class MainWindow(QtWidgets.QMainWindow):
def __init__(self):
QtWidgets.QMainWindow.__init__(self)
self.main_widget = QtWidgets.QWidget(self)
self.fig = Figure()
self.canvas = FigureCanvas(self.fig)
self.ax = self.fig.add_subplot(111, projection=Axes3D.name)
u = np.linspace(0, 2 * np.pi, 100)
v = np.linspace(0, np.pi, 100)
x = 10 * np.outer(np.cos(u), np.sin(v))
y = 10 * np.outer(np.sin(u), np.sin(v))
z = 10 * np.outer(np.ones(np.size(u)), np.cos(v))
# Plot the surface
self.surf = self.ax.plot_surface(x, y, z, cmap="YlGnBu")
self.cb = self.fig.colorbar(self.surf)
self.canvas.setSizePolicy(QtWidgets.QSizePolicy.Expanding,
QtWidgets.QSizePolicy.Expanding)
self.canvas.updateGeometry()
self.dropdown1 = QtWidgets.QComboBox()
items = []
for cats in cmaps:
items.extend(cats[1])
self.dropdown1.addItems(items)
self.dropdown1.currentIndexChanged.connect(self.update)
self.label = QtWidgets.QLabel("A plot:")
self.layout = QtWidgets.QGridLayout(self.main_widget)
self.layout.addWidget(QtWidgets.QLabel("Select Colormap"))
self.layout.addWidget(self.dropdown1)
self.layout.addWidget(self.canvas)
self.setCentralWidget(self.main_widget)
self.show()
self.update()
def update(self):
self.surf.set_cmap(self.dropdown1.currentText())
self.fig.canvas.draw_idle()
if __name__ == '__main__':
app = QtWidgets.QApplication(sys.argv)
win = MainWindow()
sys.exit(app.exec_())
I have been looking around and have got to nowhere with this. I am trying to animate the poles on a stereonet diagram. However, the poles do not appear at the location that they should be in.
Figure 1 is the animated pole plot while Figure 2 is how the plot should be. I was wondering if anyone had an idea on how to proceed with this?
import matplotlib as mpl
mpl.use("TkAgg")
from matplotlib import pyplot as plt
from matplotlib import animation
import numpy as np
import mplstereonet
fig, ax = mplstereonet.subplots()
fig2, ax1 = mplstereonet.subplots()
ax.grid(True)
ax1.grid(True)
# Assume a strike and dip with a random variance.
# Current values should plot the poles at either 0, 180
strike, dip = 90, 80
num = 10
strikes = strike + 10 * np.random.randn(num)
dips = dip + 10 * np.random.randn(num)
poles, = ax.pole([], [], 'o')
def init():
poles.set_data([], [])
return poles,
def animate(i):
poles.set_data(strikes[:i], dips[:i])
return poles,
anim = animation.FuncAnimation(fig, animate, init_func=init,
frames = len(strikes), interval = 100, blit=True, repeat=False)
poles1 = ax1.pole(strikes, dips, 'o') # This is how the final image should look like
plt.show()
I am new to Matplotlib. Based on my code in following, I wanted to update the data,title,xlabel,ylabel at same time. However, the title and labels did not been updated, but data did.Someone can give me a solution? That will help me a lot.Thank you.
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
def updata(frame_number):
current_index = frame_number % 3
a = [[1,2,3],[4,5,6],[7,8,9]]
idata['position'][:,0] = np.asarray(a[current_index])
idata['position'][:,1] = np.asarray(a[current_index])
scat.set_offsets(idata['position'])
ax.set_xlabel('The Intensity of Image1')
ax.set_ylabel('The Intensity of Image2')
ax.set_title("For Dataset %d" % current_index)
fig = plt.figure(figsize=(5,5))
ax = fig.add_axes([0,0,1,1])
idata = np.zeros(3,dtype=[('position',float,2)])
ax.set_title(label='lets begin',fontdict = {'fontsize':12},loc='center')
scat = ax.scatter(idata['position'][:,0],idata['position'][:,1],s=10,alpha=0.3,edgecolors='none')
animation = FuncAnimation(fig,updata,interval=2000)
plt.show()
Running the code, I see an empty window. The reason is that the axes span the complete figure (fig.add_axes([0,0,1,1])). In order to see the title and labels, you would need to make the axes smaller than the figure, e.g. by
ax = fig.add_subplot(111)
Also, the scale of the axes is not defined, so the animation will happen outside the axes limits. You can use ax.set_xlim and ax.set_ylim to prevent that.
Here is a complete running code:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
def updata(frame_number):
current_index = frame_number % 3
a = [[1,2,3],[4,5,6],[7,8,9]]
idata['position'][:,0] = np.asarray(a[current_index])
idata['position'][:,1] = np.asarray(a[current_index])
scat.set_offsets(idata['position'])
ax.set_xlabel('The Intensity of Image1')
ax.set_ylabel('The Intensity of Image2')
ax.set_title("For Dataset %d" % current_index)
fig = plt.figure(figsize=(5,5))
ax = fig.add_subplot(111)
idata = np.zeros(3,dtype=[('position',float,2)])
ax.set_title(label='lets begin',fontdict = {'fontsize':12},loc='center')
scat = ax.scatter(idata['position'][:,0],idata['position'][:,1],
s=25,alpha=0.9,edgecolors='none')
ax.set_xlim(0,10)
ax.set_ylim(0,10)
animation = FuncAnimation(fig,updata,frames=50,interval=600)
plt.show()
Using Matplotlib and a for loop, is it possible to display a plot for a given period of time and then have it close when the for loop is done?
I have tried the following, but the plot simply remains open and the loop doesn't end:
import matplotlib.pyplot as plt
import psychopy
x = [34.00,108.00,64.00,99.00,99.00,51.00]
y = [5.00,17.00,11.00,8.00,14.00,5.00]
scatter(x, y, color = "black")
clock = core.Clock()
while clock.getTime() < 10.0:
plt.show()
plt.close()
Thanks
You can use interactive mode plt.ion() in combination with plt.pause().
E.g. to show your window for 5 seconds:
import matplotlib.pyplot as plt
x = [34.00,108.00,64.00,99.00,99.00,51.00]
y = [5.00,17.00,11.00,8.00,14.00,5.00]
plt.scatter(x, y, color = "black")
plt.ion()
plt.draw()
plt.pause(5)
import sys
import serial
import numpy as np
import matplotlib.pyplot as plt
from collections import deque
port = "COM11"
baud = 9600
timeout=1
ser = serial.Serial()
ser.port = port
ser.baudrate = baud
ser.timeout = timeout
a1 = deque([0.0]*100)
#ax = plt.axes(xlim=(0, 100), ylim=(0, 1000))
line, = plt.plot(a1)
plt.ion()
plt.ylim([0,1000])
try:
ser.open()
except:
sys.stderr.write("Error opening serial port %s\n" % (ser.portstr) )
sys.exit(1)
#ser.setRtsCts(0)
while 1:
# Read from serial port, blocking
data = ser.read(1)
# If there is more than 1 byte, read the rest
n = ser.inWaiting()
data = data + ser.read(n)
#sys.stdout.write(data)
print(a1)
a1.appendleft((data))
datatoplot = a1.pop()
line.set_ydata(a1)
plt.draw()
I am getting a plot between serial port values and sample points. I want to plot serial plot values vs time. Is there a way to convert sample points to time values, something like how to we convert sample point to frequency values using freqs = scipy.fftpack.fftfreq(n, d)
Thanks
If you want to plot the data against time from the start of the program, then:
import time
t0 = time.time()
tlist = deque([np.nan] * 100)
while 1:
# read the serial data ...
# when you have read a sample, capture the time difference
# and put it into a queue (similarly to the data values)
deltat = time.time() - t0
dlist.appendleft((deltat))
# remember to pop the data, as well
dlist.pop()
a1.pop()
# set the x and y data
line.set_xdata(tlist)
line.set_ydata(a1)
# draw it
plt.draw()
Now you have the number of seconds from the start of the program on the X axis.
If you want to have the real time shown, then use datetime.datetime objects:
import datetime
dlist = deque([datetime.datetime.now()] * 100)
while 1:
# capture the serial data ...
dilst.appendleft((datetime.datetime.now()))
# everything else as above
This should give you a plot with real time on the X axis.
import sys
import serial
import numpy as np
import matplotlib.pyplot as plt
import time
from collections import deque
from scipy import arange
port = "COM13"
baud = 9600
timeout=1
ser = serial.Serial()
ser.port = port
ser.baudrate = baud
ser.timeout = timeout
t0=time.time()
tlist = deque([np.nan]*10)
a1 = deque([0.0]*10)
#ax = plt.axes(xlim=(0, 100), ylim=(0, 1000))
line, = plt.plot(a1)
plt.ion()
plt.ylim([-100,100])
plt.grid(b=True,which= 'major' , color= 'g' , linestyle= '--')
#plt.grid(b=True,which= 'minor' , color= '-m' , linestyle= '--')
try:
ser.open()
except:
sys.stderr.write("Error opening serial port %s\n" % (ser.portstr) )
sys.exit(1)
#ser.setRtsCts(0)
while 1:
# Read from serial port, blocking
data = ser.read(1)
# If there is more than 1 byte, read the rest
n = ser.inWaiting()
data = data + ser.read(n)
#sys.stdout.write(data)
#print(a1)
#data1=int(data)-128
deltat = time.time() - t0
tlist.appendleft((deltat1))
datatoplot = tlist.pop()
a1.appendleft((data))
datatoplot = a1.pop()
line.set_xdata(tlist)
line.set_ydata(a1)
plt.hold(False)
plt.draw()
This is the complete code I used, and yes I had already changed that line.pop . But as I explained earlier in the comment I am not able to get the time values in x axis