Recursive macros via __VA_OPT__ - c++

Is it legal to write recursive macros with __VA_OPT__?
GCC and Clang appear to not replace recursively, but I'm not sure if it's intentional (as __VA_OPT__ support is very recent).
C++ spec (§19.3.1/3: __VA_OPT__):
Otherwise, the replacement consists of the results of the expansion of
content as the replacement list of the current function-like macro
before rescanning and further replacement
Does the highlighted section above mean recursion isn't possible?
For example, to add a list of variadic macro parameters:
#define RECURSE(mFIRST, ...) + mFIRST __VA_OPT__(RECURSE(__VA_ARGS__))
int main(int argc, char const* const argv[])
{
return 1 RECURSE(2, 3, 4);
// Expected result: "return 1 + 2 + 3 + 4;"
}
Both GCC and Clang generate RECURSE in their post-preprocessing.
// NOTE: Below is the output from g++ -E
int main(int argc, char const* const argv[])
{
return 1 + 2 RECURSE(3, 4);
}
NOTE: If this is possible, more complex variadic macros could be written fairly easy, such as concatenate, as you can create a custom __VA_NO_OPT__ from __VA_OPT__, which lets you provide completely separate code for 1 and 2+ parameters.

The answer is yes! To the extent that you could already have recursive macros in C, you can do it in C++20 and __VA_OPT__ makes some things way, way nicer.
Here's an example (with explanation) of what you can do: define a FOR_EACH macro that applies a macro to a bunch of arguments and is way nicer than the horrible things you had to do prior to __VA_OPT__:
#define PARENS () // Note space before (), so object-like macro
#define EXPAND(arg) EXPAND1(EXPAND1(EXPAND1(EXPAND1(arg))))
#define EXPAND1(arg) EXPAND2(EXPAND2(EXPAND2(EXPAND2(arg))))
#define EXPAND2(arg) EXPAND3(EXPAND3(EXPAND3(EXPAND3(arg))))
#define EXPAND3(arg) EXPAND4(EXPAND4(EXPAND4(EXPAND4(arg))))
#define EXPAND4(arg) arg
#define FOR_EACH(macro, ...) \
__VA_OPT__(EXPAND(FOR_EACH_HELPER(macro, __VA_ARGS__)))
#define FOR_EACH_HELPER(macro, a1, ...) \
macro(a1) \
__VA_OPT__(FOR_EACH_AGAIN PARENS (macro, __VA_ARGS__))
#define FOR_EACH_AGAIN() FOR_EACH_HELPER
FOR_EACH(F, a, b, c, 1, 2, 3) // => F(a) F(b) F(c) F(1) F(2) F(3)

Related

Ignoring MACRO argument [duplicate]

Is there some way of getting optional parameters with C++ Macros? Some sort of overloading would be nice too.
Here's one way to do it. It uses the list of arguments twice, first to form the name of the helper macro, and then to pass the arguments to that helper macro. It uses a standard trick to count the number of arguments to a macro.
enum
{
plain = 0,
bold = 1,
italic = 2
};
void PrintString(const char* message, int size, int style)
{
}
#define PRINT_STRING_1_ARGS(message) PrintString(message, 0, 0)
#define PRINT_STRING_2_ARGS(message, size) PrintString(message, size, 0)
#define PRINT_STRING_3_ARGS(message, size, style) PrintString(message, size, style)
#define GET_4TH_ARG(arg1, arg2, arg3, arg4, ...) arg4
#define PRINT_STRING_MACRO_CHOOSER(...) \
GET_4TH_ARG(__VA_ARGS__, PRINT_STRING_3_ARGS, \
PRINT_STRING_2_ARGS, PRINT_STRING_1_ARGS, )
#define PRINT_STRING(...) PRINT_STRING_MACRO_CHOOSER(__VA_ARGS__)(__VA_ARGS__)
int main(int argc, char * const argv[])
{
PRINT_STRING("Hello, World!");
PRINT_STRING("Hello, World!", 18);
PRINT_STRING("Hello, World!", 18, bold);
return 0;
}
This makes it easier for the caller of the macro, but not the writer.
With great respect to Derek Ledbetter for his answer — and with apologies for reviving an old question.
Getting an understanding of what it was doing and picking up elsewhere on the ability to preceed the __VA_ARGS__ with ## allowed me to come up with a variation...
// The multiple macros that you would need anyway [as per: Crazy Eddie]
#define XXX_0() <code for no arguments>
#define XXX_1(A) <code for one argument>
#define XXX_2(A,B) <code for two arguments>
#define XXX_3(A,B,C) <code for three arguments>
#define XXX_4(A,B,C,D) <code for four arguments>
// The interim macro that simply strips the excess and ends up with the required macro
#define XXX_X(x,A,B,C,D,FUNC, ...) FUNC
// The macro that the programmer uses
#define XXX(...) XXX_X(,##__VA_ARGS__,\
XXX_4(__VA_ARGS__),\
XXX_3(__VA_ARGS__),\
XXX_2(__VA_ARGS__),\
XXX_1(__VA_ARGS__),\
XXX_0(__VA_ARGS__)\
)
For non-experts like me who stumble upon the answer, but can't quite see how it works, I'll step through the actual processing, starting with the following code...
XXX();
XXX(1);
XXX(1,2);
XXX(1,2,3);
XXX(1,2,3,4);
XXX(1,2,3,4,5); // Not actually valid, but included to show the process
Becomes...
XXX_X(, XXX_4(), XXX_3(), XXX_2(), XXX_1(), XXX_0() );
XXX_X(, 1, XXX_4(1), XXX_3(1), XXX_2(1), XXX_1(1), XXX_0(1) );
XXX_X(, 1, 2, XXX_4(1,2), XXX_3(1,2), XXX_2(1,2), XXX_1(1,2), XXX_0(1,2) );
XXX_X(, 1, 2, 3, XXX_4(1,2,3), XXX_3(1,2,3), XXX_2(1,2,3), XXX_1(1,2,3), XXX_0(1,2,3) );
XXX_X(, 1, 2, 3, 4, XXX_4(1,2,3,4), XXX_3(1,2,3,4), XXX_2(1,2,3,4), XXX_1(1,2,3,4), XXX_0(1,2,3,4) );
XXX_X(, 1, 2, 3, 4, 5, XXX_4(1,2,3,4,5), XXX_3(1,2,3,4,5), XXX_2(1,2,3,4,5), XXX_1(1,2,3,4,5), XXX_0(1,2,3,4,5) );
Which becomes just the sixth argument...
XXX_0();
XXX_1(1);
XXX_2(1,2);
XXX_3(1,2,3);
XXX_4(1,2,3,4);
5;
PS: Remove the #define for XXX_0 to get a compile error [ie: if a no-argument option is not allowed].
PPS: Would be nice to have the invalid situations (eg: 5) be something that gives a clearer compilation error to the programmer!
PPPS: I'm not an expert, so I'm very happy to hear comments (good, bad or other)!
With greatest respect to Derek Ledbetter, David Sorkovsky, Syphorlate for their answers, together with the ingenious method to detect empty macro arguments by Jens Gustedt at
https://gustedt.wordpress.com/2010/06/08/detect-empty-macro-arguments/
finally I come out with something that incorporates all the tricks, so that the solution
Uses only standard C99 macros to achieve function overloading, no GCC/CLANG/MSVC extension involved (i.e., comma swallowing by the specific expression , ##__VA_ARGS__ for GCC/CLANG, and implicit swallowing by ##__VA_ARGS__ for MSVC). So feel free to pass the missing --std=c99 to your compiler if you wish =)
Works for zero argument, as well as unlimited number of arguments, if you expand it further to suit your needs
Works reasonably cross-platform, at least tested for
GNU/Linux + GCC (GCC 4.9.2 on CentOS 7.0 x86_64)
GNU/Linux + CLANG/LLVM, (CLANG/LLVM 3.5.0 on CentOS 7.0 x86_64)
OS X + Xcode, (XCode 6.1.1 on OS X Yosemite 10.10.1)
Windows + Visual Studio, (Visual Studio 2013 Update 4 on Windows 7 SP1 64 bits)
For the lazies, just skip to the very last of this post to copy the source. Below is the detailed explanation, which hopefully helps and inspires all people looking for the general __VA_ARGS__ solutions like me. =)
Here's how it goes. First define the user-visible overloaded "function", I named it create, and the related actual function definition realCreate, and the macro definitions with different number of arguments CREATE_2, CREATE_1, CREATE_0, as shown below:
#define create(...) MACRO_CHOOSER(__VA_ARGS__)(__VA_ARGS__)
void realCreate(int x, int y)
{
printf("(%d, %d)\n", x, y);
}
#define CREATE_2(x, y) realCreate(x, y)
#define CREATE_1(x) CREATE_2(x, 0)
#define CREATE_0() CREATE_1(0)
The MACRO_CHOOSER(__VA_ARGS__) part ultimately resolves to the macro definition names, and the second (__VA_ARGS__) part comprises their parameter lists. So a user's call to create(10) resolves to CREATE_1(10), the CREATE_1 part comes from MACRO_CHOOSER(__VA_ARGS__), and the (10) part comes from the second (__VA_ARGS__).
The MACRO_CHOOSER uses the trick that, if __VA_ARGS__ is empty, the following expression is concatenated into a valid macro call by the preprocessor:
NO_ARG_EXPANDER __VA_ARGS__ () // simply shrinks to NO_ARG_EXPANDER()
Ingeniusly, we can define this resulting macro call as
#define NO_ARG_EXPANDER() ,,CREATE_0
Note the two commas, they are explained soon. The next useful macro is
#define MACRO_CHOOSER(...) CHOOSE_FROM_ARG_COUNT(NO_ARG_EXPANDER __VA_ARGS__ ())
so the calls of
create();
create(10);
create(20, 20);
are actually expanded to
CHOOSE_FROM_ARG_COUNT(,,CREATE_0)();
CHOOSE_FROM_ARG_COUNT(NO_ARG_EXPANDER 10 ())(10);
CHOOSE_FROM_ARG_COUNT(NO_ARG_EXPANDER 20, 20 ())(20, 20);
As the macro name suggests, we are to count number of arguments later. Here comes another trick: the preprocessor only does simple text replacement. It infers the number of arguments of a macro call merely from the number of commas it sees inside the parentheses. The actual "arguments" separated by commas need not to be of valid syntax. They can be any text. That's to say, in the above example, NO_ARG_EXPANDER 10 () is counted as 1 argument for the middle call. NO_ARG_EXPANDER 20 and 20 () are counted as 2 arguments for the bottom call respectively.
If we use the following helper macros to further expand them
##define CHOOSE_FROM_ARG_COUNT(...) \
FUNC_RECOMPOSER((__VA_ARGS__, CREATE_2, CREATE_1, ))
#define FUNC_RECOMPOSER(argsWithParentheses) \
FUNC_CHOOSER argsWithParentheses
The trailing , after CREATE_1 is a work-around for GCC/CLANG, suppressing a (false positive) error saying that ISO C99 requires rest arguments to be used when passing -pedantic to your compiler. The FUNC_RECOMPOSER is a work-around for MSVC, or it can not count number of arguments (i.e., commas) inside the parentheses of macro calls correctly. The results are further resolved to
FUNC_CHOOSER (,,CREATE_0, CREATE_2, CREATE_1, )();
FUNC_CHOOSER (NO_ARG_EXPANDER 10 (), CREATE_2, CREATE_1, )(10);
FUNC_CHOOSER (NO_ARG_EXPANDER 20, 20 (), CREATE_2, CREATE_1, )(20, 20);
As the eagle-eyed you may have seen, the last only step we need is to employ a standard argument counting trick to finally pick the wanted macro version names:
#define FUNC_CHOOSER(_f1, _f2, _f3, ...) _f3
which resolves the results to
CREATE_0();
CREATE_1(10);
CREATE_2(20, 20);
and certainly gives us the desired, actual function calls:
realCreate(0, 0);
realCreate(10, 10);
realCreate(20, 20);
Putting all together, with some rearrangement of statements for better readability, the whole source of the 2-argument example is here:
#include <stdio.h>
void realCreate(int x, int y)
{
printf("(%d, %d)\n", x, y);
}
#define CREATE_2(x, y) realCreate(x, y)
#define CREATE_1(x) CREATE_2(x, 0)
#define CREATE_0() CREATE_1(0)
#define FUNC_CHOOSER(_f1, _f2, _f3, ...) _f3
#define FUNC_RECOMPOSER(argsWithParentheses) FUNC_CHOOSER argsWithParentheses
#define CHOOSE_FROM_ARG_COUNT(...) FUNC_RECOMPOSER((__VA_ARGS__, CREATE_2, CREATE_1, ))
#define NO_ARG_EXPANDER() ,,CREATE_0
#define MACRO_CHOOSER(...) CHOOSE_FROM_ARG_COUNT(NO_ARG_EXPANDER __VA_ARGS__ ())
#define create(...) MACRO_CHOOSER(__VA_ARGS__)(__VA_ARGS__)
int main()
{
create();
create(10);
create(20, 20);
//create(30, 30, 30); // Compilation error
return 0;
}
Although complicated, ugly, burdening the API developer, there comes a solution for overloading and setting optional parameters of C/C++ functions to us crazy people. The usage of the out-coming overloaded APIs become very enjoyable and pleasant. =)
If there is any further possible simplification of this approach, please do let me know at
https://github.com/jason-deng/C99FunctionOverload
Again special thanks to all of the brilliant people that inspired and led me to achieve this piece of work! =)
C++ macros haven't changed from C. Since C didn't have overloading and default arguments for functions, it certainly didn't have them for macros. So to answer your question: no, those features don't exist for macros. Your only option is to define multiple macros with different names (or not use macros at all).
As a sidenote: In C++ it's generally considered good practice to move away from macros as much as possible. If you need features like this, there's a good chance you're overusing macros.
For anyone painfully searching some VA_NARGS solution that works with Visual C++. Following macro worked for me flawlessly(also with zero parameters!) in visual c++ express 2010:
#define VA_NUM_ARGS_IMPL(_1,_2,_3,_4,_5,_6,_7,_8,_9,_10,_11,_12,_13,_14,_15,_16,_17,_18,_19,_20,_21,_22,_23,_24,N,...) N
#define VA_NUM_ARGS_IMPL_(tuple) VA_NUM_ARGS_IMPL tuple
#define VA_NARGS(...) bool(#__VA_ARGS__) ? (VA_NUM_ARGS_IMPL_((__VA_ARGS__, 24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1))) : 0
If you want a macro with optional parameters you can do:
//macro selection(vc++)
#define SELMACRO_IMPL(_1,_2,_3, N,...) N
#define SELMACRO_IMPL_(tuple) SELMACRO_IMPL tuple
#define mymacro1(var1) var1
#define mymacro2(var1,var2) var2*var1
#define mymacro3(var1,var2,var3) var1*var2*var3
#define mymacro(...) SELMACRO_IMPL_((__VA_ARGS__, mymacro3(__VA_ARGS__), mymacro2(__VA_ARGS__), mymacro1(__VA_ARGS__)))
That worked for me aswell in vc. But it doesn't work for zero parameters.
int x=99;
x=mymacro(2);//2
x=mymacro(2,2);//4
x=mymacro(2,2,2);//8
gcc/g++ supports varargs macros but I don't think this is standard, so use it at your own risk.
More concise version of Derek Ledbetter's code:
enum
{
plain = 0,
bold = 1,
italic = 2
};
void PrintString(const char* message = NULL, int size = 0, int style = 0)
{
}
#define PRINT_STRING(...) PrintString(__VA_ARGS__)
int main(int argc, char * const argv[])
{
PRINT_STRING("Hello, World!");
PRINT_STRING("Hello, World!", 18);
PRINT_STRING("Hello, World!", 18, bold);
return 0;
}
#include <stdio.h>
#define PP_NARG(...) \
PP_NARG_(__VA_ARGS__,PP_RSEQ_N())
#define PP_NARG_(...) \
PP_ARG_N(__VA_ARGS__)
#define PP_ARG_N( \
_1, _2, _3, _4, _5, _6, _7, _8, _9,_10, \
_11,_12,_13,_14,_15,_16,_17,_18,_19,_20, \
_21,_22,_23,_24,_25,_26,_27,_28,_29,_30, \
_31,_32,_33,_34,_35,_36,_37,_38,_39,_40, \
_41,_42,_43,_44,_45,_46,_47,_48,_49,_50, \
_51,_52,_53,_54,_55,_56,_57,_58,_59,_60, \
_61,_62,_63,N,...) N
#define PP_RSEQ_N() \
63,62,61,60, \
59,58,57,56,55,54,53,52,51,50, \
49,48,47,46,45,44,43,42,41,40, \
39,38,37,36,35,34,33,32,31,30, \
29,28,27,26,25,24,23,22,21,20, \
19,18,17,16,15,14,13,12,11,10, \
9,8,7,6,5,4,3,2,1,0
#define PP_CONCAT(a,b) PP_CONCAT_(a,b)
#define PP_CONCAT_(a,b) a ## b
#define THINK(...) PP_CONCAT(THINK_, PP_NARG(__VA_ARGS__))(__VA_ARGS__)
#define THINK_0() THINK_1("sector zz9 plural z alpha")
#define THINK_1(location) THINK_2(location, 42)
#define THINK_2(location,answer) THINK_3(location, answer, "deep thought")
#define THINK_3(location,answer,computer) \
printf ("The answer is %d. This was calculated by %s, and a computer to figure out what this"
" actually means will be build in %s\n", (answer), (computer), (location))
int
main (int argc, char *argv[])
{
THINK (); /* On compilers other than GCC you have to call with least one non-default argument */
}
DISCLAIMER: Mostly harmless.
As a big fan of horrible macro monsters, I wanted to expand on Jason Deng's answer and make it actually usable. (For better or worse.) The original is not very nice to use because you need to modify the big alphabet soup every time you want to make a new macro and it's even worse if you need different amount of arguments.
So I made a version with these features:
0 argument case works
1 to 16 arguments without any modifications to the messy part
Easy to write more macro functions
Tested in gcc 10, clang 9, Visual Studio 2017
Currently I just made 16 argument maximum, but if you need more (really now? you're just getting silly...) you can edit FUNC_CHOOSER and CHOOSE_FROM_ARG_COUNT, then add some commas to NO_ARG_EXPANDER.
Please see Jason Deng's excellent answer for more details on the implementation, but I'll just put the code here:
#include <stdio.h>
void realCreate(int x, int y)
{
printf("(%d, %d)\n", x, y);
}
// This part you put in some library header:
#define FUNC_CHOOSER(_f0, _f1, _f2, _f3, _f4, _f5, _f6, _f7, _f8, _f9, _f10, _f11, _f12, _f13, _f14, _f15, _f16, ...) _f16
#define FUNC_RECOMPOSER(argsWithParentheses) FUNC_CHOOSER argsWithParentheses
#define CHOOSE_FROM_ARG_COUNT(F, ...) FUNC_RECOMPOSER((__VA_ARGS__, \
F##_16, F##_15, F##_14, F##_13, F##_12, F##_11, F##_10, F##_9, F##_8,\
F##_7, F##_6, F##_5, F##_4, F##_3, F##_2, F##_1, ))
#define NO_ARG_EXPANDER(FUNC) ,,,,,,,,,,,,,,,,FUNC ## _0
#define MACRO_CHOOSER(FUNC, ...) CHOOSE_FROM_ARG_COUNT(FUNC, NO_ARG_EXPANDER __VA_ARGS__ (FUNC))
#define MULTI_MACRO(FUNC, ...) MACRO_CHOOSER(FUNC, __VA_ARGS__)(__VA_ARGS__)
// When you need to make a macro with default arguments, use this:
#define create(...) MULTI_MACRO(CREATE, __VA_ARGS__)
#define CREATE_0() CREATE_1(0)
#define CREATE_1(x) CREATE_2(x, 0)
#define CREATE_2(x, y) \
do { \
/* put whatever code you want in the last macro */ \
realCreate(x, y); \
} while(0)
int main()
{
create();
create(10);
create(20, 20);
//create(30, 30, 30); // Compilation error
return 0;
}
That's not really what the preprocessor is designed for.
That said, if you want to enter into the area of seriously challenging macro programming with a modicum of readability, you should take a look at the Boost preprocessor library. After all, it wouldn't be C++ if there weren't three completely Turing compatible levels of programming (preprocessor, template metaprogramming, and base level C++)!
#define MY_MACRO_3(X,Y,Z) ...
#define MY_MACRO_2(X,Y) MY_MACRO(X,Y,5)
#define MY_MACRO_1(X) MY_MACRO(X,42,5)
You know at the point of call how many args you're going to pass in so there's really no need for overloading.
You can use BOOST_PP_OVERLOAD from a boost library.
Example from official boost doc:
#include <boost/preprocessor/facilities/overload.hpp>
#include <boost/preprocessor/cat.hpp>
#include <boost/preprocessor/facilities/empty.hpp>
#include <boost/preprocessor/arithmetic/add.hpp>
#define MACRO_1(number) MACRO_2(number,10)
#define MACRO_2(number1,number2) BOOST_PP_ADD(number1,number2)
#if !BOOST_PP_VARIADICS_MSVC
#define MACRO_ADD_NUMBERS(...) BOOST_PP_OVERLOAD(MACRO_,__VA_ARGS__)(__VA_ARGS__)
#else
// or for Visual C++
#define MACRO_ADD_NUMBERS(...) \
BOOST_PP_CAT(BOOST_PP_OVERLOAD(MACRO_,__VA_ARGS__)(__VA_ARGS__),BOOST_PP_EMPTY())
#endif
MACRO_ADD_NUMBERS(5) // output is 15
MACRO_ADD_NUMBERS(3,6) // output is 9
Depending on what you need, you could do it with var args with macros. Now, optional parameters or macro overloading, there is no such thing.
Not directly answering the question, but using the same trick as David Sorkovsky answer and giving a clear example of how to build complex macros.
Just compile this with g++ -E test.cpp -o test && cat test:
// #define GET_FIRST_ARG_0_ARGS(default) (default)
// #define GET_FIRST_ARG_1_ARGS(default, a) (a)
// #define GET_FIRST_ARG_2_ARGS(default, a, b) (a)
// #define GET_FIRST_ARG_3_ARGS(default, a, b, c) (a)
// #define GET_FIRST_ARG_4_ARGS(default, a, b, c, d) (a)
#define GET_FIRST_ARG_MACROS(default, a, b, c, d, macro, ...) macro
#define GET_FIRST_ARG(default, ...) GET_FIRST_ARG_MACROS( \
,##__VA_ARGS__, \
GET_FIRST_ARG_4_ARGS(default, __VA_ARGS__), \
GET_FIRST_ARG_3_ARGS(default, __VA_ARGS__), \
GET_FIRST_ARG_2_ARGS(default, __VA_ARGS__), \
GET_FIRST_ARG_1_ARGS(default, __VA_ARGS__), \
GET_FIRST_ARG_0_ARGS(default, ##__VA_ARGS__), \
)
"0,"; GET_FIRST_ARG(0);
"0,1"; GET_FIRST_ARG(0,1);
"0,1,2"; GET_FIRST_ARG(0,1,2);
"0,1,2,3"; GET_FIRST_ARG(0,1,2,3);
"0,1,2,3,4"; GET_FIRST_ARG(0,1,2,3,4);
To see the output:
# 1 "test.cpp"
# 1 "<built-in>"
# 1 "<command-line>"
# 1 "/usr/x86_64-linux-gnu/include/stdc-predef.h" 1 3
# 1 "<command-line>" 2
# 1 "test.cpp"
# 16 "test.cpp"
"0,"; GET_FIRST_ARG_0_ARGS(0);
"0,1"; GET_FIRST_ARG_1_ARGS(0, 1);
"0,1,2"; GET_FIRST_ARG_2_ARGS(0, 1,2);
"0,1,2,3"; GET_FIRST_ARG_3_ARGS(0, 1,2,3);
"0,1,2,3,4"; GET_FIRST_ARG_4_ARGS(0, 1,2,3,4);
Now, a full working program would be:
#include <iostream>
#define GET_FIRST_ARG_0_ARGS(default) (default)
#define GET_FIRST_ARG_1_ARGS(default, a) (a)
#define GET_FIRST_ARG_2_ARGS(default, a, b) (a)
#define GET_FIRST_ARG_3_ARGS(default, a, b, c) (a)
#define GET_FIRST_ARG_4_ARGS(default, a, b, c, d) (a)
#define GET_FIRST_ARG_MACROS(default, a, b, c, d, macro, ...) macro
#define GET_FIRST_ARG(default, ...) GET_FIRST_ARG_MACROS( \
,##__VA_ARGS__, \
GET_FIRST_ARG_4_ARGS(default, __VA_ARGS__), \
GET_FIRST_ARG_3_ARGS(default, __VA_ARGS__), \
GET_FIRST_ARG_2_ARGS(default, __VA_ARGS__), \
GET_FIRST_ARG_1_ARGS(default, __VA_ARGS__), \
GET_FIRST_ARG_0_ARGS(default, ##__VA_ARGS__), \
)
int main(int argc, char const *argv[]) {
"0,"; GET_FIRST_ARG(0);
"0,1"; GET_FIRST_ARG(0,1);
"0,1,2"; GET_FIRST_ARG(0,1,2);
"0,1,2,3"; GET_FIRST_ARG(0,1,2,3);
"0,1,2,3,4"; GET_FIRST_ARG(0,1,2,3,4);
std::cerr << "0, == " << GET_FIRST_ARG(0) << std::endl;
std::cerr << "0,1 == " << GET_FIRST_ARG(0,1) << std::endl;
std::cerr << "0,1,2 == " << GET_FIRST_ARG(0,1,2) << std::endl;
std::cerr << "0,1,2,3 == " << GET_FIRST_ARG(0,1,2,3) << std::endl;
std::cerr << "0,1,2,3,4 == " << GET_FIRST_ARG(0,1,2,3,4) << std::endl;
return 0;
}
Which would output the following by being compiled with g++ test.cpp -o test && ./test:
0, == 0
0,1 == 1
0,1,2 == 1
0,1,2,3 == 1
0,1,2,3,4 == 1
Note: It is important to use () around the macro contents as #define GET_FIRST_ARG_1_ARGS(default, a) (a) to not break in ambiguous expressions when a is just not a integer.
Extra macro for second argument:
#define GET_SECOND_ARG_0_ARGS(default) (default)
#define GET_SECOND_ARG_1_ARGS(default, a) (default)
#define GET_SECOND_ARG_2_ARGS(default, a, b) (b)
#define GET_SECOND_ARG_3_ARGS(default, a, b, c) (b)
#define GET_SECOND_ARG_4_ARGS(default, a, b, c, d) (b)
#define GET_SECOND_ARG_MACROS(default, a, b, c, d, macro, ...) macro
#define GET_SECOND_ARG(default, ...) GET_SECOND_ARG_MACROS( \
,##__VA_ARGS__, \
GET_SECOND_ARG_4_ARGS(default, __VA_ARGS__), \
GET_SECOND_ARG_3_ARGS(default, __VA_ARGS__), \
GET_SECOND_ARG_2_ARGS(default, __VA_ARGS__), \
GET_SECOND_ARG_1_ARGS(default, __VA_ARGS__), \
GET_SECOND_ARG_0_ARGS(default, ##__VA_ARGS__), \
)
None of the above examples (from Derek Ledbetter, David Sorkovsky, and Joe D) to count arguments with macros worked for me using Microsoft VCC 10. The __VA_ARGS__ argument is always considered as a single argument (token-izing it with ## or not), so the argument shifting in which those examples rely doesn't work.
So, short answer, as stated by many others above: no, you can't overload macros or use optional arguments on them.

C++: Process each variadic argument in Visual Studio

Trying to get this working in VS2013 (see Variadic macro trick and C++ preprocessor __VA_ARGS__ number of arguments).
It's not a duplicate afaik (versions posted elsewhere only work with GCC).
Any ideas what's wrong with this? I'm almost there...
#define _EXPAND(x) x
#define _VA_NARGS_IMPL(_1_, _2_, _3_, _4_, _5_, N, ...) N
#define _VA_NARGS_IMPL2(...) _EXPAND(_VA_NARGS_IMPL(__VA_ARGS__, 4, 3, 2, 1, 0))
#define _PUSH_X_FRONT(...) X, __VA_ARGS__
/*
Returns the number of arguments specified.
#ifndef _MSC_VER
#define VA_NARGS(...) _VA_NARGS_IMPL2(X,##__VA_ARGS__)
*/
#define VA_NARGS(...) _VA_NARGS_IMPL2(_PUSH_X_FRONT(__VA_ARGS__))
// testing is gewd
static_assert(VA_NARGS() == 0, "VA_NARGS() failed for 0 arguments");
static_assert(VA_NARGS(one, two, three, four) == 4, "VA_NARGS() failed for 4 arguments");
#define _VARARG_IMPL2(N, Macro, ...) Macro##N(__VA_ARGS__)
#define _VARARG_IMPL(N, Macro, ...) _VARARG_IMPL2(N, Macro, __VA_ARGS__)
// Helper function for variadic macros with per-argument processing.
#define VARARG(Macro, ...) _VARARG_IMPL(VA_NARGS(__VA_ARGS__), Macro, __VA_ARGS__)
#define _Quote1(x) #x
#define _Quote2(x, ...) #x, _Quote1(__VA_ARGS__)
#define _Quote3(x, ...) #x, _Quote2(__VA_ARGS__)
#define _Quote4(x, ...) #x, _Quote3(__VA_ARGS__)
// Treat each argument as a string literal, encompassing in quotes.
#define Quote(...) VARARG(_Quote, __VA_ARGS__)
Question:
constexpr char *a[] = { Quote(a, b) };
// WHY does the above produce {"a, b"} with msvc?
// The following produces {"a", "b"} as expected
constexpr char *a[] = { _Quote2(s, c) };
It is difficult to make a real variadic macro to work in VS2013. I had something done to expand a macro to be interpreted on it's own as a new macro. The key is to make multiple level macros. It is a lot to code but for given sample it will work.
#define InitialMacro (argument1, argument2) \
DetailedMacro(argument1, argument2, argument1##_description, argument2##_description)
#define DetailedMacro (argument1, argument2, argument3, argument4) \
L#argument1 \
L#argument2 \
L#argument3 \
L#argument4
The ideea presented here is to implement enough macros to cover all your requirement in the number of parameters nedeed. Also you can forward/update macro with aditional items on the way.
Basically first macro in this example append to the second and third transmitted parameters the suffix _description resulting in another macro that will get interpreted as a macro and it will be expanded in DetailedMacro.
You could also take a look at this: msvc variadic macro expansion

Can we have recursive macros?

I want to know if we can have recursive macros in C/C++? If yes, please provide a sample example.
Second thing: why am I not able to execute the below code? What is the mistake I am doing? Is it because of recursive macros?
# define pr(n) ((n==1)? 1 : pr(n-1))
void main ()
{
int a=5;
cout<<"result: "<< pr(5) <<endl;
getch();
}
Macros don't directly expand recursively, but there are workarounds. When the preprocessor scans and expands pr(5):
pr(5)
^
it creates a disabling context, so that when it sees pr again:
((5==1)? 1 : pr(5-1))
^
it becomes painted blue, and can no longer expand, no matter what we try. But we can prevent our macro from becoming painted blue by using deferred expressions and some indirection:
# define EMPTY(...)
# define DEFER(...) __VA_ARGS__ EMPTY()
# define OBSTRUCT(...) __VA_ARGS__ DEFER(EMPTY)()
# define EXPAND(...) __VA_ARGS__
# define pr_id() pr
# define pr(n) ((n==1)? 1 : DEFER(pr_id)()(n-1))
So now it will expand like this:
pr(5) // Expands to ((5==1)? 1 : pr_id ()(5 -1))
Which is perfect, because pr was never painted blue. We just need to apply another scan to make it expand further:
EXPAND(pr(5)) // Expands to ((5==1)? 1 : ((5 -1==1)? 1 : pr_id ()(5 -1 -1)))
We can apply two scans to make it expand further:
EXPAND(EXPAND(pr(5))) // Expands to ((5==1)? 1 : ((5 -1==1)? 1 : ((5 -1 -1==1)? 1 : pr_id ()(5 -1 -1 -1))))
However, since there is no termination condition, we can never apply enough scans. I'm not sure what you want to accomplish, but if you are curious on how to create recursive macros, here is an example of how to create a recursive repeat macro.
First a macro to apply a lot of scans:
#define EVAL(...) EVAL1(EVAL1(EVAL1(__VA_ARGS__)))
#define EVAL1(...) EVAL2(EVAL2(EVAL2(__VA_ARGS__)))
#define EVAL2(...) EVAL3(EVAL3(EVAL3(__VA_ARGS__)))
#define EVAL3(...) EVAL4(EVAL4(EVAL4(__VA_ARGS__)))
#define EVAL4(...) EVAL5(EVAL5(EVAL5(__VA_ARGS__)))
#define EVAL5(...) __VA_ARGS__
Next, a concat macro which is useful for pattern matching:
#define CAT(a, ...) PRIMITIVE_CAT(a, __VA_ARGS__)
#define PRIMITIVE_CAT(a, ...) a ## __VA_ARGS__
Increment and decrement counters:
#define INC(x) PRIMITIVE_CAT(INC_, x)
#define INC_0 1
#define INC_1 2
#define INC_2 3
#define INC_3 4
#define INC_4 5
#define INC_5 6
#define INC_6 7
#define INC_7 8
#define INC_8 9
#define INC_9 9
#define DEC(x) PRIMITIVE_CAT(DEC_, x)
#define DEC_0 0
#define DEC_1 0
#define DEC_2 1
#define DEC_3 2
#define DEC_4 3
#define DEC_5 4
#define DEC_6 5
#define DEC_7 6
#define DEC_8 7
#define DEC_9 8
Some macros useful for conditionals:
#define CHECK_N(x, n, ...) n
#define CHECK(...) CHECK_N(__VA_ARGS__, 0,)
#define NOT(x) CHECK(PRIMITIVE_CAT(NOT_, x))
#define NOT_0 ~, 1,
#define COMPL(b) PRIMITIVE_CAT(COMPL_, b)
#define COMPL_0 1
#define COMPL_1 0
#define BOOL(x) COMPL(NOT(x))
#define IIF(c) PRIMITIVE_CAT(IIF_, c)
#define IIF_0(t, ...) __VA_ARGS__
#define IIF_1(t, ...) t
#define IF(c) IIF(BOOL(c))
#define EAT(...)
#define EXPAND(...) __VA_ARGS__
#define WHEN(c) IF(c)(EXPAND, EAT)
Putting it all together we can create a repeat macro:
#define REPEAT(count, macro, ...) \
WHEN(count) \
( \
OBSTRUCT(REPEAT_INDIRECT) () \
( \
DEC(count), macro, __VA_ARGS__ \
) \
OBSTRUCT(macro) \
( \
DEC(count), __VA_ARGS__ \
) \
)
#define REPEAT_INDIRECT() REPEAT
//An example of using this macro
#define M(i, _) i
EVAL(REPEAT(8, M, ~)) // 0 1 2 3 4 5 6 7
So, yes with some workarounds you can have recursive macros in C/C++.
Your compiler probably provides an option to only pre-process, not actually compile. This is useful if you are trying to find a problem in a macro. For example using g++ -E:
> g++ -E recursiveMacro.c
# 1 "recursiveMacro.c"
# 1 "<built-in>"
# 1 "<command line>"
# 1 "recursiveMacro.c"
void main ()
{
int a=5;
cout<<"result: "<< ((5==1)? 1 : pr(5 -1)) <<endl;
getch();
}
As you can see, it is not recursive. pr(x) is only replaced once during pre-processing. The important thing to remember is that all the pre-processor does is blindly replace one text string with another, it doesn't actually evaluate expressions like (x == 1).
The reason your code will not compile is that pr(5 -1) was not replaced by the pre-processor, so it ends up in the source as a call to an undefined function.
You're not supposed to have recursive macros in C or C++.
The relevant language from the C++ standard, section 16.3.4 paragraph 2:
If the name of the macro being replaced is found during this scan of the replacement list (not including the rest of the source file’s preprocessing tokens), it is not replaced. Furthermore, if any nested replacements encounter the name of the macro being replaced, it is not replaced. These nonreplaced macro name preprocessing tokens are no longer available for further replacement even if they are later (re)examined in contexts in which that macro name preprocessing token would otherwise have been replaced.
There's some wiggle room in this language. With multiple macros that invoke one another, there's a grey area where that wording doesn't quite say what should be done. There is an active issue against the C++ standard regarding this language lawyer problem; see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#268 .
Ignoring that language lawyer issue, every compiler vendor understands the intent:
Recursive macros are not allowed in C or in C++.
Most likely you are not able to execute it because you can't compile it. Also if it would compile correctly, it would always return 1. Did you mean (n==1)? 1 : n * pr(n-1).
Macros can't be recursive. According to chapter 16.3.4.2 (thanks Loki Astari), if the current macro is found in the replacement list, it is left as is, thus your pr in the definition will not be changed:
If the name of the macro being replaced is found during this scan of
the replacement list (not including the rest of the source file's pre-
processing tokens), it is not replaced. Further, if any nested
replacements encounter the name of the macro being replaced, it is not
replaced. These nonreplaced macro name preprocessing tokens are no
longer available for further replacement even if they are later
(re)examined in contexts in which that macro name preprocessing token
would otherwise have been replaced.
Your call:
cout<<"result: "<< pr(5) <<endl;
was converted by preprocessor into:
cout<<"result: "<< (5==1)? 1 : pr(5-1) <<endl;
During this, the definition of pr macro is 'lost', and compiler shows an error like "‘pr’ was not declared in this scope (fact)" because there is no function named pr.
Use of macros is not encouraged in C++. Why don't you just write a function?
In this case you could even write a template function so it will be resolved in compile time, and will behave as a constant value:
template <int n>
int pr() { pr<n-1>(); }
template <>
int pr<1>() { return 1; }
TLDR.
True recursion itself is easy done by duplicating macros in two names, with each referencing other. But usefulness of this feature is doubtful, because this requires nested conditional macro to make recursion finite. All conditional macro-operators are essentially multiline, because #else and #endif lines must be separate lines (serious cpp limitation), which means, that conditional macro-definitions are impossible by design (thus, recusion itself would be useless).
You can't have recursive macros in C or C++.

Macro increase value and then concatenate

I want to create a recursive Macro the will create the "next" class.
Example:
#define PRINTME(indexNum) class m_##(indexNum+1) { }
The indexNum + 1 is evaluated as an int, and won't concatenate to the class name.
How can I cause the compiler to evaluate that, before concatenating?
If you want to generate unique class names every time the PRINTME is invoked then, following is one way:
#define CONCATE1(X,Y) X##Y
#define CONCATE(X,Y) CONCATE1(X,Y)
#define PRINTME class CONCATE(m_,__COUNTER__) {}
__COUNTER__ is an extension in gcc and I am not sure if it's present in other compilers. It's guaranteed that compiler will add 1 every time this macro is invoked.
(In this case, you cannot use __LINE__ or __FILE__ effectively.)
Demo.
The simple answer is that you can't. The preprocessor generally deals in text and tokens; the only place arithmetic is carried out in in #if and #elif directives.
Also, macro expansion isn't recursive. During expansion, the macro being expanded is disabled, and is not available for further substitution.
Well it is doable, based on your motivation and ability to endure ugly code. First off define increment macro:
#define PLUS_ONE(x) PLUS_ONE_##x
#define PLUS_ONE_0 1
#define PLUS_ONE_1 2
#define PLUS_ONE_2 3
#define PLUS_ONE_3 4
#define PLUS_ONE_4 5
#define PLUS_ONE_5 6
#define PLUS_ONE_7 8
#define PLUS_ONE_8 9
#define PLUS_ONE_9 10
// and so on...
You can't just use PLUS_ONE(x) in concatenation operation, since preprocessor won't expand it. There is a way, however - you can abuse the fact that the preprocessor expands variadic arguments.
// pass to variadic macro to expand an argument
#define PRINTME(indexNum) PRINTME_PRIMITIVE(PLUS_ONE(indexNum))
// do concatenation
#define PRINTME_PRIMITIVE(...) class m_ ## __VA_ARGS__ { }
Done!
PRINTME(1); // expands to class m_2 { };
Have you considered using templates instead?

Passing variable name as string to function with default parameters

Let’s say there is a debugging function, simplified here as:
void DumpString(char* var, char* varname) {
printf("%s : '%s'\n", varname, var);
}
char str[10]="foobar";
DumpString(str, "str");
> str : foobar
Let’s make it easier by removing the unnecessarily extraneous requirement of passing the variable twice, once in quotes:
#define VARASSTR(v) #v
void DumpString(char* var) {
printf("%s : '%s'\n", VARASSTR(var), var);
}
char str[10]="foobar";
DumpString(str);
> var : foobar
Oops! It uses the local variable name instead of the one passed in. Let’s try a different (and less ideal) tack:
#define DumpStr(v) DumpString(v, #v)
void DumpString(char* var, char* varname) {
printf("%s : '%s'\n", varname, var);
}
char str[10]="foobar";
DumpStr(str);
> str : foobar
Great it works. But what if the function was a little more complicated:
void DumpString(char* var, char* varname, int optionalvar=0) {
printf("%s : '%s'\n", varname, var);
printf("blah: %d", optionalvar);
}
It is not possible to overload a macro, so DumpStr won’t work, and we have already ruled out the version with VARASSTR.
How can this be handled (without resorting to multiple similarly, but differently-named functions/macros)?
This is non-standard, but works as an extension in GNU C:
#define DumpStr(v, ...) DumpString(v, #v, ##__VA_ARGS__)
In GNU C, you can pass no arguments to a variadic macro, and the "token pasting operator" ## when applied between a comma and an empty variadic argument list produces nothing (so the trailing comma is suppressed).
In Visual C++, I believe the token pasting operator ## is unnecessary (and will probably break the macro), as Visual C++ automatically suppresses a trailing comma if it appears before an empty variadic argument list.
Note that the only thing that makes this nonstandard is the desire to sometimes pass an empty argument list. Variadic macros are standardized in both C99 and C++11.
Edit: And here's an example that doesn't use non-standard features. You can see why some people really, really wish this sort of thing was addressed in the standard:
#define DUMPSTR_1(v) DumpString(v, #v)
#define DUMPSTR_2(v, opt) DumpString(v, #v, opt)
#define DUMPSTR_NARG(...) DUMPSTR_ARG_N(__VA_ARGS__, 4, 3, 2, 1, 0)
#define DUMPSTR_ARG_N(_1, _2, _3, _4, n, ...) n
#define DUMPSTR_NC(f, ...) f(__VA_ARGS__)
#define DUMPSTR_NB(nargs, ...) DUMPSTR_NC(DUMPSTR_ ## nargs, __VA_ARGS__)
#define DUMPSTR_NA(nargs, ...) DUMPSTR_NB(nargs, __VA_ARGS__)
#define DumpStr(...) DUMPSTR_NA(DUMPSTR_NARG(__VA_ARGS__), __VA_ARGS__)
There's probably a few cleaner ways to do this. But not that many.
Edit 2: And here's yet another example that doesn't use non-standard features, courtesy of R..
#define STRINGIFY_IMPL(s) #s
#define STRINGIFY(s) STRINGIFY_IMPL(s)
#define ARG1_IMPL(a, ...) a
#define ARG1(...) ARG1_IMPL(__VA_ARGS__, 0)
#define DumpStr(...) DumpString(STRINGIFY(ARG1(__VA_ARGS__)), __VA_ARGS__)
Note that this requires the argument order of the DumpString to be changed so that the stringified function name is the first argument.