Spark Streaming with S3 vs Kinesis - amazon-web-services

I'm writing a Spark Streaming application where the input data is put into an S3 bucket in small batches (using Database Migration Service - DMS). The Spark application is the only consumer. I'm considering two possible architectures:
Have Spark Streaming watch an S3 prefix and pick up new objects as they
come in
Stream data from S3 to a Kinesis stream (through a Lambda function triggered as new S3 objects are created by DMS) and use the stream as input for the Spark application.
While the second solution will work, the first solution is simpler. But are there any pitfalls? Looking at this guide, I'm concerned about two specific points:
The more files under a directory, the longer it will take to scan for changes — even if no files have been modified.
We will be keeping the S3 data indefinitely. So the number of objects under the prefix being monitored is going to increase very quickly.
“Full” Filesystems such as HDFS tend to set the modification time on their files as soon as the output stream is created. When a file is opened, even before data has been completely written, it may be included in the DStream - after which updates to the file within the same window will be ignored. That is: changes may be missed, and data omitted from the stream.
I'm not sure if this applies to S3, since to my understanding objects are created atomically and cannot be updated afterwards as is the case with ordinary files.

I posted this to Spark mailing list and got a good answer from Steve Loughran.
Theres a slightly-more-optimised streaming source for cloud streams
here
https://github.com/hortonworks-spark/cloud-integration/blob/master/spark-cloud-integration/src/main/scala/org/apache/spark/streaming/hortonworks/CloudInputDStream.scala
Even so, the cost of scanning S3 is one LIST request per 5000 objects;
I'll leave it to you to work out how many there will be in your
application —and how much it will cost. And of course, the more LIST
calls tehre are, the longer things take, the bigger your window needs
to be.
“Full” Filesystems such as HDFS tend to set the modification time on their files as soon as the output stream is created. When a file is
opened, even before data has been completely written, it may be
included in the DStream - after which updates to the file within the
same window will be ignored. That is: changes may be missed, and data
omitted from the stream.
Objects written to S3 are't visible until the upload completes, in an
atomic operation. You can write in place and not worry.
The timestamp on S3 artifacts comes from the PUT tim. On multipart
uploads of many MB/many GB uploads, thats when the first post to
initiate the MPU is kicked off. So if the upload starts in time window
t1 and completed in window t2, the object won't be visible until t2,
but the timestamp will be of t1. Bear that in mind.
The lambda callback probably does have better scalability and
resilience; not tried it myself.
Since the number of objects in my scenario is going to be much larger than 5000 and will continue to grow very quickly, S3 to Spark doesn't seem to be a feasible option. I did consider moving/renaming processed objects in Spark Streaming, but the Spark Streaming application code seems to only receive DStreams and no information about which S3 object the data is coming from. So I'm going to go with the Lambda and Kinesis option.

Related

Best strategy to archive specific records from RDS to a cheaper storage in AWS

I have the following requirements:
For every deleted record in RDS we need to archive it into somewhere cheaper on AWS.
Reduce storage cost
Not using Glacier
Context oriented (e.g. a file per table)
re-import is not a requirement
I'm not an experienced user with AWS, so I'm still a bit lost among the amount of options it has to offer and I'd like to know if you have more ideas to help me clear it out.
Initial thoughts:
The microservice that deletes the record, might send it to a broker (RabbitMQ for e.g.) and another microservice (let's call it archiver) will listen to it, write into a file, zip and send to S3. This approach has some technical challenges though: in order to make sense create big files, I need to wait the queue to growth a bit, wrap it into a stream and zip inside S3. The transaction control is very weak as well, since file writing and ack on messages are signal based i.e. I'll remove the messages from the broker just after the file is created.
Add a new column to the "archiveble" tables as "deleted (bool)" and run a separate job fetching only those records and saving them into S3. Discarded they don't want the new microservice with access to other's databases.
Following the same approach as in the first item, but instead of save into S3, save into a cheaper database. SimpleDB?
option 1, but instead of rabbitmq, write it to a kinesis firehose and direct that to an s3 location - it doesn't get much cheaper or easier than that.

"Realtime" syncing of large numbers of log files to S3

I have a large number of logfiles from a service that I need to regularly run analysis on via EMR/Hive. There are thousands of new files per day, and they can technically come out of order relative to the file name (e.g. a batch of files comes a week after the date in the file name).
I did an initial load of the files via Snowball, then set up a script that syncs the entire directory tree once per day using the 'aws s3 sync' cli command. This is good enough for now, but I will need a more realtime solution in the near future. The issue with this approach is that it takes a very long time, on the order of 30 minutes per day. And using a ton of bandwidth all at once! I assume this is because it needs to scan the entire directory tree to determine what files are new, then sends them all at once.
A realtime solution would be beneficial in 2 ways. One, I can get the analysis I need without waiting up to a day. Two, the network use would be lower and more spread out, instead of spiking once a day.
It's clear that 'aws s3 sync' isn't the right tool here. Has anyone dealt with a similar situation?
One potential solution could be:
Set up a service on the log-file side that continuously syncs (or aws s3 cp) new files based on the modified date. But wouldn't that need to scan the whole directory tree on the log server as well?
For reference, the log-file directory structure is like:
/var/log/files/done/{year}/{month}/{day}/{source}-{hour}.txt
There is also a /var/log/files/processing/ directory for files being written to.
Any advice would be appreciated. Thanks!
You could have a Lambda function triggered automatically as a new object is saved on your S3 bucket. Check Using AWS Lambda with Amazon S3 for details. The event passed to the Lambda function will contain the file name, allowing you to target only the new files in the syncing process.
If you'd like wait until you have, say 1,000 files, in order to sync in batch, you could use AWS SQS and the following workflow (using 2 Lambda functions, 1 CloudWatch rule and 1 SQS queue):
S3 invokes Lambda whenever there's a new file to sync
Lambda stores the filename in SQS
CloudWatch triggers another Lambda function every X minutes/hours to check how many files are there in SQS for syncing. Once there's 1,000 or more, it retrieves those filenames and run the syncing process.
Keep in mind that Lambda has a hard timeout of 5 minutes. If you sync job takes too long, you'll need to break it in smaller chunks.
You could set the bucket up to log HTTP requests to a separate bucket, then parse the log to look for newly created files and their paths. One troublespot, as well as PUT requests, you have to look for the multipart upload ops which are a sequence of POSTs. Best to log for a few days to see what gets created before putting any effort in to this approach

How exactly does Spark on EMR read from S3?

Just a few simple questions on the actual mechanism behind reading a file on s3 into an EMR cluster with Spark:
Does spark.read.format("com.databricks.spark.csv").load("s3://my/dataset/").where($"state" === "WA") communicate the whole dataset into the EMR cluster's local HDFS and then perform the filter after? Or does it filter records when bringing the dataset into the cluster? Or does it do neither? If this is the case, what's actually happening?
The official documentation lacks an explanation of what's going on (or if it does have an explanation, I cannot find it). Can someone explain, or link to a resource with such an explanation?
I can't speak for the closed source AWS one, but the ASF s3a: connector does its work in S3AInputStream
Reading data is via HTTPS, which has slow startup time, and if you need to stop the download before the GET is finished, forces you to abort the TCP stream and create a new one.
To keep this cost down the code has features like
Lazy seek: when you do a seek(), it updates its internal pointer but doesn't issue a new GET until you actually do a read.
chooses whether to abort() vs read to end on a GET based on how much is left
Has 3 IO modes:
"sequential", GET content range is from (pos, EOF). Best bandwidth, worst performance on seek. For: CSV, .gz, ...
"random": small GETs, min(block-size, length(read)). Best for columnar data (ORC, Parquet) compressed in a seekable format (snappy)
"adaptive" (new last week, based on some work from microsoft on the Azure WASB connector). Starts off sequential, as soon as you do a backwards seek switches to random IO
Code is all there, improvements welcome. The current perf work (especially random IO) based on TPC-DS benchmarking of ORC data on Hive, BTW)
Assuming you are reading CSV and filtering there, it'll be reading the entire CSV file and filtering. This is horribly inefficient for large files. Best to import into a column format and use predicate pushdown for the layers below to seek round the file for filtering and reading columns
Loading data from S3 (s3://-) usually goes via EMRFS in EMR
EMRFS directly access S3 (not via HDFS)
When Spark loads data from S3, they are stored as DataSet in the cluster according to StorageLevel(memory or disk)
Finally, Spark filters loaded data
When you specify files located on S3 they are read into the cluster. The processing happens on the cluster nodes.
However, this may be changing with S3 Select, which is now in preview.

How to use S3 and EBS in tandem for cost effective analytics on AWS?

I receive very large (5TB) .csv files from my clients on S3 buckets. I have to process these files, add columns to them and store them back.
I might need to work with the files in the same way as I increase the number of features for future improved models.
Clearly because S3 stores data as objects, every time I make a change, I have to read and write 5TB of data.
What is the best approach I can take to process these data cost effectively and promptly:
Store a 5TB file on S3 as object, every time read the object, do
the processing and save the result back to S3
Store the 5TB on S3 as object, read the object, chunk it to smaller objects and save them back to S3 as multiple objects so in future just work with the chunks I am interested in
Save every thing on EBS from start, mount it to the EC2 and do the processing
Thank you
First, a warning -- the maximum size of an object in Amazon S3 is 5TB. If you are going to add information that results in a larger object, then you will likely hit that limit.
The smarter way of processing this amount of data is to do it in parallel and preferably in multiple, smaller files rather than a single 5TB file.
Amazon EMR (effectively, a managed Hadoop environment) is excellent for performing distributed operations across large data sets. It can process data from many files in parallel and can compress/decompress data on-the-fly. It's complex to learn, but very efficient and capable.
If you are sticking with your current method of processing the data, I would recommend:
If your application can read directly from S3, use that as the source. Otherwise, copy the file(s) to EBS.
Process the data
Store the output locally in EBS, preferably in smaller files (GBs rather than TBs)
Copy the files to S3 (or keep them on EBS if that meets your needs)

Upload files to S3 Bucket directly from a url

We need to move our video file storage to AWS S3. The old location is a cdn, so I only have url for each file (1000+ files, > 1TB total file size). Running an upload tool directly on the storage server is not an option.
I already created a tool that downloads the file, uploads file to S3 bucket and updates the DB records with new HTTP url and works perfectly except it takes forever.
Downloading the file takes some time (considering each file close to a gigabyte) and uploading it takes longer.
Is it possible to upload the video file directly from cdn to S3, so I could reduce processing time into half? Something like reading chunk of file and then putting it to S3 while reading next chunk.
Currently I use System.Net.WebClient to download the file and AWSSDK to upload.
PS: I have no problem with internet speed, I run the app on a server with 1GBit network connection.
No, there isn't a way to direct S3 to fetch a resource, on your behalf, from a non-S3 URL and save it in a bucket.
The only "fetch"-like operation S3 supports is the PUT/COPY operation, where S3 supports fetching an object from one bucket and storing it in another bucket (or the same bucket), even across regions, even across accounts, as long as you have a user with sufficient permission for the necessary operations on both ends of the transaction. In that one case, S3 handles all the data transfer, internally.
Otherwise, the only way to take a remote object and store it in S3 is to download the resource and then upload it to S3 -- however, there's nothing preventing you from doing both things at the same time.
To do that, you'll need to write some code, using presumably either asynchronous I/O or threads, so that you can simultaneously be receiving a stream of downloaded data and uploading it, probably in symmetric chunks, using S3's Multipart Upload capability, which allows you to write individual chunks (minimum 5MB each) which, with a final request, S3 will validate and consolidate into a single object of up to 5TB. Multipart upload supports parallel upload of chunks, and allows your code to retry any failed chunks without restarting the whole job, since the individual chunks don't have to be uploaded or received by S3 in linear order.
If the origin supports HTTP range requests, you wouldn't necessarily even need to receive a "stream," you could discover the size of the object and then GET chunks by range and multipart-upload them. Do this operation with threads or asynch I/O handling multiple ranges in parallel, and you will likely be able to copy an entire object faster than you can download it in a single monolithic download, depending on the factors limiting your download speed.
I've achieved aggregate speeds in the range of 45 to 75 Mbits/sec while uploading multi-gigabyte files into S3 from outside of AWS using this technique.
This has been answered by me in this question, here's the gist:
object = Aws::S3::Object.new(bucket_name: 'target-bucket', key: 'target-key')
object.upload_stream do |write_stream|
IO.copy_stream(URI.open('http://example.com/file.ext'), write_stream)
end
This is no 'direct' pull-from-S3, though. At least this doesn't download each file and then uploads in serial, but streams 'through' the client. If you run the above on an EC2 instance in the same region as your bucket, I believe this is as 'direct' as it gets, and as fast as a direct pull would ever be.
if a proxy ( node express ) is suitable for you then the portions of code at these 2 routes could be combined to do a GET POST fetch chain, retreiving then re-posting the response body to your dest. S3 bucket.
step one creates response.body
step two
set the stream in 2nd link to response from the GET op in link 1 and you will upload to dest.bucket the stream ( arrayBuffer ) from the first fetch