There is no day on SO that passes without a question about parsing (X)HTML or XML with regular expressions being asked.
While it's relatively easy to come up with examples that demonstrates the non-viability of regexes for this task or with a collection of expressions to represent the concept, I could still not find on SO a formal explanation of why this is not possible done in layman's terms.
The only formal explanations I could find so far on this site are probably extremely accurate, but also quite cryptic to the self-taught programmer:
the flaw here is that HTML is a Chomsky Type 2 grammar (context free
grammar) and RegEx is a Chomsky Type 3 grammar (regular expression)
or:
Regular expressions can only match regular languages but HTML is a
context-free language.
or:
A finite automaton (which is the data structure underlying a regular
expression) does not have memory apart from the state it's in, and if
you have arbitrarily deep nesting, you need an arbitrarily large
automaton, which collides with the notion of a finite automaton.
or:
The Pumping lemma for regular languages is the reason why you can't do
that.
[To be fair: the majority of the above explanation link to wikipedia pages, but these are not much easier to understand than the answers themselves].
So my question is: could somebody please provide a translation in layman's terms of the formal explanations given above of why it is not possible to use regex for parsing (X)HTML/XML?
EDIT: After reading the first answer I thought that I should clarify: I am looking for a "translation" that also briefely explains the concepts it tries to translate: at the end of an answer, the reader should have a rough idea - for example - of what "regular language" and "context-free grammar" mean...
Concentrate on this one:
A finite automaton (which is the data structure underlying a regular
expression) does not have memory apart from the state it's in, and if
you have arbitrarily deep nesting, you need an arbitrarily large
automaton, which collides with the notion of a finite automaton.
The definition of regular expressions is equivalent to the fact that a test of whether a string matches the pattern can be performed by a finite automaton (one different automaton for each pattern). A finite automaton has no memory - no stack, no heap, no infinite tape to scribble on. All it has is a finite number of internal states, each of which can read a unit of input from the string being tested, and use that to decide which state to move to next. As special cases, it has two termination states: "yes, that matched", and "no, that didn't match".
HTML, on the other hand, has structures that can nest arbitrarily deep. To determine whether a file is valid HTML or not, you need to check that all the closing tags match a previous opening tag. To understand it, you need to know which element is being closed. Without any means to "remember" what opening tags you've seen, no chance.
Note however that most "regex" libraries actually permit more than just the strict definition of regular expressions. If they can match back-references, then they've gone beyond a regular language. So the reason why you shouldn't use a regex library on HTML is a little more complex than the simple fact that HTML is not regular.
The fact that HTML doesn't represent a regular language is a red herring. Regular expression and regular languages sound sort of similar, but are not - they do share the same origin, but there's a notable distance between the academic "regular languages" and the current matching power of engines. In fact, almost all modern regular expression engines support non-regular features - a simple example is (.*)\1. which uses backreferencing to match a repeated sequence of characters - for example 123123, or bonbon. Matching of recursive/balanced structures make these even more fun.
Wikipedia puts this nicely, in a quote by Larry Wall:
'Regular expressions' [...] are only marginally related to real regular expressions. Nevertheless, the term has grown with the capabilities of our pattern matching engines, so I'm not going to try to fight linguistic necessity here. I will, however, generally call them "regexes" (or "regexen", when I'm in an Anglo-Saxon mood).
"Regular expression can only match regular languages", as you can see, is nothing more than a commonly stated fallacy.
So, why not then?
A good reason not to match HTML with regular expression is that "just because you can doesn't mean you should". While may be possible - there are simply better tools for the job. Considering:
Valid HTML is harder/more complex than you may think.
There are many types of "valid" HTML - what is valid in HTML, for example, isn't valid in XHTML.
Much of the free-form HTML found on the internet is not valid anyway. HTML libraries do a good job of dealing with these as well, and were tested for many of these common cases.
Very often it is impossible to match a part of the data without parsing it as a whole. For example, you might be looking for all titles, and end up matching inside a comment or a string literal. <h1>.*?</h1> may be a bold attempt at finding the main title, but it might find:
<!-- <h1>not the title!</h1> -->
Or even:
<script>
var s = "Certainly <h1>not the title!</h1>";
</script>
Last point is the most important:
Using a dedicated HTML parser is better than any regex you can come up with. Very often, XPath allows a better expressive way of finding the data you need, and using an HTML parser is much easier than most people realize.
A good summary of the subject, and an important comment on when mixing Regex and HTML may be appropriate, can be found in Jeff Atwood's blog: Parsing Html The Cthulhu Way.
When is it better to use a regular expression to parse HTML?
In most cases, it is better to use XPath on the DOM structure a library can give you. Still, against popular opinion, there are a few cases when I would strongly recommend using a regex and not a parser library:
Given a few of these conditions:
When you need a one-time update of your HTML files, and you know the structure is consistent.
When you have a very small snippet of HTML.
When you aren't dealing with an HTML file, but a similar templating engine (it can be very hard to find a parser in that case).
When you want to change parts of the HTML, but not all of it - a parser, to my knowledge, cannot answer this request: it will parse the whole document, and save a whole document, changing parts you never wanted to change.
Because HTML can have unlimited nesting of <tags><inside><tags and="<things><that><look></like></tags>"></inside></each></other> and regex can't really cope with that because it can't track a history of what it's descended into and come out of.
A simple construct that illustrates the difficulty:
<body><div id="foo">Hi there! <div id="bar">Bye!</div></div></body>
99.9% of generalized regex-based extraction routines will be unable to correctly give me everything inside the div with the ID foo, because they can't tell the closing tag for that div from the closing tag for the bar div. That is because they have no way of saying "okay, I've now descended into the second of two divs, so the next div close I see brings me back out one, and the one after that is the close tag for the first". Programmers typically respond by devising special-case regexes for the specific situation, which then break as soon as more tags are introduced inside foo and have to be unsnarled at tremendous cost in time and frustration. This is why people get mad about the whole thing.
A regular language is a language that can be matched by a finite state machine.
(Understanding Finite State machines, Push-down machines, and Turing machines is basically the curriculum of a fourth year college CS Course.)
Consider the following machine, which recognizes the string "hi".
(Start) --Read h-->(A)--Read i-->(Succeed)
\ \
\ -- read any other value-->(Fail)
-- read any other value-->(Fail)
This is a simple machine to recognize a regular language; Each expression in parenthesis is a state, and each arrow is a transition. Building a machine like this will allow you to test any input string against a regular language -- hence, a regular expression.
HTML requires you to know more than just what state you are in -- it requires a history of what you have seen before, to match tag nesting. You can accomplish this if you add a stack to the machine, but then it is no longer "regular". This is called a Push-down machine, and recognizes a grammar.
A regular expression is a machine with a finite (and typically rather small) number of discrete states.
To parse XML, C, or any other language with arbitrary nesting of language elements, you need to remember how deep you are. That is, you must be able to count braces/brackets/tags.
You cannot count with finite memory. There may be more brace levels than you have states! You might be able to parse a subset of your language that restricts the number of nesting levels, but it would be very tedious.
A grammar is a formal definition of where words can go. For example, adjectives preceed nouns in English grammar, but follow nouns en la gramática española.
Context-free means that the grammar works universally in all contexts. Context-sensitive means there are additional rules in certain contexts.
In C#, for example, using means something different in using System; at the top of files, than using (var sw = new StringWriter (...)). A more relevant example is the following code within code:
void Start ()
{
string myCode = #"
void Start()
{
Console.WriteLine (""x"");
}
";
}
There's another practical reason for not using regular expressions to parse XML and HTML that has nothing to do with the computer science theory at all: your regular expression will either be hideously complicated, or it will be wrong.
For example, it's all very well writing a regular expression to match
<price>10.65</price>
But if your code is to be correct, then:
It must allow whitespace after the element name in both start and end tag
If the document is in a namespace, then it should allow any namespace prefix to be used
It should probably allow and ignore any unknown attributes appearing in the start tag (depending on the semantics of the particular vocabulary)
It may need to allow whitespace before and after the decimal value (again, depending on the detailed rules of the particular XML vocabulary).
It should not match something that looks like an element, but is actually in a comment or CDATA section (this becomes especially important if there is a possibility of malicious data trying to fool your parser).
It may need to provide diagnostics if the input is invalid.
Of course some of this depends on the quality standards you are applying. We see a lot of problems on StackOverflow with people having to generate XML in a particular way (for example, with no whitespace in the tags) because it is being read by an application that requires it to be written in a particular way. If your code has any kind of longevity then it's important that it should be able to process incoming XML written in any way that the XML standard permits, and not just the one sample input document that you are testing your code on.
So others have gone and given brief definitions for most of these things, but I don't really think they cover WHY normal regex's are what they are.
There are some great resources on what a finite state machine is, but in short, a seminal paper in computer science proved that the basic grammar of regex's (the standard ones, used by grep, not the extended ones, like PCRE) can always be manipulated into a finite-state machine, meaning a 'machine' where you are always in a box, and have a limited number of ways to move to the next box. In short, you can always tell what the next 'thing' you need to do is just by looking at the current character. (And yes, even when it comes to things like 'match at least 4, but no more than 5 times', you can still create a machine like this) (I should note that note that the machine I describe here is technically only a subtype of finite-state machines, but it can implement any other subtype, so...)
This is great because you can always very efficiently evaluate such a machine, even for large inputs. Studying these sorts of questions (how does my algorithm behave when the number of things I feed it gets big) is called studying the computational complexity of the technique. If you're familiar with how a lot of calculus deals with how functions behave as they approach infinity, well, that's pretty much it.
So whats so great about a standard regular expression? Well, any given regex can match a string of length N in no more than O(N) time (meaning that doubling the length of your input doubles the time it takes: it says nothing about the speed for a given input) (of course, some are faster: the regex * could match in O(1), meaning constant, time). The reason is simple: remember, because the system has only a few paths from each state, you never 'go back', and you only need to check each character once. That means even if I pass you a 100 gigabyte file, you'll still be able to crunch through it pretty quickly: which is great!.
Now, its pretty clear why you can't use such a machine to parse arbitrary XML: you can have infinite tags-in-tags, and to parse correctly you need an infinite number of states. But, if you allow recursive replaces, a PCRE is Turing complete: so it could totally parse HTML! Even if you don't, a PCRE can parse any context-free grammar, including XML. So the answer is "yeah, you can". Now, it might take exponential time (you can't use our neat finite-state machine, so you need to use a big fancy parser that can rewind, which means that a crafted expression will take centuries on a big file), but still. Possible.
But lets talk real quick about why that's an awful idea. First of all, while you'll see a ton of people saying "omg, regex's are so powerful", the reality is... they aren't. What they are is simple. The language is dead simple: you only need to know a few meta-characters and their meanings, and you can understand (eventually) anything written in it. However, the issue is that those meta-characters are all you have. See, they can do a lot, but they're meant to express fairly simple things concisely, not to try and describe a complicated process.
And XML sure is complicated. It's pretty easy to find examples in some of the other answers: you can't match stuff inside comment fields, ect. Representing all of that in a programming language takes work: and that's with the benefits of variables and functions! PCRE's, for all their features, can't come close to that. Any hand-made implementation will be buggy: scanning blobs of meta-characters to check matching parenthesis is hard, and it's not like you can comment your code. It'd be easier to define a meta-language, and compile that down to a regex: and at that point, you might as well just take the language you wrote your meta-compiler with and write an XML parser. It'd be easier for you, faster to run, and just better overall.
For more neat info on this, check out this site. It does a great job of explaining all this stuff in layman's terms.
Don't parse XML/HTML with regex, use a proper XML/HTML parser and a powerful xpath query.
theory :
According to the compiling theory, XML/HTML can't be parsed using regex based on finite state machine. Due to hierarchical construction of XML/HTML you need to use a pushdown automaton and manipulate LALR grammar using tool like YACC.
realLife©®™ everyday tool in a shell :
You can use one of the following :
xmllint often installed by default with libxml2, xpath1 (check my wrapper to have newlines delimited output
xmlstarlet can edit, select, transform... Not installed by default, xpath1
xpath installed via perl's module XML::XPath, xpath1
xidel xpath3
saxon-lint my own project, wrapper over #Michael Kay's Saxon-HE Java library, xpath3
or you can use high level languages and proper libs, I think of :
python's lxml (from lxml import etree)
perl's XML::LibXML, XML::XPath, XML::Twig::XPath, HTML::TreeBuilder::XPath
ruby nokogiri, check this example
php DOMXpath, check this example
Check: Using regular expressions with HTML tags
In a purely theoretical sense, it is impossible for regular expressions to parse XML. They are defined in a way that allows them no memory of any previous state, thus preventing the correct matching of an arbitrary tag, and they cannot penetrate to an arbitrary depth of nesting, since the nesting would need to be built into the regular expression.
Modern regex parsers, however, are built for their utility to the developer, rather than their adherence to a precise definition. As such, we have things like back-references and recursion that make use of knowledge of previous states. Using these, it is remarkably simple to create a regex that can explore, validate, or parse XML.
Consider for example,
(?:
<!\-\-[\S\s]*?\-\->
|
<([\w\-\.]+)[^>]*?
(?:
\/>
|
>
(?:
[^<]
|
(?R)
)*
<\/\1>
)
)
This will find the next properly formed XML tag or comment, and it will only find it if it's entire contents are properly formed. (This expression has been tested using Notepad++, which uses Boost C++'s regex library, which closely approximates PCRE.)
Here's how it works:
The first chunk matches a comment. It's necessary for this to come first so that it will deal with any commented-out code that otherwise might cause hang ups.
If that doesn't match, it will look for the beginning of a tag. Note that it uses parentheses to capture the name.
This tag will either end in a />, thus completing the tag, or it will end with a >, in which case it will continue by examining the tag's contents.
It will continue parsing until it reaches a <, at which point it will recurse back to the beginning of the expression, allowing it to deal with either a comment or a new tag.
It will continue through the loop until it arrives at either the end of the text or at a < that it cannot parse. Failing to match will, of course, cause it to start the process over. Otherwise, the < is presumably the beginning of the closing tag for this iteration. Using the back-reference inside a closing tag <\/\1>, it will match the opening tag for the current iteration (depth). There's only one capturing group, so this match is a simple matter. This makes it independent of the names of the tags used, although you could modify the capturing group to capture only specific tags, if you need to.
At this point it will either kick out of the current recursion, up to the next level or end with a match.
This example solves problems dealing with whitespace or identifying relevant content through the use of character groups that merely negate < or >, or in the case of the comments, by using [\S\s], which will match anything, including carriage returns and new lines, even in single-line mode, continuing until it reaches a
-->. Hence, it simply treats everything as valid until it reaches something meaningful.
For most purposes, a regex like this isn't particularly useful. It will validate that XML is properly formed, but that's all it will really do, and it doesn't account for properties (although this would be an easy addition). It's only this simple because it leaves out real world issues like this, as well as definitions of tag names. Fitting it for real use would make it much more of a beast. In general, a true XML parser would be far superior. This one is probably best suited for teaching how recursion works.
Long story short: use an XML parser for real work, and use this if you want to play around with regexes.
Related
There is no day on SO that passes without a question about parsing (X)HTML or XML with regular expressions being asked.
While it's relatively easy to come up with examples that demonstrates the non-viability of regexes for this task or with a collection of expressions to represent the concept, I could still not find on SO a formal explanation of why this is not possible done in layman's terms.
The only formal explanations I could find so far on this site are probably extremely accurate, but also quite cryptic to the self-taught programmer:
the flaw here is that HTML is a Chomsky Type 2 grammar (context free
grammar) and RegEx is a Chomsky Type 3 grammar (regular expression)
or:
Regular expressions can only match regular languages but HTML is a
context-free language.
or:
A finite automaton (which is the data structure underlying a regular
expression) does not have memory apart from the state it's in, and if
you have arbitrarily deep nesting, you need an arbitrarily large
automaton, which collides with the notion of a finite automaton.
or:
The Pumping lemma for regular languages is the reason why you can't do
that.
[To be fair: the majority of the above explanation link to wikipedia pages, but these are not much easier to understand than the answers themselves].
So my question is: could somebody please provide a translation in layman's terms of the formal explanations given above of why it is not possible to use regex for parsing (X)HTML/XML?
EDIT: After reading the first answer I thought that I should clarify: I am looking for a "translation" that also briefely explains the concepts it tries to translate: at the end of an answer, the reader should have a rough idea - for example - of what "regular language" and "context-free grammar" mean...
Concentrate on this one:
A finite automaton (which is the data structure underlying a regular
expression) does not have memory apart from the state it's in, and if
you have arbitrarily deep nesting, you need an arbitrarily large
automaton, which collides with the notion of a finite automaton.
The definition of regular expressions is equivalent to the fact that a test of whether a string matches the pattern can be performed by a finite automaton (one different automaton for each pattern). A finite automaton has no memory - no stack, no heap, no infinite tape to scribble on. All it has is a finite number of internal states, each of which can read a unit of input from the string being tested, and use that to decide which state to move to next. As special cases, it has two termination states: "yes, that matched", and "no, that didn't match".
HTML, on the other hand, has structures that can nest arbitrarily deep. To determine whether a file is valid HTML or not, you need to check that all the closing tags match a previous opening tag. To understand it, you need to know which element is being closed. Without any means to "remember" what opening tags you've seen, no chance.
Note however that most "regex" libraries actually permit more than just the strict definition of regular expressions. If they can match back-references, then they've gone beyond a regular language. So the reason why you shouldn't use a regex library on HTML is a little more complex than the simple fact that HTML is not regular.
The fact that HTML doesn't represent a regular language is a red herring. Regular expression and regular languages sound sort of similar, but are not - they do share the same origin, but there's a notable distance between the academic "regular languages" and the current matching power of engines. In fact, almost all modern regular expression engines support non-regular features - a simple example is (.*)\1. which uses backreferencing to match a repeated sequence of characters - for example 123123, or bonbon. Matching of recursive/balanced structures make these even more fun.
Wikipedia puts this nicely, in a quote by Larry Wall:
'Regular expressions' [...] are only marginally related to real regular expressions. Nevertheless, the term has grown with the capabilities of our pattern matching engines, so I'm not going to try to fight linguistic necessity here. I will, however, generally call them "regexes" (or "regexen", when I'm in an Anglo-Saxon mood).
"Regular expression can only match regular languages", as you can see, is nothing more than a commonly stated fallacy.
So, why not then?
A good reason not to match HTML with regular expression is that "just because you can doesn't mean you should". While may be possible - there are simply better tools for the job. Considering:
Valid HTML is harder/more complex than you may think.
There are many types of "valid" HTML - what is valid in HTML, for example, isn't valid in XHTML.
Much of the free-form HTML found on the internet is not valid anyway. HTML libraries do a good job of dealing with these as well, and were tested for many of these common cases.
Very often it is impossible to match a part of the data without parsing it as a whole. For example, you might be looking for all titles, and end up matching inside a comment or a string literal. <h1>.*?</h1> may be a bold attempt at finding the main title, but it might find:
<!-- <h1>not the title!</h1> -->
Or even:
<script>
var s = "Certainly <h1>not the title!</h1>";
</script>
Last point is the most important:
Using a dedicated HTML parser is better than any regex you can come up with. Very often, XPath allows a better expressive way of finding the data you need, and using an HTML parser is much easier than most people realize.
A good summary of the subject, and an important comment on when mixing Regex and HTML may be appropriate, can be found in Jeff Atwood's blog: Parsing Html The Cthulhu Way.
When is it better to use a regular expression to parse HTML?
In most cases, it is better to use XPath on the DOM structure a library can give you. Still, against popular opinion, there are a few cases when I would strongly recommend using a regex and not a parser library:
Given a few of these conditions:
When you need a one-time update of your HTML files, and you know the structure is consistent.
When you have a very small snippet of HTML.
When you aren't dealing with an HTML file, but a similar templating engine (it can be very hard to find a parser in that case).
When you want to change parts of the HTML, but not all of it - a parser, to my knowledge, cannot answer this request: it will parse the whole document, and save a whole document, changing parts you never wanted to change.
Because HTML can have unlimited nesting of <tags><inside><tags and="<things><that><look></like></tags>"></inside></each></other> and regex can't really cope with that because it can't track a history of what it's descended into and come out of.
A simple construct that illustrates the difficulty:
<body><div id="foo">Hi there! <div id="bar">Bye!</div></div></body>
99.9% of generalized regex-based extraction routines will be unable to correctly give me everything inside the div with the ID foo, because they can't tell the closing tag for that div from the closing tag for the bar div. That is because they have no way of saying "okay, I've now descended into the second of two divs, so the next div close I see brings me back out one, and the one after that is the close tag for the first". Programmers typically respond by devising special-case regexes for the specific situation, which then break as soon as more tags are introduced inside foo and have to be unsnarled at tremendous cost in time and frustration. This is why people get mad about the whole thing.
A regular language is a language that can be matched by a finite state machine.
(Understanding Finite State machines, Push-down machines, and Turing machines is basically the curriculum of a fourth year college CS Course.)
Consider the following machine, which recognizes the string "hi".
(Start) --Read h-->(A)--Read i-->(Succeed)
\ \
\ -- read any other value-->(Fail)
-- read any other value-->(Fail)
This is a simple machine to recognize a regular language; Each expression in parenthesis is a state, and each arrow is a transition. Building a machine like this will allow you to test any input string against a regular language -- hence, a regular expression.
HTML requires you to know more than just what state you are in -- it requires a history of what you have seen before, to match tag nesting. You can accomplish this if you add a stack to the machine, but then it is no longer "regular". This is called a Push-down machine, and recognizes a grammar.
A regular expression is a machine with a finite (and typically rather small) number of discrete states.
To parse XML, C, or any other language with arbitrary nesting of language elements, you need to remember how deep you are. That is, you must be able to count braces/brackets/tags.
You cannot count with finite memory. There may be more brace levels than you have states! You might be able to parse a subset of your language that restricts the number of nesting levels, but it would be very tedious.
A grammar is a formal definition of where words can go. For example, adjectives preceed nouns in English grammar, but follow nouns en la gramática española.
Context-free means that the grammar works universally in all contexts. Context-sensitive means there are additional rules in certain contexts.
In C#, for example, using means something different in using System; at the top of files, than using (var sw = new StringWriter (...)). A more relevant example is the following code within code:
void Start ()
{
string myCode = #"
void Start()
{
Console.WriteLine (""x"");
}
";
}
There's another practical reason for not using regular expressions to parse XML and HTML that has nothing to do with the computer science theory at all: your regular expression will either be hideously complicated, or it will be wrong.
For example, it's all very well writing a regular expression to match
<price>10.65</price>
But if your code is to be correct, then:
It must allow whitespace after the element name in both start and end tag
If the document is in a namespace, then it should allow any namespace prefix to be used
It should probably allow and ignore any unknown attributes appearing in the start tag (depending on the semantics of the particular vocabulary)
It may need to allow whitespace before and after the decimal value (again, depending on the detailed rules of the particular XML vocabulary).
It should not match something that looks like an element, but is actually in a comment or CDATA section (this becomes especially important if there is a possibility of malicious data trying to fool your parser).
It may need to provide diagnostics if the input is invalid.
Of course some of this depends on the quality standards you are applying. We see a lot of problems on StackOverflow with people having to generate XML in a particular way (for example, with no whitespace in the tags) because it is being read by an application that requires it to be written in a particular way. If your code has any kind of longevity then it's important that it should be able to process incoming XML written in any way that the XML standard permits, and not just the one sample input document that you are testing your code on.
So others have gone and given brief definitions for most of these things, but I don't really think they cover WHY normal regex's are what they are.
There are some great resources on what a finite state machine is, but in short, a seminal paper in computer science proved that the basic grammar of regex's (the standard ones, used by grep, not the extended ones, like PCRE) can always be manipulated into a finite-state machine, meaning a 'machine' where you are always in a box, and have a limited number of ways to move to the next box. In short, you can always tell what the next 'thing' you need to do is just by looking at the current character. (And yes, even when it comes to things like 'match at least 4, but no more than 5 times', you can still create a machine like this) (I should note that note that the machine I describe here is technically only a subtype of finite-state machines, but it can implement any other subtype, so...)
This is great because you can always very efficiently evaluate such a machine, even for large inputs. Studying these sorts of questions (how does my algorithm behave when the number of things I feed it gets big) is called studying the computational complexity of the technique. If you're familiar with how a lot of calculus deals with how functions behave as they approach infinity, well, that's pretty much it.
So whats so great about a standard regular expression? Well, any given regex can match a string of length N in no more than O(N) time (meaning that doubling the length of your input doubles the time it takes: it says nothing about the speed for a given input) (of course, some are faster: the regex * could match in O(1), meaning constant, time). The reason is simple: remember, because the system has only a few paths from each state, you never 'go back', and you only need to check each character once. That means even if I pass you a 100 gigabyte file, you'll still be able to crunch through it pretty quickly: which is great!.
Now, its pretty clear why you can't use such a machine to parse arbitrary XML: you can have infinite tags-in-tags, and to parse correctly you need an infinite number of states. But, if you allow recursive replaces, a PCRE is Turing complete: so it could totally parse HTML! Even if you don't, a PCRE can parse any context-free grammar, including XML. So the answer is "yeah, you can". Now, it might take exponential time (you can't use our neat finite-state machine, so you need to use a big fancy parser that can rewind, which means that a crafted expression will take centuries on a big file), but still. Possible.
But lets talk real quick about why that's an awful idea. First of all, while you'll see a ton of people saying "omg, regex's are so powerful", the reality is... they aren't. What they are is simple. The language is dead simple: you only need to know a few meta-characters and their meanings, and you can understand (eventually) anything written in it. However, the issue is that those meta-characters are all you have. See, they can do a lot, but they're meant to express fairly simple things concisely, not to try and describe a complicated process.
And XML sure is complicated. It's pretty easy to find examples in some of the other answers: you can't match stuff inside comment fields, ect. Representing all of that in a programming language takes work: and that's with the benefits of variables and functions! PCRE's, for all their features, can't come close to that. Any hand-made implementation will be buggy: scanning blobs of meta-characters to check matching parenthesis is hard, and it's not like you can comment your code. It'd be easier to define a meta-language, and compile that down to a regex: and at that point, you might as well just take the language you wrote your meta-compiler with and write an XML parser. It'd be easier for you, faster to run, and just better overall.
For more neat info on this, check out this site. It does a great job of explaining all this stuff in layman's terms.
Don't parse XML/HTML with regex, use a proper XML/HTML parser and a powerful xpath query.
theory :
According to the compiling theory, XML/HTML can't be parsed using regex based on finite state machine. Due to hierarchical construction of XML/HTML you need to use a pushdown automaton and manipulate LALR grammar using tool like YACC.
realLife©®™ everyday tool in a shell :
You can use one of the following :
xmllint often installed by default with libxml2, xpath1 (check my wrapper to have newlines delimited output
xmlstarlet can edit, select, transform... Not installed by default, xpath1
xpath installed via perl's module XML::XPath, xpath1
xidel xpath3
saxon-lint my own project, wrapper over #Michael Kay's Saxon-HE Java library, xpath3
or you can use high level languages and proper libs, I think of :
python's lxml (from lxml import etree)
perl's XML::LibXML, XML::XPath, XML::Twig::XPath, HTML::TreeBuilder::XPath
ruby nokogiri, check this example
php DOMXpath, check this example
Check: Using regular expressions with HTML tags
In a purely theoretical sense, it is impossible for regular expressions to parse XML. They are defined in a way that allows them no memory of any previous state, thus preventing the correct matching of an arbitrary tag, and they cannot penetrate to an arbitrary depth of nesting, since the nesting would need to be built into the regular expression.
Modern regex parsers, however, are built for their utility to the developer, rather than their adherence to a precise definition. As such, we have things like back-references and recursion that make use of knowledge of previous states. Using these, it is remarkably simple to create a regex that can explore, validate, or parse XML.
Consider for example,
(?:
<!\-\-[\S\s]*?\-\->
|
<([\w\-\.]+)[^>]*?
(?:
\/>
|
>
(?:
[^<]
|
(?R)
)*
<\/\1>
)
)
This will find the next properly formed XML tag or comment, and it will only find it if it's entire contents are properly formed. (This expression has been tested using Notepad++, which uses Boost C++'s regex library, which closely approximates PCRE.)
Here's how it works:
The first chunk matches a comment. It's necessary for this to come first so that it will deal with any commented-out code that otherwise might cause hang ups.
If that doesn't match, it will look for the beginning of a tag. Note that it uses parentheses to capture the name.
This tag will either end in a />, thus completing the tag, or it will end with a >, in which case it will continue by examining the tag's contents.
It will continue parsing until it reaches a <, at which point it will recurse back to the beginning of the expression, allowing it to deal with either a comment or a new tag.
It will continue through the loop until it arrives at either the end of the text or at a < that it cannot parse. Failing to match will, of course, cause it to start the process over. Otherwise, the < is presumably the beginning of the closing tag for this iteration. Using the back-reference inside a closing tag <\/\1>, it will match the opening tag for the current iteration (depth). There's only one capturing group, so this match is a simple matter. This makes it independent of the names of the tags used, although you could modify the capturing group to capture only specific tags, if you need to.
At this point it will either kick out of the current recursion, up to the next level or end with a match.
This example solves problems dealing with whitespace or identifying relevant content through the use of character groups that merely negate < or >, or in the case of the comments, by using [\S\s], which will match anything, including carriage returns and new lines, even in single-line mode, continuing until it reaches a
-->. Hence, it simply treats everything as valid until it reaches something meaningful.
For most purposes, a regex like this isn't particularly useful. It will validate that XML is properly formed, but that's all it will really do, and it doesn't account for properties (although this would be an easy addition). It's only this simple because it leaves out real world issues like this, as well as definitions of tag names. Fitting it for real use would make it much more of a beast. In general, a true XML parser would be far superior. This one is probably best suited for teaching how recursion works.
Long story short: use an XML parser for real work, and use this if you want to play around with regexes.
There is no day on SO that passes without a question about parsing (X)HTML or XML with regular expressions being asked.
While it's relatively easy to come up with examples that demonstrates the non-viability of regexes for this task or with a collection of expressions to represent the concept, I could still not find on SO a formal explanation of why this is not possible done in layman's terms.
The only formal explanations I could find so far on this site are probably extremely accurate, but also quite cryptic to the self-taught programmer:
the flaw here is that HTML is a Chomsky Type 2 grammar (context free
grammar) and RegEx is a Chomsky Type 3 grammar (regular expression)
or:
Regular expressions can only match regular languages but HTML is a
context-free language.
or:
A finite automaton (which is the data structure underlying a regular
expression) does not have memory apart from the state it's in, and if
you have arbitrarily deep nesting, you need an arbitrarily large
automaton, which collides with the notion of a finite automaton.
or:
The Pumping lemma for regular languages is the reason why you can't do
that.
[To be fair: the majority of the above explanation link to wikipedia pages, but these are not much easier to understand than the answers themselves].
So my question is: could somebody please provide a translation in layman's terms of the formal explanations given above of why it is not possible to use regex for parsing (X)HTML/XML?
EDIT: After reading the first answer I thought that I should clarify: I am looking for a "translation" that also briefely explains the concepts it tries to translate: at the end of an answer, the reader should have a rough idea - for example - of what "regular language" and "context-free grammar" mean...
Concentrate on this one:
A finite automaton (which is the data structure underlying a regular
expression) does not have memory apart from the state it's in, and if
you have arbitrarily deep nesting, you need an arbitrarily large
automaton, which collides with the notion of a finite automaton.
The definition of regular expressions is equivalent to the fact that a test of whether a string matches the pattern can be performed by a finite automaton (one different automaton for each pattern). A finite automaton has no memory - no stack, no heap, no infinite tape to scribble on. All it has is a finite number of internal states, each of which can read a unit of input from the string being tested, and use that to decide which state to move to next. As special cases, it has two termination states: "yes, that matched", and "no, that didn't match".
HTML, on the other hand, has structures that can nest arbitrarily deep. To determine whether a file is valid HTML or not, you need to check that all the closing tags match a previous opening tag. To understand it, you need to know which element is being closed. Without any means to "remember" what opening tags you've seen, no chance.
Note however that most "regex" libraries actually permit more than just the strict definition of regular expressions. If they can match back-references, then they've gone beyond a regular language. So the reason why you shouldn't use a regex library on HTML is a little more complex than the simple fact that HTML is not regular.
The fact that HTML doesn't represent a regular language is a red herring. Regular expression and regular languages sound sort of similar, but are not - they do share the same origin, but there's a notable distance between the academic "regular languages" and the current matching power of engines. In fact, almost all modern regular expression engines support non-regular features - a simple example is (.*)\1. which uses backreferencing to match a repeated sequence of characters - for example 123123, or bonbon. Matching of recursive/balanced structures make these even more fun.
Wikipedia puts this nicely, in a quote by Larry Wall:
'Regular expressions' [...] are only marginally related to real regular expressions. Nevertheless, the term has grown with the capabilities of our pattern matching engines, so I'm not going to try to fight linguistic necessity here. I will, however, generally call them "regexes" (or "regexen", when I'm in an Anglo-Saxon mood).
"Regular expression can only match regular languages", as you can see, is nothing more than a commonly stated fallacy.
So, why not then?
A good reason not to match HTML with regular expression is that "just because you can doesn't mean you should". While may be possible - there are simply better tools for the job. Considering:
Valid HTML is harder/more complex than you may think.
There are many types of "valid" HTML - what is valid in HTML, for example, isn't valid in XHTML.
Much of the free-form HTML found on the internet is not valid anyway. HTML libraries do a good job of dealing with these as well, and were tested for many of these common cases.
Very often it is impossible to match a part of the data without parsing it as a whole. For example, you might be looking for all titles, and end up matching inside a comment or a string literal. <h1>.*?</h1> may be a bold attempt at finding the main title, but it might find:
<!-- <h1>not the title!</h1> -->
Or even:
<script>
var s = "Certainly <h1>not the title!</h1>";
</script>
Last point is the most important:
Using a dedicated HTML parser is better than any regex you can come up with. Very often, XPath allows a better expressive way of finding the data you need, and using an HTML parser is much easier than most people realize.
A good summary of the subject, and an important comment on when mixing Regex and HTML may be appropriate, can be found in Jeff Atwood's blog: Parsing Html The Cthulhu Way.
When is it better to use a regular expression to parse HTML?
In most cases, it is better to use XPath on the DOM structure a library can give you. Still, against popular opinion, there are a few cases when I would strongly recommend using a regex and not a parser library:
Given a few of these conditions:
When you need a one-time update of your HTML files, and you know the structure is consistent.
When you have a very small snippet of HTML.
When you aren't dealing with an HTML file, but a similar templating engine (it can be very hard to find a parser in that case).
When you want to change parts of the HTML, but not all of it - a parser, to my knowledge, cannot answer this request: it will parse the whole document, and save a whole document, changing parts you never wanted to change.
Because HTML can have unlimited nesting of <tags><inside><tags and="<things><that><look></like></tags>"></inside></each></other> and regex can't really cope with that because it can't track a history of what it's descended into and come out of.
A simple construct that illustrates the difficulty:
<body><div id="foo">Hi there! <div id="bar">Bye!</div></div></body>
99.9% of generalized regex-based extraction routines will be unable to correctly give me everything inside the div with the ID foo, because they can't tell the closing tag for that div from the closing tag for the bar div. That is because they have no way of saying "okay, I've now descended into the second of two divs, so the next div close I see brings me back out one, and the one after that is the close tag for the first". Programmers typically respond by devising special-case regexes for the specific situation, which then break as soon as more tags are introduced inside foo and have to be unsnarled at tremendous cost in time and frustration. This is why people get mad about the whole thing.
A regular language is a language that can be matched by a finite state machine.
(Understanding Finite State machines, Push-down machines, and Turing machines is basically the curriculum of a fourth year college CS Course.)
Consider the following machine, which recognizes the string "hi".
(Start) --Read h-->(A)--Read i-->(Succeed)
\ \
\ -- read any other value-->(Fail)
-- read any other value-->(Fail)
This is a simple machine to recognize a regular language; Each expression in parenthesis is a state, and each arrow is a transition. Building a machine like this will allow you to test any input string against a regular language -- hence, a regular expression.
HTML requires you to know more than just what state you are in -- it requires a history of what you have seen before, to match tag nesting. You can accomplish this if you add a stack to the machine, but then it is no longer "regular". This is called a Push-down machine, and recognizes a grammar.
A regular expression is a machine with a finite (and typically rather small) number of discrete states.
To parse XML, C, or any other language with arbitrary nesting of language elements, you need to remember how deep you are. That is, you must be able to count braces/brackets/tags.
You cannot count with finite memory. There may be more brace levels than you have states! You might be able to parse a subset of your language that restricts the number of nesting levels, but it would be very tedious.
A grammar is a formal definition of where words can go. For example, adjectives preceed nouns in English grammar, but follow nouns en la gramática española.
Context-free means that the grammar works universally in all contexts. Context-sensitive means there are additional rules in certain contexts.
In C#, for example, using means something different in using System; at the top of files, than using (var sw = new StringWriter (...)). A more relevant example is the following code within code:
void Start ()
{
string myCode = #"
void Start()
{
Console.WriteLine (""x"");
}
";
}
There's another practical reason for not using regular expressions to parse XML and HTML that has nothing to do with the computer science theory at all: your regular expression will either be hideously complicated, or it will be wrong.
For example, it's all very well writing a regular expression to match
<price>10.65</price>
But if your code is to be correct, then:
It must allow whitespace after the element name in both start and end tag
If the document is in a namespace, then it should allow any namespace prefix to be used
It should probably allow and ignore any unknown attributes appearing in the start tag (depending on the semantics of the particular vocabulary)
It may need to allow whitespace before and after the decimal value (again, depending on the detailed rules of the particular XML vocabulary).
It should not match something that looks like an element, but is actually in a comment or CDATA section (this becomes especially important if there is a possibility of malicious data trying to fool your parser).
It may need to provide diagnostics if the input is invalid.
Of course some of this depends on the quality standards you are applying. We see a lot of problems on StackOverflow with people having to generate XML in a particular way (for example, with no whitespace in the tags) because it is being read by an application that requires it to be written in a particular way. If your code has any kind of longevity then it's important that it should be able to process incoming XML written in any way that the XML standard permits, and not just the one sample input document that you are testing your code on.
So others have gone and given brief definitions for most of these things, but I don't really think they cover WHY normal regex's are what they are.
There are some great resources on what a finite state machine is, but in short, a seminal paper in computer science proved that the basic grammar of regex's (the standard ones, used by grep, not the extended ones, like PCRE) can always be manipulated into a finite-state machine, meaning a 'machine' where you are always in a box, and have a limited number of ways to move to the next box. In short, you can always tell what the next 'thing' you need to do is just by looking at the current character. (And yes, even when it comes to things like 'match at least 4, but no more than 5 times', you can still create a machine like this) (I should note that note that the machine I describe here is technically only a subtype of finite-state machines, but it can implement any other subtype, so...)
This is great because you can always very efficiently evaluate such a machine, even for large inputs. Studying these sorts of questions (how does my algorithm behave when the number of things I feed it gets big) is called studying the computational complexity of the technique. If you're familiar with how a lot of calculus deals with how functions behave as they approach infinity, well, that's pretty much it.
So whats so great about a standard regular expression? Well, any given regex can match a string of length N in no more than O(N) time (meaning that doubling the length of your input doubles the time it takes: it says nothing about the speed for a given input) (of course, some are faster: the regex * could match in O(1), meaning constant, time). The reason is simple: remember, because the system has only a few paths from each state, you never 'go back', and you only need to check each character once. That means even if I pass you a 100 gigabyte file, you'll still be able to crunch through it pretty quickly: which is great!.
Now, its pretty clear why you can't use such a machine to parse arbitrary XML: you can have infinite tags-in-tags, and to parse correctly you need an infinite number of states. But, if you allow recursive replaces, a PCRE is Turing complete: so it could totally parse HTML! Even if you don't, a PCRE can parse any context-free grammar, including XML. So the answer is "yeah, you can". Now, it might take exponential time (you can't use our neat finite-state machine, so you need to use a big fancy parser that can rewind, which means that a crafted expression will take centuries on a big file), but still. Possible.
But lets talk real quick about why that's an awful idea. First of all, while you'll see a ton of people saying "omg, regex's are so powerful", the reality is... they aren't. What they are is simple. The language is dead simple: you only need to know a few meta-characters and their meanings, and you can understand (eventually) anything written in it. However, the issue is that those meta-characters are all you have. See, they can do a lot, but they're meant to express fairly simple things concisely, not to try and describe a complicated process.
And XML sure is complicated. It's pretty easy to find examples in some of the other answers: you can't match stuff inside comment fields, ect. Representing all of that in a programming language takes work: and that's with the benefits of variables and functions! PCRE's, for all their features, can't come close to that. Any hand-made implementation will be buggy: scanning blobs of meta-characters to check matching parenthesis is hard, and it's not like you can comment your code. It'd be easier to define a meta-language, and compile that down to a regex: and at that point, you might as well just take the language you wrote your meta-compiler with and write an XML parser. It'd be easier for you, faster to run, and just better overall.
For more neat info on this, check out this site. It does a great job of explaining all this stuff in layman's terms.
Don't parse XML/HTML with regex, use a proper XML/HTML parser and a powerful xpath query.
theory :
According to the compiling theory, XML/HTML can't be parsed using regex based on finite state machine. Due to hierarchical construction of XML/HTML you need to use a pushdown automaton and manipulate LALR grammar using tool like YACC.
realLife©®™ everyday tool in a shell :
You can use one of the following :
xmllint often installed by default with libxml2, xpath1 (check my wrapper to have newlines delimited output
xmlstarlet can edit, select, transform... Not installed by default, xpath1
xpath installed via perl's module XML::XPath, xpath1
xidel xpath3
saxon-lint my own project, wrapper over #Michael Kay's Saxon-HE Java library, xpath3
or you can use high level languages and proper libs, I think of :
python's lxml (from lxml import etree)
perl's XML::LibXML, XML::XPath, XML::Twig::XPath, HTML::TreeBuilder::XPath
ruby nokogiri, check this example
php DOMXpath, check this example
Check: Using regular expressions with HTML tags
In a purely theoretical sense, it is impossible for regular expressions to parse XML. They are defined in a way that allows them no memory of any previous state, thus preventing the correct matching of an arbitrary tag, and they cannot penetrate to an arbitrary depth of nesting, since the nesting would need to be built into the regular expression.
Modern regex parsers, however, are built for their utility to the developer, rather than their adherence to a precise definition. As such, we have things like back-references and recursion that make use of knowledge of previous states. Using these, it is remarkably simple to create a regex that can explore, validate, or parse XML.
Consider for example,
(?:
<!\-\-[\S\s]*?\-\->
|
<([\w\-\.]+)[^>]*?
(?:
\/>
|
>
(?:
[^<]
|
(?R)
)*
<\/\1>
)
)
This will find the next properly formed XML tag or comment, and it will only find it if it's entire contents are properly formed. (This expression has been tested using Notepad++, which uses Boost C++'s regex library, which closely approximates PCRE.)
Here's how it works:
The first chunk matches a comment. It's necessary for this to come first so that it will deal with any commented-out code that otherwise might cause hang ups.
If that doesn't match, it will look for the beginning of a tag. Note that it uses parentheses to capture the name.
This tag will either end in a />, thus completing the tag, or it will end with a >, in which case it will continue by examining the tag's contents.
It will continue parsing until it reaches a <, at which point it will recurse back to the beginning of the expression, allowing it to deal with either a comment or a new tag.
It will continue through the loop until it arrives at either the end of the text or at a < that it cannot parse. Failing to match will, of course, cause it to start the process over. Otherwise, the < is presumably the beginning of the closing tag for this iteration. Using the back-reference inside a closing tag <\/\1>, it will match the opening tag for the current iteration (depth). There's only one capturing group, so this match is a simple matter. This makes it independent of the names of the tags used, although you could modify the capturing group to capture only specific tags, if you need to.
At this point it will either kick out of the current recursion, up to the next level or end with a match.
This example solves problems dealing with whitespace or identifying relevant content through the use of character groups that merely negate < or >, or in the case of the comments, by using [\S\s], which will match anything, including carriage returns and new lines, even in single-line mode, continuing until it reaches a
-->. Hence, it simply treats everything as valid until it reaches something meaningful.
For most purposes, a regex like this isn't particularly useful. It will validate that XML is properly formed, but that's all it will really do, and it doesn't account for properties (although this would be an easy addition). It's only this simple because it leaves out real world issues like this, as well as definitions of tag names. Fitting it for real use would make it much more of a beast. In general, a true XML parser would be far superior. This one is probably best suited for teaching how recursion works.
Long story short: use an XML parser for real work, and use this if you want to play around with regexes.
I have not gotten into the field of formal languages in computer science yet, so maybe my question is silly. I am writing a simple NMEA parser in C++, and I have to choose:
My first idea was to build a simple finite state machine manually, but then I thought that maybe I could do it with less work, even more efficiently. I used regular expressions before, but I think the NMEA regular expression is very long and should take "long time" to match it.
Then I thought about using a parser generator. I think all use the same method: they generate a FSA. But I don't know which is more efficient. When do you normally use parser generators instead of regexes (I think you could write regex in parser generator)?
Please explain the differences, I'm interested in both theory and experience.
Well, a simple rule of thumb is: If the grammar of the data you are trying to parse is regular, use regular expressions. If it is not, regular expressions may still work (as most regex engines also support non-regular grammars), but it might well be painful (complicated / bad performance).
Another aspect is what you are trying to do with the parsed data. If you are only interested in one field, a regex is probably easier to read. If you need to read deeply nested structures, a parser is likely to be more maintainable.
Regex is a parser-generator.
From wikipedia:
Regular expressions (abbreviated as regex or regexp, with plural forms regexes, regexps, or regexen) are written in a formal language that can be interpreted by a regular expression processor, a program that either serves as a parser generator or examines text and identifies parts that match the provided specification.
If you're going over a list that only needs to be gone over once, then save the list to a file and read it from there. If you're checking things that are different every time, use regex and store the results in an array or something.
It's much faster than you would assume it to be. I've seen expressions bigger than this post.
Adding that you can nest as much as you'd like, in whatever language you decide to code it in. You could even do it in sections, for maximum re-usability.
As Sneakyness points out, you can have a large and complicated regular expression that is surprisingly powerful. I've seen some examples of this, but none were maintainable by mere mortals. Even using Expresso only helped so much; it was still difficult to understand and risky to modify. So unless you're a savant with a fixation on Grep, I would not recommend this direction.
Instead, consider focusing on the grammar and letting a compiler compiler do the heavy lifting for you.
I don’t understand or see the need for regular expressions.
Can some explain them in simple terms and provide some basic examples where they could be useful, or even critical.
Use them where you need to use/manipulate patterns. For instance, suppose you need to recognise the following pattern:
Any letter, A-Z, either upper or lower case, 5 or 6 times
3 digits
a single letter a-z (definitely lower case)
(Things like this crop up for zip code, credit card, social security number validation etc.)
That's not really hard to write in code - but it becomes harder as the pattern becomes more complicated. With a regular expression, you describe the pattern (rather than the code to validate it) and let the regex engine do the work for you.
The pattern here would be something like
[A-Za-z]{5,6}[0-9]{3}[a-z]
(There are other ways of expressing it too.) Grouping constructs make it easy to match a whole pattern and grab (or replace) different bits of it, too.
A few downsides though:
Regexes can become complicated and hard to read quite quickly. Document thoroughly!
There are variations in behaviour between different regex engines
The complexity can be hard to judge if you're not an expert (which I'm certainly not!); there are "gotchas" which can make the patterns really slow against particular input, and these gotchas aren't obvious at all
Some people overuse regular expressions massively (and some underuse them, of course). The worst example I've seen was where someone asked (on a C# group) how to check whether a string was length 3 - this is clearly a job for using String.Length, but someone seriously suggested matching a regex. Madness. (They also got the regex wrong, which kinda proves the point.)
Regexes use backslashes to escape various things (e.g. use . to mean "a dot" rather than just "any character". In many languages the backslash itself needs escaping.
What regular expressions are used for:
Regular expressions is a language in itself that allows you to perform complex validation of string inputs. I.e. you pass it a string and it will return true or false if it is a match or not.
How regular expressions are used:
Form validation, determine if what the user entered is of the format you want
Finding the position of a certain pattern in a block of text
Search and replace where the search term is a regex and what to replace is a normal string.
Some regular expression language features:
Alternation: allows you to select one thing or another. Example match only yes or no.
yes|no
Grouping: You can define scope and have precedence using parentheses. For example match 3 color shades.
gr(a|e)y|black|white
Quantification: You can quantify how much of something you want. ? means 1 or 0, * means 0 or more. + means at least one. Example: Accept a binary string that is not empty:
(0|1)+
Why regular expressions?
Regular expressions make it easy to match strings, it can often replace several dozen lines of source code with a simple small regular expression string.
Not for all types of matching:
To understand how something is useful, you should also understand how it is not useful. Regular expressions are bad for certain tasks for example when you need to guarantee that a string has an equal number of parentheses.
Available in just about all languages:
Regular expressions are available in just about any programming language.
Formal language:
Any regular expression can be converted to a deterministic finite state machine. And in this same way you can figure out how to make source code that will validate your regular expression.
Example:
[hc]+at
matches "hat", "cat", "hhat", "chat", "hcat", "ccchat", and so on, but not "at"
Source, further reading
They look a bit cryptic but they provide a very powerful tool for finding patterns in text. Anything from href tags in HTML pages to validating email addresses.
And they can be processed into a very efficient data structure (FSA) that finds matches very fast.
They are a bit tricky, but extremely powerful and worth learning. The web is full of tutorial and examples, start for example from here and look at the examples here.
If I could direct the OP to some of the answers/comments on one of my own questions: How important is knowing Regexs?
Regular expressions are a very concise way to specify most pattern-matching and -replacement problems, and regexp engines can be very highly optimized.
If you wanted to do the same job as even a relatively simple regexp, you'd have to write a lot of code, which probably would contain a number of bugs, be hard to understand and perform badly.
Whereas doing the same with a regexp is much shorter, almost certainly performs as well as is technically possible, and is easier to understand to anyone familiar with regexpes (though it should be commented in either case)
The email example is actually a bad example for regular expressions. Regexes can be used, but the resulting expression (for example this one which doesn't handle "John Doe " style addresses) is hugely complicated - take a look at the email address specification and you'll see why...
However regexes are very useful in a host of other situations, extracting ip addresses from text, tags from html etc. Finding all versioned files would be another example. Something along the lines of:
my_versioned_file_(\d{4}-\d{2}-\d{2}).txt
will match any filenames of the format my_versioned_file_2009-02-26.txt and pull out the date as a captured group (the part wrapped in "()") for you to further analyse.
No regexes are not necessary, but they can save a world of time in writing a hand rolled parser for something a regex can easily achieve.
Whenever you've got some pattern to find in a lot of textual data or if you want to check that a string is in a certain format.
For example an email address...
The code for checking for an at symbol and the presence of a valid domain will look quite big where you could just use a regular expression and have an answer in 2 lines of code.
Regex r = new Regex("<An Email Address Regex>");
bool isValidEmail = r.IsMatch(MyInput);
Other examples would be for checking numbers are in the correct format before parsing them into integers etc.
Jon and Sqook gave a fine explanation and definition of Regular Expressions, and for simple problems it is pretty understandable, but if you use it for complex problems regular expressions can be a &$#( (at least for me ;-))
I use Expresso a lot to help me build complex regular expression code.
http://www.ultrapico.com/Expresso.htm
It has a build in library with expressions you can use, a design mode where you can build your code and a test mode where you can test and validate the code. It helped me build and understand complex expressions better!
Goodluck!
Some practical real world usages:
Finding abstract classes that extend JUnit's TestCase:
abstract\s+class\s+\w+\s+extends\s+TestCase
This is useful for finding test cases that cannot be instantiated and will need excluding from an ant build script that runs test cases. You cannot search for regular text because you don't know the class names in advance. hence the \w+ (At least one word character).
Finding running bash or bourne shell scripts:
ps -e | grep -e " sh| bash"
this is useful if you want to kill them all or something, if you did a search for just sh you'd not get the bash ones and have to run the command again for bash scripts. Again, more serviceable than perfect, but nearly no regex you write on the fly will be.
It's not perfect, but most regexes won't be, or they'll take so long to write they're not worth it. The ones you perfect are the ones you commit as part of some sort of validation or built application.
Example of critical use is JavaScript:
If you need to do search or replace on a string, the only matching you can do is a regular expression. It's in the JavaScript API on those string methods...
Personally, I mostly use regular expressions only when I need some advanced matching in some automated find/replace in a text editor (TextPad or Visual Studio). The most powerful feature in my view is the ability to match a pattern that can be inserted in the replace.
To give you some examples:
Email Address
Password requires at least 1 alphabet and 1 digit
How can you acheive these requirements?
The best way is to use regular expression.
Read the following links to learn more:
How To: Use Regular Expressions to Constrain Input in ASP.NET
http://msdn.microsoft.com/en-us/library/ms998267.aspx
Please don't answer the obvious, but what are the limit signs that tell us a problem should not be solved using regular expressions?
For example: Why is a complete email validation too complex for a regular expression?
Regular expressions are a textual representation of finite-state automata. That is to say, they are limited to only non-recursive matching. This means that you can't have any concept of "scope" or "sub-match" in your regexp. Consider the following problem:
(())()
Are all the open parens matched with a close paren?
Obviously, when we look at this as human beings, we can easily see that the answer is "yes". However, no regular expression will be able to reliably answer this question. In order to do this sort of processing, you will need a full pushdown automaton (like a DFA with a stack). This is most commonly found in the guise of a parser such as those generated by ANTLR or Bison.
A few things to look out for:
beginning and ending tag detection -- matched pairing
recursion
needing to go backwards (though you can reverse the string, but that's a hack)
regexes, as much as I love them, aren't good at those three things. And remember, keep it simple! If you're trying to build a regex that does "everything", then you're probably doing it wrong.
When you need to parse an expression that's not defined by a regular language.
What it comes down to is using common sense. If what you are trying to match becomes an unmanageable, monster regular expression then you either need to break it up into small, logical sub-regular expressions or you need to start re-thinking your solution.
Take email addresses (as per your example). This simple regular expression (taken from RegEx buddy) matches 99% of all emails out there:
\b[A-Z0-9._%+-]+#[A-Z0-9.-]+\.[A-Z]{2,4}\b
It is short and to the point and you will rarely run into issues with it. However, as the author of RegEx buddy points out, if your email address is in the rare top-level domain ".museum" it will not be accepted.
To truely match all email addresses you need to adhere to the standard known as RFC 2822. It outlines the multitude of ways email addresses can be formatted and it is extremely complex.
Here is a sample regular expression attempting to adhere to RFC 2822:
(?:[a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\.[a-z0-9!#$%&'*+/=?^_`{|}~-]+)*|"
(?:[\x01-\x08\x0b\x0c\x0e-\x1f\x21\x23-\x5b\x5d-\x7f]|\\[\x01-\x09\x0b\x
0c\x0e-\x7f])*")#(?:(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\.)+[a-z0-9]
(?:[a-z0-9-]*[a-z0-9])?|\[(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.)
{3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?|[a-z0-9-]*[a-z0-9]:(?:[\x01-\x08
\x0b\x0c\x0e-\x1f\x21-\x5a\x53-\x7f]|\\[\x01-\x09\x0b\x0c\x0e-\x7f])+)\])
This obviously becomes a problem of diminishing returns. It is better to use the easily maintained implementation that matches 99% of email addresses vs the monsterous one that accepts 99.9% of them.
Regular expressions are a great tool to have in your programmers toolbox but they aren't a solution to all your parsing problems. If you find your RegEx solution starting to become extremely complex you need to either attempt to logically break it up into smaller regular expressions to match portions of your text or you need to start looking at other methods to solve your problem. Similarly, there are simply problems that Regular Expressions, due to their nature, can't solve (as one poster said, not adhering to Regular Language).
Regular expressions are suited for tokenizing, finding or identifying individual bits of text, e.g. finding keywords, strings, comments, etc. in source code.
Regular expressions are not suited for determining the relationship between multiple bits of text, e.g. finding a block of source code with properly paired braces. You need a parser for that. The parser can use regular expressions for tokenizing the input, while the parser itself determines how the different regex matches fit together.
Essentially, you're going to far with your regular expressions if you start thinking about "balancing groups" (.NET's capture group subtraction feature) or "recursion" (Perl 5.10 and PCRE).
Here's a good quote from Raymond Chen:
Don't make regular expressions do what they're not good at. If you want to match a simple pattern, then match a simple pattern. If you want to do math, then do math. As commenter Maurits put it, "The trick is not to spend time developing a combination hammer/screwdriver, but just use a hammer and a screwdriver.
Source
Solve the problem with a regex, then give it to somebody else conversant in regexes. If they can't tell you what it does (or at least say with confidence that they understand) in about 10 minutes, it's too complex.
Sure sign to stop using regexps is this: if you have many grouping braces '()' and many alternatives '|' then it is a sure sign that you try to do a (complex) parsing with regular expressions.
Add to the mix Perl extensions, backreferences, etc and soon you have yourself a parser that is hard to read, hard to modify, and hard to reason about it's properties (e.g. is there an input on which this parser will work in a exponential time).
This is a time to stop regexing and start parsing (with hand-made parser, parser generators or parser combinators).
Along with tremendous expressions, there are principal limitations on the words, which can be handled by regexp.
For instance you can not not write regexp for word described by n chars a, then n chars b, where n can be any, more strictly .
In different languages regexp is a extension of Regular language, but time of parsing can be extremely large and this code is non-portable.
Whenever you can't be sure it really solves the problem, for example:
HTML parsing
Email validation
Language parsers
Especially so when there already exist tools that solve the problem in a totally understandable way.
Regex can be used in the domains I mentioned, but only as a subset of the whole problem and for specific, simple cases.
This goes beyond the technical limitations of regexes (regular languages + extensions), the maintainability and readability limit is surpassed a lot earlier than the technical limit in most cases.
A problem is too complex for regular expressions when constraints of the problem can change after the solution is written. So, in your example, how can you be sure an email address is valid when you do not have access to the target mail system to verify that the email address is attached to a valid user? You can't.
My limit is a Regex pattern that's about 30-50 characters long (varying depending on how much is fixed text and how much is regex commands)
This may sound stupid but I often lament not being able to do database type of queries using regular expression. Now especially more then before because I am entering those types of search string all the time on search engines. its very difficult, if not impossible to search for +complex AND +"regular expression"
For example, how do I search in emacs for commands that have both Buffer and Window in their name? I need to search separately for .*Buffer.*Window and .*Window.*Buffer