Are there any commonly used floating point formats besides IEEE754? - c++

I am writing a marshaling layer to automatically convert values between different domains. When it comes to floating point values this potentially means converting values from one floating point format to another. However, it seems that almost every modern system is using IEEE754, so I'm wondering whether it's actually worth generalising to allow other formats, or just manage marshaling between different IEEE754 formats.
Does anyone know of any commonly used floating point formats other than IEEE754 that I should consider (perhaps on ARM processors or mainframes)? If so, a reference to the format specification would be extremely helpful.

Virtually all relatively modern (within the last 15 years) general purpose computers use IEEE 754. In the very unlikely event that you find system that you need to support which uses a non-IEEE 754 floating point format, there will probably be a library available to convert to/from IEEE 754.
Some non-ancient systems which did not natively use IEEE 754 were the Cray SV1 (1998-2003) and IBM System 360, 370, and 390 prior to Generation 5 (ended 2002). IBM implemented IEEE 754 emulation around 2001 in a software release for prior S/390 hardware.

As of now, what systems do you actually want this to work on? If you come across one down the line that doesn't use IEEE754 (which as #JohnZwinick says, is vanishingly unlikely) then you should be able to code for that then.
To put it another way, what you are designing here is, in effect, a communications protocol and you obviously seek to make a sensible choice for how you will represent a floating point number (both single precision and double precision, I guess) in the bytes that travel between domains.
I think #SomeProgrammerDude was trying to imply that representing these as text strings (while they are in transit) might offer the most portability, and if so I would agree, but it's obviously not the most efficient way to do it.
So, if you do decide to plump for IEEE754 as your interchange format (as I would) then the worst that can happen is that you might need to find a way to convert these to and from the native format used on some antique architecture that you are almost certainly never going to encounter, and if that does happen then that problem would not be not difficult to solve.
Also, floats and doubles can be big-endian or little-endian, so you need to decide what you're going to use in your byte stream and convert when marshalling if necessary. Little-endian is much more common these days so I'd go with that.

Does anyone know of any commonly used floating point formats other than IEEE754 that I should consider ...?
CCSI uses a variation on binary32 for select processors.
it seems that almost every modern system is using IEEE754,
Yes, but... various implementations fudge on the particulars with edge values like subnormals, negative zero in visual studio, infinity and not-a-number.
It is this second issue that is more lethal and harder to discern that a given implementation has completely coded IEEE754. See __STDC_IEC_559__
OP has "I am writing a marshaling layer". It is in this coding that likely troubles remain for edge cases. Also IEEE754 does not specify endian so that marshaling issues remains. Recall integer endian may not match FP endian.

Related

Looking for datatypes of similar precision in multiple programming languages e.g. C/C++, D, Go

I am trying to implement a program with floating point numbers, using two or more programming languages. The program does say 50k iterations to finally bring the error to very small value.
To ensure that my results are comparable, I wanted to make sure I use data types of same precision in different languages. Would you please tell if there is correspondence between float/double of C/C++ to that in D and Go. I expect C/C++ and D to be quite close in this regard, but not sure. Thanks a lot.
Generally, for compiled languages, floating point format and precision comes down to two things:
The library used to implement the floating point functions that aren't directly supported in hardware.
The hardware the system is running on.
It may also depend on what compiler options you give (and how sophisticated the compiler is in general) - many modern processors have vector instructions, and the result may be subtly different than if you use "regular" floating point instructions (e.g. FPU vs. SSE on x86 processors). You may also see differences, sometimes, because the internal calculations on an x86 FPU is 80-bits, stored as 64-bits when the computation is completed.
But generally, given the same hardware, and similar type of compilers, I'd expect to get the same result [and roughly the same performance] from two different [sufficiently similar] languages.
Most languages have either only "double" (typically 64-bit) or "single and double" (e.g. float - typically 32-bit and double - typically 64-bit in C/C++ - and probably D as well, but I'm not that into D).
In Go, floating point types follow the IEEE-754 standard.
Straight from the spec (http://golang.org/ref/spec#Numeric_types)
float32 the set of all IEEE-754 32-bit floating-point numbers
float64 the set of all IEEE-754 64-bit floating-point numbers
I'm not familiar with D, but this page might be of interest: http://dlang.org/float.html.
For C/C++, the standard doesn't require IEEE-754, but in C++ you could use is_iec559() to check if your compiler is using IEEE-754. See this question: How to check if C++ compiler uses IEEE 754 floating point standard

Exotic architectures the standards committees care about

I know that the C and C++ standards leave many aspects of the language implementation-defined just because if there was an architecture with other characteristics, a standard confirming compiler for that architecture would need to emulate those parts of the language, resulting in inefficient machine code.
Surely, 40 years ago every computer had its own unique specification. However, I don't know of any architectures used today where:
CHAR_BIT != 8
signed is not two's complement (I heard Java had problems with this one).
Floating point is not IEEE 754 compliant (Edit: I meant "not in IEEE 754 binary encoding").
The reason I'm asking is that I often explain to people that it's good that C++ doesn't mandate any other low-level aspects like fixed sized types†. It's good because unlike 'other languages' it makes your code portable when used correctly (Edit: because it can be ported to more architectures without requiring emulation of low-level aspects of the machine, like e.g. two's complement arithmetic on sign+magnitude architecture). But I feel bad that I cannot point to any specific architecture myself.
So the question is: what architectures exhibit the above properties?
† uint*_ts are optional.
Take a look at this one
Unisys ClearPath Dorado Servers
offering backward compatibility for people who have not yet migrated all their Univac software.
Key points:
36-bit words
CHAR_BIT == 9
one's complement
72-bit non-IEEE floating point
separate address space for code and data
word-addressed
no dedicated stack pointer
Don't know if they offer a C++ compiler though, but they could.
And now a link to a recent edition of their C manual has surfaced:
Unisys C Compiler Programming Reference Manual
Section 4.5 has a table of data types with 9, 18, 36, and 72 bits.
None of your assumptions hold for mainframes. For starters, I don't know
of a mainframe which uses IEEE 754: IBM uses base 16 floating point, and
both of the Unisys mainframes use base 8. The Unisys machines are a bit
special in many other respects: Bo has mentioned the 2200 architecture,
but the MPS architecture is even stranger: 48 bit tagged words.
(Whether the word is a pointer or not depends on a bit in the word.)
And the numeric representations are designed so that there is no real
distinction between floating point and integral arithmetic: the floating
point is base 8; it doesn't require normalization, and unlike every
other floating point I've seen, it puts the decimal to the right of the
mantissa, rather than the left, and uses signed magnitude for the
exponent (in addition to the mantissa). With the results that an
integral floating point value has (or can have) exactly the same bit
representation as a signed magnitude integer. And there are no floating
point arithmetic instructions: if the exponents of the two values are
both 0, the instruction does integral arithmetic, otherwise, it does
floating point arithmetic. (A continuation of the tagging philosophy in
the architecture.) Which means that while int may occupy 48 bits, 8
of them must be 0, or the value won't be treated as an integer.
Full IEEE 754 compliance is rare in floating-point implementations. And weakening the specification in that regard allows lots of optimizations.
For example the subnorm support differers between x87 and SSE.
Optimizations like fusing a multiplication and addition which were separate in the source code slightly change the results too, but is nice optimization on some architectures.
Or on x86 strict IEEE compliance might require certain flags being set or additional transfers between floating point registers and normal memory to force it to use the specified floating point type instead of its internal 80bit floats.
And some platforms have no hardware floats at all and thus need to emulate them in software. And some of the requirements of IEEE 754 might be expensive to implement in software. In particular the rounding rules might be a problem.
My conclusion is that you don't need exotic architectures in order to get into situations were you don't always want to guarantee strict IEEE compliance. For this reason were few programming languages guarantee strict IEEE compliance.
I found this link listing some systems where CHAR_BIT != 8. They include
some TI DSPs have CHAR_BIT == 16
BlueCore-5 chip (a Bluetooth
chip from Cambridge Silicon Radio) which has CHAR_BIT ==
16.
And of course there is a question on Stack Overflow: What platforms have something other than 8-bit char
As for non two's-complement systems there is an interesting read on
comp.lang.c++.moderated. Summarized: there are platforms having ones' complement or sign and magnitude representation.
I'm fairly sure that VAX systems are still in use. They don't support IEEE floating-point; they use their own formats. Alpha supports both VAX and IEEE floating-point formats.
Cray vector machines, like the T90, also have their own floating-point format, though newer Cray systems use IEEE. (The T90 I used was decommissioned some years ago; I don't know whether any are still in active use.)
The T90 also had/has some interesting representations for pointers and integers. A native address can only point to a 64-bit word. The C and C++ compilers had CHAR_BIT==8 (necessary because it ran Unicos, a flavor of Unix, and had to interoperate with other systems), but a native address could only point to a 64-bit word. All byte-level operations were synthesized by the compiler, and a void* or char* stored a byte offset in the high-order 3 bits of the word. And I think some integer types had padding bits.
IBM mainframes are another example.
On the other hand, these particular systems needn't necessarily preclude changes to the language standard. Cray didn't show any particular interest in upgrading its C compiler to C99; presumably the same thing applied to the C++ compiler. It might be reasonable to tighten the requirements for hosted implementations, such as requiring CHAR_BIT==8, IEEE format floating-point if not the full semantics, and 2's-complement without padding bits for signed integers. Old systems could continue to support earlier language standards (C90 didn't die when C99 came out), and the requirements could be looser for freestanding implementations (embedded systems) such as DSPs.
On the other other hand, there might be good reasons for future systems to do things that would be considered exotic today.
CHAR_BITS
According to gcc source code:
CHAR_BIT is 16 bits for 1750a, dsp16xx architectures.
CHAR_BIT is 24 bits for dsp56k architecture.
CHAR_BIT is 32 bits for c4x architecture.
You can easily find more by doing:
find $GCC_SOURCE_TREE -type f | xargs grep "#define CHAR_TYPE_SIZE"
or
find $GCC_SOURCE_TREE -type f | xargs grep "#define BITS_PER_UNIT"
if CHAR_TYPE_SIZE is appropriately defined.
IEEE 754 compliance
If target architecture doesn't support floating point instructions, gcc may generate software fallback witch is not the standard compliant by default. More than, special options (like -funsafe-math-optimizations witch also disables sign preserving for zeros) can be used.
IEEE 754 binary representation was uncommon on GPUs until recently, see GPU Floating-Point Paranoia.
EDIT: a question has been raised in the comments whether GPU floating point is relevant to the usual computer programming, unrelated to graphics. Hell, yes! Most high performance thing industrially computed today is done on GPUs; the list includes AI, data mining, neural networks, physical simulations, weather forecast, and much much more. One of the links in the comments shows why: an order of magnitude floating point advantage of GPUs.
Another thing I'd like to add, which is more relevant to the OP question: what did people do 10-15 years ago when GPU floating point was not IEEE and when there was no API such as today's OpenCL or CUDA to program GPUs? Believe it or not, early GPU computing pioneers managed to program GPUs without an API to do that! I met one of them in my company. Here's what he did: he encoded the data he needed to compute as an image with pixels representing the values he was working on, then used OpenGL to perform the operations he needed (such as "gaussian blur" to represent a convolution with a normal distribution, etc), and decoded the resulting image back into an array of results. And this still was faster than using CPU!
Things like that is what prompted NVidia to finally make their internal data binary compatible with IEEE and to introduce an API oriented on computation rather than image manipulation.

Are there any modern platforms with non-IEEE C/C++ float formats?

I am writing a video game, Humm and Strumm, which requires a network component in its game engine. I can deal with differences in endianness easily, but I have hit a wall in attempting to deal with possible float memory formats. I know that modern computers have all a standard integer format, but I have heard that they may not all use the IEEE standard for floating-point integers. Is this true?
While certainly I could just output it as a character string into each packet, I would still have to convert to a "well-known format" of each client, regardless of the platform. The standard printf() and atod() would be inadequate.
Please note, because this game is a Free/Open Source Software program that will run on GNU/Linux, *BSD, and Microsoft Windows, I cannot use any proprietary solutions, nor any single-platform solutions.
Cheers,
Patrick
If you properly abstract your network interface, you can have functions/objects that serialize and deserialize the float datatypes. On every system I can think of, these are the IEEE standard, so you'd just have them pass the data through unchanged (the compiler will probably even optimize it out, so you don't lose any performance). If you do encounter some system with a different format, you can conditionally-compile in some code in these functions to do bit hacks to convert from the IEEE standard to the native format. You'll only need to change it in one place. You probably will never need to do so, however, unless you get into consoles/handhelds/etc.
I think it is safe to assume that each platform has an implementation of the IEEE-754 spec that you can rely on. However, even if they all implement the same spec, there is no guarantee that each platform has the exact same implementation, has the same FP control flags set, does the same optimizations, or implements the same non-standard extensions. This makes floating-point determinism very hard to control and somewhat unreliable to use for this kind of thing (where you'll be communicating FP values over the network).
For more information on that; read http://gafferongames.com/networking-for-game-programmers/floating-point-determinism/
Another problem to tackle is handling clients that don't have a floating-point unit; most of the time these will be low-end CPUs, consoles or embedded devices. Make sure to take this into account if you want to target them. FP emulation can be done but tends to be very slow on these devices so you'll have to get a hang of doing fixed-point calculations. Be advised though: writing elaborate classes to abstract floating point and fixed point calculations to the same code sounds like a plan but on most devices it isn'ta good one. It doesn't allow you to squeeze out the maximum precision and performance when dealing with fixed point values.
Yet another problem is handling the endianness of the floating point values because you cannot just swap bytes and stack 'm in a floating point register again (the bytes might get a different meaning, see http://www.dmh2000.com/cpp/dswap.shtml on that).
My advice would be to convert the floats to fixed point intermediate values, do an endian correction if needed and transmit that. Also, don't assume that two floating point calculations on different machines will yield the same results; they don't. However, floating point implementations other than IEEE-754 are rare. For example GPUs tended to use fixed point, but are more likely to have a subset of IEEE-754 these days because they don't want to deal with division-by-zero exceptions but they will have extensions for half-floats that fit in 16 bits.
Also, realize that there are libraries out there that have already solved this problem (sending low-level data formats in a gaming context) for you. One such library is RakNet: specifically, its BitStream class is designed to send these kinds of data reliably to different platforms while keeping the overhead to a minimum. For example, RakNet goes through quite some trouble not to waste any bandwidth on sending strings or vectors.
Some embedded processors do not include any floating-point hardware at all. For desktop computers, I do not see any reason to worry too much, apart from details that only really annoy specialists (sqrt being incorrectly rounded on the Alpha, this kind of thing. The differences that annoy them are in the implementation of the operations, not of the format, anyway).
One variation between platforms is related to the handling of denormals. I asked a question about those a while back. Even that was not as bad as I expected.

How to write portable floating point arithmetic in c++?

Say you're writing a C++ application doing lots of floating point arithmetic. Say this application needs to be portable accross a reasonable range of hardware and OS platforms (say 32 and 64 bits hardware, Windows and Linux both in 32 and 64 bits flavors...).
How would you make sure that your floating point arithmetic is the same on all platforms ? For instance, how to be sure that a 32 bits floating point value will really be 32 bits on all platforms ?
For integers we have stdint.h but there doesn't seem to exist a floating point equivalent.
[EDIT]
I got very interesting answers but I'd like to add some precision to the question.
For integers, I can write:
#include <stdint>
[...]
int32_t myInt;
and be sure that whatever the (C99 compatible) platform I'm on, myInt is a 32 bits integer.
If I write:
double myDouble;
float myFloat;
am I certain that this will compile to, respectively, 64 bits and 32 bits floating point numbers on all platforms ?
Non-IEEE 754
Generally, you cannot. There's always a trade-off between consistency and performance, and C++ hands that to you.
For platforms that don't have floating point operations (like embedded and signal processing processors), you cannot use C++ "native" floating point operations, at least not portably so. While a software layer would be possible, that's certainly not feasible for this type of devices.
For these, you could use 16 bit or 32 bit fixed point arithmetic (but you might even discover that long is supported only rudimentary - and frequently, div is very expensive). However, this will be much slower than built-in fixed-point arithmetic, and becomes painful after the basic four operations.
I haven't come across devices that support floating point in a different format than IEEE 754. From my experience, your best bet is to hope for the standard, because otherwise you usually end up building algorithms and code around the capabilities of the device. When sin(x) suddenly costs 1000 times as much, you better pick an algorithm that doesn't need it.
IEEE 754 - Consistency
The only non-portability I found here is when you expect bit-identical results across platforms. The biggest influence is the optimizer. Again, you can trade accuracy and speed for consistency. Most compilers have a option for that - e.g. "floating point consistency" in Visual C++. But note that this is always accuracy beyond the guarantees of the standard.
Why results become inconsistent?
First, FPU registers often have higher resolution than double's (e.g. 80 bit), so as long as the code generator doesn't store the value back, intermediate values are held with higher accuracy.
Second, the equivalences like a*(b+c) = a*b + a*c are not exact due to the limited precision. Nonetheless the optimizer, if allowed, may make use of them.
Also - what I learned the hard way - printing and parsing functions are not necessarily consistent across platforms, probably due to numeric inaccuracies, too.
float
It is a common misconception that float operations are intrinsically faster than double. working on large float arrays is faster usually through less cache misses alone.
Be careful with float accuracy. it can be "good enough" for a long time, but I've often seen it fail faster than expected. Float-based FFT's can be much faster due to SIMD support, but generate notable artefacts quite early for audio processing.
Use fixed point.
However, if you want to approach the realm of possibly making portable floating point operations, you at least need to use controlfp to ensure consistent FPU behavior as well as ensuring that the compiler enforces ANSI conformance with respect to floating point operations. Why ANSI? Because it's a standard.
And even then you aren't guaranteeing that you can generate identical floating point behavior; that also depends on the CPU/FPU you are running on.
It shouldn't be an issue, IEEE 754 already defines all details of the layout of floats.
The maximum and minimum values storable should be defined in limits.h
Portable is one thing, generating consistent results on different platforms is another. Depending on what you are trying to do then writing portable code shouldn't be too difficult, but getting consistent results on ANY platform is practically impossible.
I believe "limits.h" will include the C library constants INT_MAX and its brethren. However, it is preferable to use "limits" and the classes it defines:
std::numeric_limits<float>, std::numeric_limits<double>, std::numberic_limits<int>, etc...
If you're assuming that you will get the same results on another system, read What could cause a deterministic process to generate floating point errors first. You might be surprised to learn that your floating point arithmetic isn't even the same across different runs on the very same machine!

What is the binary format of a floating point number used by C++ on Intel based systems?

I am interested to learn about the binary format for a single or a double type used by C++ on Intel based systems.
I have avoided the use of floating point numbers in cases where the data needs to potentially be read or written by another system (i.e. files or networking). I do realise that I could use fixed point numbers instead, and that fixed point is more accurate, but I am interested to learn about the floating point format.
Wikipedia has a reasonable summary - see http://en.wikipedia.org/wiki/IEEE_754.
Burt if you want to transfer numbers betwen systems you should avoid doing it in binary format. Either use middleware like CORBA (only joking, folks), Tibco etc. or fall back on that old favourite, textual representation.
This should get you started : http://docs.sun.com/source/806-3568/ncg_goldberg.html. (:
Floating-point format is determined by the processor, not the language or compiler. These days almost all processors (including all Intel desktop machines) either have no floating-point unit or have one that complies with IEEE 754. You get two or three different sizes (Intel with SSE offers 32, 64, and 80 bits) and each one has a sign bit, an exponent, and a significand. The number represented is usually given by this formula:
sign * (2**(E-k)) * (1 + S / (2**k'))
where k' is the number of bits in the significand and k is a constant around the middle range of exponents. There are special representations for zero (plus and minus zero) as well as infinities and other "not a number" (NaN) values.
There are definite quirks; for example, the fraction 1/10 cannot be represented exactly as a binary IEEE standard floating-point number. For this reason the IEEE standard also provides for a decimal representation, but this is used primarily by handheld calculators and not by general-purpose computers.
Recommended reading: David Golberg's What Every Computer Scientist Should Know About Floating-Point Arithmetic
As other posters have noted, there is plenty of information about on the IEEE format used by every modern processor, but that is not where your problems will arise.
You can rely on any modern system using IEEE format, but you will need to watch for byte ordering. Look up "endianness" on Wikipedia (or somewhere else). Intel systems are little-endian, a lot of RISC processors are big-endian. Swapping between the two is trivial, but you need to know what type you have.
Traditionally, people use big-endian formats for transmission. Sometimes people include a header indicating the byte order they are using.
If you want absolute portability, the simplest thing is to use a text representation. However that can get pretty verbose for floating point numbers if you want to capture the full precision. 0.1234567890123456e+123.
Intel's representation is IEEE 754 compliant.
You can find the details at http://download.intel.com/technology/itj/q41999/pdf/ia64fpbf.pdf .
Note that decimal floating-point constants may convert to different floating-point binary values on different systems (even with different compilers on the same system). The difference would be slight -- maybe only as large as 2^-54 for a double -- but is a difference nonetheless.
Use hexadecimal constants if you want to guarantee the same floating-point binary value on any platform.