OpenglGL - how to check if cursor coincides with object region? - c++

I am trying to implement a logic where, on mouse click, a shot is fired at an object.To do so, I did the following,
I first considered the .obj file of my model and found the region (list of coordinates) that the shot works on (a particular weak point of the body).
I then considered the least and largest x,y and z values present in the file for that particular region (xmin,ymin,zmin and xmax,ymax,zmax).
To figure out whether the shot has landed on the weak point, I considered the assumption that a shot would land on the weak point, if the coordinates of the shot lie between (xmin,ymin,zmin) and (xmax,ymax,zmax).
I assumed the coordinates from the .obj file to be the actual coordinates of the model, since the assimp code I have directly loads in the coordinates of the model. Considering (xmin,ymin,zmin) and (xmax,ymax,zmax), I converted the coordinates to window coordinates via gluProject().
I then considered the current cursor position and checked if the cursor position lies between (xmin,ymin,zmin) and (xmax,ymax,zmax).
The problems I now face are:
The object coordinates provided in the .obj file range between -4 to 4, which then lie around 1.0 after gluProject(), whereas the cursor position lies between (0,0) and (1280,720).
After gluProject(), (xmin,ymin) and (xmax,ymax) are either (0,1) or (1,0) whereas the zmin and zmax values seem fine.
How can I get my logic working ?
Here is the code:
// Call shader to draw and acquire necessary information for gluProject()
modelShader.use();
modelShader.setMat4("projection", projection);
modelShader.setMat4("view", view);
glm::mat4 model_dragon;
double time=glfwGetTime();
model_dragon=glm::translate(model_dragon, glm::vec3(cos((360.0-time)/2.0)*60.0,cos(((360.0-time)/2.0))*(-2.5),sin((360-time)/1.0)*60.0));
model_dragon=glm::rotate(model_dragon,(float)(glm::radians(30.0)),glm::vec3(0.0,0.0,1.0));
model_dragon=glm::scale(model_dragon,glm::vec3(1.4,1.4,1.4));
modelShader.setMat4("model", model_dragon);
collision_model=model_dragon;collision_view=view;collision_proj=projection; //so that I can provide the view,model and projection required for gluProject()
ourModel.Draw(modelShader);
Mouse button callback
// Note: dragon_min and dragon_max variables hold the constant position of the min and max coordinates.
void mouse_button_callback(GLFWwindow* window,int button,int action,int mods){
if(button==GLFW_MOUSE_BUTTON_LEFT && action==GLFW_PRESS){
Mix_PlayChannel( -1, shot, 0 ); //Play sound
GLdouble x,y,xmin,ymin,zmin,xmax,ymax,zmax,dmodel[16],dproj[16];
GLint dview[16];
float *model = (float*)glm::value_ptr(collision_model);
float *proj = (float*)glm::value_ptr(collision_proj);
float *view = (float*)glm::value_ptr(collision_view);
for (int i = 0; i < 16; ++i){dmodel[i]=model[i];dproj[i]=proj[i];dview[i]=(int)view[i];} // Convert mat4 to double array
glfwGetCursorPos(window,&x,&y);
gluProject(dragon_min_x,dragon_min_y,dragon_min_z,dmodel,dproj,dview,&xmin,&ymin,&zmin);
gluProject(dragon_max_x,dragon_max_y,dragon_max_z,dmodel,dproj,dview,&xmax,&ymax,&zmax);
if((x>=xmin && x<=xmax) && (y>=ymin && y<=ymax)){printf("Hit\n");defense--;}
The .obj coordinates have eg. values as shown:
0.032046 1.533727 4.398055

You are confusing the parameters of gluProject, especially the view parameter. This parameter should contain 4 integers which describe the viewport (x,y,width,height) and not the view matrix.
gluProject (and a lot of other glu functions) are tailored towards the fixed function pipeline and their matrix stacks. Due to this, you have to pass the following information:
model: The modelview matrix, as returned by glGetDoublev( GL_MODELVIEW_MATRIX, ...)).
proj: The projection matrix, as returned by glGetDoublev( GL_PROJECTION_MATRIX, ...).
view: The current viewport, as returned by glGetIntegerv( GL_VIEWPORT, ...)
As you see, the view matrix is packed together with the model matrix and view contains the viewport.
I'd strongly advice not to use glu functions at all when working with modern OpenGL. Especially when the matrices are already stored in glm, it would be better to use glm::project.
Note1: Converting a floating point matrix to an integer matrix by casting each element almost never results in anything meaningful.
Note2: When projecting a bounding rectangle to screenspace, the result will in general not be a rectangle anymore. During projection, angles are not preserved, thus the result is a general four cornered polygon and not a rectangle anymore. Same goes for bounding boxes: You can't even guarantee that the projected box is contained in the screen-space rectangle defined by projecting [x_min, y_min, z_min] and [x_max, y_max, z_max].

Related

OpenGL Raycasting with any object

I'm just wondering if there was any way which one can perform mouse picking detection onto any object. Whether it would be generated object or imported object.
[Idea] -
The idea I have in mind is that, there would be iterations with every object in the scene. Checking if the mouse ray has intersected with an object. For checking the intersection, it would check the mouse picking ray with the triangles that make up the object.
[Pros] -
I believe the benefit of this approach is that, every object can be detected with mouse picking since they all inherit from the detection method.
[Cons] -
I believe this drawbacks are mainly the speed and the method being very expensive. So would need fine tuning of optimization.
[Situation] -
In the past I have read about mouse picking and I too have implemented some basic form of mouse picking. But all those were crappy work which I am not proud of. So again today, I have re-read some of the stuff from online. Nowadays I see alot of mouse picking using color ids and shaders. I'm not too keen for this method. I'm more into a mathematical side.
So here is my mouse picking ray thingamajig.
maths::Vector3 Camera::Raycast(s32 mouse_x, s32 mouse_y)
{
// Normalized Device Coordinates
maths::Vector2 window_size = Application::GetApplication().GetWindowSize();
float x = (2.0f * mouse_x) / window_size.x - 1.0f;
float y = 1.0f;
float z = 1.0f;
maths::Vector3 normalized_device_coordinates_ray = maths::Vector3(x, y, z);
// Homogeneous Clip Coordinates
maths::Vector4 homogeneous_clip_coordinates_ray = maths::Vector4(normalized_device_coordinates_ray.x, normalized_device_coordinates_ray.y, -1.0f, 1.0f);
// 4D Eye (Camera) Coordinates
maths::Vector4 camera_ray = maths::Matrix4x4::Invert(projection_matrix_) * homogeneous_clip_coordinates_ray;
camera_ray = maths::Vector4(camera_ray.x, camera_ray.y, -1.0f, 0.0f);
// 4D World Coordinates
maths::Vector3 world_coordinates_ray = maths::Matrix4x4::Invert(view_matrix_) * camera_ray;
world_coordinates_ray = world_coordinates_ray.Normalize();
return world_coordinates_ray;
}
I have this ray plane intersection function which calculates if a certain ray as intersected with a certain plane. DUH!
Here is the code for that.
bool Camera::RayPlaneIntersection(const maths::Vector3& ray_origin, const maths::Vector3& ray_direction, const maths::Vector3& plane_origin, const maths::Vector3& plane_normal, float& distance)
{
float denominator = plane_normal.Dot(ray_direction);
if (denominator >= 1e-6) // 1e-6 = 0.000001
{
maths::Vector3 vector_subtraction = plane_origin - ray_origin;
distance = vector_subtraction.Dot(plane_normal);
return (distance >= 0);
}
return false;
}
There are many more out there. E.g. Plane Sphere Intersection, Plane Disk Intersection. These things are like very specific. So it feel that is very hard to do mouse picking intersections on a global scale. I feel this way because, for this very RayPlaneIntersection function. What I expect to do with it is, retrieve the objects in the scene and retrieve all the normals for that object (which is a pain in the ass). So now to re-emphasize my question.
Is there already a method out there which I don't know, that does mouse picking in one way for all objects? Or am I just being stupid and not knowing what to do when I have everything?
Thank you. Thank you.
Yes, it is possible to do mouse-picking with OpenGL: you render all the geometry into a special buffer that stores a unique id of the object instead of its shaded color, then you just look at what value you got at the pixel below the mouse and know the object by its id that is written there. However, although it might be simpler, it is not a particularly efficient solution if your camera or geometry constantly moves.
Instead, doing an analytical ray-object intersection is the way to go. However, you don't need to check the intersection of every triangle of every object against the ray. That would be inefficient indeed. You should cull entire objects by their bounding boxes, or even portions of the whole scene. Game engines have their own spacial index data structure to speed-up ray-object intersections. They need it not only for mouse picking, but also for collision-detection, physics simulations, AI, and what-not.
Also note that the geometry used for the picking might be different from the one used for rendering. One example that comes to mind is that of semi-transparent objects.

Object orientation within an opengl scene

I'm having difficulty getting the right orientation from my objects within a scene. The objects are defined in standard Cartesian coordinates in the same units as I define the scene.
I then define my scenes matrix with the following code:
void SVIS_SetLookAt (double eyePos[3], double center[3], double up[3])
{
// Determine the new n
double vN[3] = {eyePos[0] - center[0], eyePos[1] - center[1], eyePos[2] - center[2]};
// Don't I need to normalize the above?
// Determine the new up by crossing witht he Up Vector.
double vU[3];
MATH_crossproduct(up, vN, vU);
MATH_NormalizeVector(vN);
MATH_NormalizeVector(vU);
// Determine V by crossing n and u...
double vV[3];
MATH_crossproduct(vN, vU, vV);
MATH_NormalizeVector(vV);
// Create the model view matrix.
double modelView[16] = {
vU[0], vV[0], vN[0], 0,
vU[1], vV[1], vN[1], 0,
vU[2], vV[2], vN[2], 0,
// -MATH_Dotd(eyePos, vU), -MATH_Dotd(eyePos, vV), -MATH_Dotd(eyePos, vN), 1
0, 0, 0, 1
};
// Load the modelview matrix. The model view matrix shoudl already be active.
glLoadMatrixd(modelView);
}
I am attempting to display n-1 objects such that each object is facing the object in front of it, excluding the first object which is not displayed. So for each object, I define the up, right, and forward vectors as such:
lal_to_ecef(curcen, pHits->u); // up vector is our position normalized
MATH_subtractVec3D((SVN_VEC3D*) prevcenter, (SVN_VEC3D*) curcen, (SVN_VEC3D*) pHits->f);
MATH_NormalizeVector(pHits->u);
MATH_NormalizeVector(pHits->f);
MATH_crossproduct(pHits->u, pHits->f, pHits->r);
MATH_NormalizeVector(pHits->r);
MATH_crossproduct(pHits->f, pHits->r, pHits->u);
MATH_NormalizeVector(pHits->u);
I then go on to display each object with the following code:
double p[3] = {pHits->cen[0] - position[0],
pHits->cen[1] - position[1],
pHits->cen[2] - position[2]};
glPushMatrix();
SVIS_LookAt(pHits->u, pHits->f, pHits->r, p);
glCallList(G_svisHitsListId);
glPopMatrix();
void SVIS_LookAt (double u[3], double f[3], double l[3], double pos[3])
{
double model[16] = {
l[0], u[0], f[0], 0,
l[1], u[1], f[1], 0,
l[2], u[2], f[2], 0,
pos[0], pos[1], pos[2], 1
};
glMultMatrixd(model);
}
I would expect this to work for any object such that the output would be whatever was defined in the Cartesian coordinate system would be present at the given point oriented such that it was pointed at the proceeding object with 0,1,0 and 0,-1,0 from the defined object would be aligned vertically on the screen. What I am seeing instead (by using simple rectangle as the object to be displayed) is that the objects are consistently rotated about the forward axis.
Can anyone point out what I am doing wrong here?
[Edit]
I've displayed an axis grid without translating by taking the three vectors multiplying a scalar and adding/subtracting it to the centre point. Doing this, the axis align up as I would expect. Overlaying the object described above shows the object to not be aligned the same way. Is there a relationship between the object space forward, right, and up vectors and the desired world-space vectors that I am missing? Am I simply completely off the mark with regards to my rotation translation matrix?
You are conflicted here; part of that matrix is transposed and part of
it is correct... you have the 4th column correct but your top-left 3x3
matrix is transposed. Each column of the 3x3 matrix (row in that array
of 16 double) is supposed to be one of your axes. It should be:
l[0],l[1],l[2],0, u[0],u[1],u[2],0, f[0],f[1],f[2],0,
pos[0],pos[1],pos[2],1. – Andon M. Coleman
This was dead on. Thanks Andon.
Building an entirely new modelview matrix from scratch using a 'lookat' implementation for each object is, frankly, crazy (or will at least drive you crazy). What you're doing is tantamount to trying to build a scene by having set of objects which are always in a fixed location, and constantly repositioning a camera to catch them from different angles.
A lookat style function should be called once to set up the camera (the view portion of the modelview matrix) position, and subsequently you should be using the matrix stack to position objects within the scene (the model portion of the modelview matrix). That's why it's called the modelview matrix, and not just the view matrix.
In code terms, it would look something like this
// Set up camera position
SVIS_LookAt(....);
for (int i = 0; i < n; ++i) {
glPushMatrix();
// move the object to it's location relative to the world coordinate system
glTranslate(...);
// rotate the object to have the correct orientation
glRotate(...);
// render the geometry
glCallList(...);
glPopMatrix();
}
Of course this assumes that everything has it's position defined in world coordinates. If you have a hierarchy of objects, then you would need to descend into an objects children between the glCallList and glPopMatrix in order to have their locations applied relative to their parent object.

opengl - Rotating around a sphere using vectors and NOT glulookat

I'm having an issue with drawing a model and rotating it using the mouse,
I'm pretty sure there's a problem with the mathematics but not sure .
The object just rotates in a weird way.
I want the object to start rotating each click from its current spot and not reset because of the
vectors are now changed and the calculation starts all over again.
void DrawHandler::drawModel(Model * model){
unsigned int l_index;
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glMatrixMode(GL_MODELVIEW); // Modeling transformation
glLoadIdentity();
Point tempCross;
crossProduct(tempCross,model->getBeginRotate(),model->getCurrRotate());
float tempInner= innerProduct(model->getBeginRotate(),model->getCurrRotate());
float tempNormA =normProduct(model->getBeginRotate());
float tempNormB=normProduct(model->getCurrRotate());
glTranslatef(0.0,0.0,-250.0);
glRotatef(acos (tempInner/(tempNormA*tempNormB)) * 180.0 / M_PI,tempCross.getX(),tempCross.getY(),tempCross.getZ());
glColor3d(1,1,1);
glBegin(GL_TRIANGLES);
for (l_index=0;l_index < model->getTrianglesDequeSize() ;l_index++)
{
Triangle t = model->getTriangleByPosition(l_index);
Vertex a1 = model->getVertexByPosition(t.getA());
Vertex a2 = model->getVertexByPosition(t.getB());
Vertex a3 = model->getVertexByPosition(t.getC());
glVertex3f( a1.getX(),a1.getY(),a1.getZ());
glVertex3f( a2.getX(),a2.getY(),a2.getZ());
glVertex3f( a3.getX(),a3.getY(),a3.getZ());
}
glEnd();
}
This is the mouse function which saves the beginning vector of the rotating formula
void Controller::mouse(int btn, int state, int x, int y)
{
x=x-WINSIZEX/2;
y=y-WINSIZEY/2;
if (btn==GLUT_LEFT_BUTTON){
switch(state){
case(GLUT_DOWN):
if(!_rotating){
_model->setBeginRotate(Point(float(x),float(y),
(-float(x)*x - y*y + SPHERERADIUS*SPHERERADIUS < 0)? 0:float(sqrt(-float(x)*x - y*y + SPHERERADIUS*SPHERERADIUS))));
_rotating=true;
}
break;
case(GLUT_UP):
_rotating=false;
break;
}
}
}
and finally the following function which holds the current vector.
(the beginning vector is where the mouse was clicked at
and the curr vector is where the mouse position at the moment )
void Controller::getMousePosition(int x,int y){
x=x-WINSIZEX/2;
y=y-WINSIZEY/2;
if(_rotating){
_model->setCurrRotate(Point(float(x),float(y),
(-float(x)*x - y*y + SPHERERADIUS*SPHERERADIUS < 0)? 0:float(sqrt(-float(x)*x - y*y + SPHERERADIUS*SPHERERADIUS))));
}
}
where sphereradius is the sphere radius O_O of 70 degress
is any calculation wrong ? cant seem to find the problem...
thanks
Why so complicated? Either you change the view matrix or you change the model matrix of your focused object. If you choose to change the model matrix and your object is centered in (0,0,0) of the world coordinate system, computing the rotation around a sphere illusion is trivial - you just rotate into the opposite direction. If you want to change the view matrix (which is actually done when you change the position of the camera) you have to approximate the surface points on the chosen sphere. Therefore, you could introduce two parameters specifying two angles. Everytime you click move your mouse, you update the params and compute the new locations on the sphere. There are some useful equations in [http://en.wikipedia.org/wiki/Sphere].
Without knowing what library (or libraries) you're using your code is rather difficult to read. It seems you're setting up your camera at (0, 0, -250), looking towards the origin, then rotating around the origin by the angle between two vectors, model->getCurrRotate() and model->getBeginRotate().
The problem seems to be that in "mouse down" events you explicitly set BeginRotate to the point on the sphere under the mouse, then in "mouse move" events you set CurrRotate to the point under the mouse, so every time you click somewhere else, you lose the previous state of rotation because BeginRotate and CurrRotate are simply overwritten.
Combining multiple rotations around arbitrary different axes is not a trivially simple task. The proper way to do it is to use quaternions. You may find this primer on quaternions and other 3D math concepts useful.
You might also want a more robust algorithm for converting screen coordinates to model coordinates on the sphere. The one you are using is assuming the sphere appears 70 pixels in radius on the screen and that the projection matrix is orthographic.

Mirroring the Y axis in SFML

Hey so I'm integrating box2d and SFML, and box2D has the same odd, mirrored Y-axis coordinate system as SFML, meaning everything is rendered upside down. Is there some kind of function or short amount of code I can put that simply mirrors the window's render contents?
I'm thinking I can put something in sf::view to help with this...
How can i easily flip the Y-axis easily, for rendering purposes, not effecting the bodies dimensions/locations?
I don't know what is box2d but when I wanted to flip Y axis using openGL, I just applied negative scaling factor to projection matrix, like:
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glScalef(1.0f, -1.0f, 1.0f);
If you want to do it independent of openGL simply apply a sf::View with a negative x value.
It sounds like your model uses a conventional coordinate system (positive y points up), and you need to translate that to the screen coordinate system (positive y points down).
When copying model/Box2D position data to any sf::Drawable, manually transform between the model and screen coordinate systems:
b2Vec2 position = body->GetPosition();
sprite.SetPosition( position.x, window.GetHeight() - position.y )
You can hide this in a wrapper class or function, but it needs to sit between the model and renderer as a pre-render transform. I don't see a place to set that in SFML.
I think Box2D has the coordinate system you want; just set the gravity vector based on your model (0, -10) instead of the screen.
How can i easily flip the Y-axis easily, for rendering purposes, not effecting the bodies dimensions/locations?
By properly applying transforms. First, you can apply a transform that sets the window's bottom-left corner as the origin. Then, scale the Y axis by a factor of -1 to flip it as the second transform.
For this, you can use sf::Transformable to specify each transformation individually (i.e., the setting of the origin and the scaling) and then – by calling sf::Transformable::getTransform() – obtain an sf::Transform object that corresponds to the composed transform.
Finally, when rendering the corresponding object, pass this transform object to the sf::RenderTarget::draw() member function as its second argument. An sf::Transform object implicitly converts to a sf::RenderStates which is the second parameter type of the corresponding sf::RenderTarget::draw() overload.
As an example:
#include <SFML/Graphics.hpp>
auto main() -> int {
auto const width = 300, height = 300;
sf::RenderWindow win(sf::VideoMode(width, height), "Transformation");
win.setFramerateLimit(60);
// create the composed transform object
const sf::Transform transform = [height]{
sf::Transformable transformation;
transformation.setOrigin(0, height); // 1st transform
transformation.setScale(1.f, -1.f); // 2nd transform
return transformation.getTransform();
}();
sf::RectangleShape rect({30, 30});
while (win.isOpen()) {
sf::Event event;
while (win.pollEvent(event))
if (event.type == sf::Event::Closed)
win.close();
// update rectangle's position
rect.move(0, 1);
win.clear();
rect.setFillColor(sf::Color::Blue);
win.draw(rect); // no transformation applied
rect.setFillColor(sf::Color::Red);
win.draw(rect, transform); // transformation applied
win.display();
}
}
There is a single sf::RectangleShape object that is rendered twice with different colors:
Blue: no transform was applied.
Red: the composed transform was applied.
They move in opposite directions as a result of flipping the Y axis.
Note that the object space position coordinates remain the same. Both rendered rectangles correspond to the same object, i.e., there is just a single sf::RectangleShape object, rect – only the color is changed. The object space position is rect.getPosition().
What is different for these two rendered rectangles is the coordinate reference system. Therefore, the absolute space position coordinates of these two rendered rectangles also differ.
You can use this approach in a scene tree. In such a tree, the transforms are applied in a top-down manner from the parents to their children, starting from the root. The net effect is that children's coordinates are relative to their parent's absolute position.

World-Coordinate Issues with gluUnProject()

I'm currently calling Trace (method below) from a game loop. Right now all I'm trying to do is get the world coordinates from the screen mouse so I can move objects around in the world space. The values I'm getting from gluUnProject are however; puzzling me.
I was using glReadPixel(...) to get the Z value but that produced little to no movement in the object I was drawing and the resulting vector ended up being the same as my cameras location (except for the tiny decimal changes due to mouse movement), so I decided to get rid of the call and replace the Z value with 1.
My question is: Does the following code look right to you? Every example I've seen thusfar is either identical or -very- similar but I can't seem to produce correct results, even if I lock down the Y axis. If the code is correct, then I'm guessing that I'm just not using the resulting vector properly. Should I not be able to draw an object or point directly with the resulting vector or do I have to do something else with it, like normalize?
The current render mode is GL_RENDER and I am using glFrustum with a NearZ value of 1 and FarZ value of 2048, to create a perspective. There is also a series of viewports created along with scissors, with a size and width of 512x768 and positioned in each corner of a 1024x768 window. Trace(...) is called in between rendering of the upper left viewport and is the only perspective projection, while the other viewports are orthographic. FOV is set to 45.
void VideoWindow::Trace(int cursorX, int cursorY)
{
double objX, objY, objZ;//holder for world coordinates
GLint view[4];//viewport dimensions+pos
GLdouble p[16];//projection matrix
GLdouble m[16];//modelview matrix
GLdouble z;//Z-Buffer Value?
glGetDoublev (GL_MODELVIEW_MATRIX, m);
glGetDoublev (GL_PROJECTION_MATRIX,p);
glGetIntegerv( GL_VIEWPORT, view );
//view[3]-cursorY = conversion from upper left (0,0) to lower left (0,0)
//Unproject 2D Screen coordinates into wonderful world coordinates
gluUnProject(cursorX, view[3]-cursorY, 1, m, p, view, &objX, &objY, &objZ);
//Do something useful here???
}
Any ideas?
Edit: I've changed the winZ value to 0.5 instead of 1 which gives a vector thats more reasonable but drawing a point still wasn't matching the mouse. I found out that the value of view[3] was 384 which is correct for the viewport I'm using but I replaced it with 768 (the actual window size) and the point followed the mouse 100%. Further experimentation reveals that I can't use the coordinates to move around a 3D object in the perspective world space using this these coordinates however moving around 3D object in Orthographic space works fine.
The winz argument to gluUnproject specifies the depth from the camera at which you're "picking" your points. As you've stated this coordinate should be in the [0, 1] range.
Some tutorials like NeHes read out the z coordinate from the depth buffer so that you "pick" at the right depth, of course for this to work you'll have to do the gluUnproject after you've rendered everything else.
Regardless, if you set winz to 0.5 or something (not 0 or 1 or the point will end up on the near or far clip plane, and maybe culled) and do the following:
gluUnProject(cursorX, view[3]-cursorY, 0.5, m, p, view, &objX, &objY, &objZ);
//Do something useful here???
glPointSize(10);
glBegin(GL_POINTS);
glColor3f(1, 0, 0);
glVertex3f(objX, objY, objZ);
glEnd();
You should end up with a red blob at the mouse pointer (provided nothing else overdraws it afterwards and you don't have any funny render states which renders the point invisible).
just a thought, but if the third argument to gluUnProject is the z distance to the camera, wouldn't any point you draw at that location be on the near clipping plane of your frustum?
Better make that z value a bit higher.