Template template parameter with typed parameters? - c++

The following code does not compile. Is it even possible to pass an instance of Configuration<t, u> as a template parameter? (to profit from optimization of constant expressions)
API:
template <int t, bool u>
struct Configuration {
static constexpr int commonValue = t;
static constexpr bool debug = u;
};
template <
template<int t, bool u> Configuration<t, u> &conf,
int x
>
class A {
public:
int doSomething() {
if (conf.debug) { // Optimize away if false
// ...
}
return x * conf.commonValue; // Optimize to e.g. 6 with `conf.commonValue` =
// 3, `x` = 2
}
};
The user of the API should be able to do:
int main() {
static constexpr Configuration<3, false> conf;
A<conf, 2> a;
A<conf, 5> b;
A<conf, 8> c;
std::cout << a.doSomething() << std::endl; // 6 (evaluated at compile time!)
std::cout << b.doSomething() << std::endl; // 15
std::cout << c.doSomething() << std::endl; // 24
}

Since the attributes of Configuration are static, you should use a template type parameter1:
template <class ConfT, int x>
class A {
public:
int doSomething() {
if (ConfT::debug) { // Optimize away if false
}
return x * ConfT::commonValue;
}
};
And then:
// Alias (not required):
using conf = Configuration<3, false>;
A<conf, 2> a;
A<conf, 3> b;
If you want non-static members, I don't think this is doable pre-C++17 (without passing template parameters of Configuration to A), but in C++17 you could do1:
template <auto const& conf, int x>
class A {
public:
int doSomething() {
if (conf.debug) { // Optimize away if false
}
return x * conf.commonValue;
}
};
But note that you can only pass references to variables with static storage duration.
1 In the first case, you can restrict the type to Configuration<...> by specializing A, in the second case, you can restrict the type of conf using an extra template parameter with std::enable_if.
You should also make the attributes constexpr in Configuration, not simply const:
template <int t, bool u>
struct Configuration {
static constexpr int commonValue = t;
static constexpr bool debug = u;
};

Related

if constexpr block not compiling

I have a class that can inherit from an empty struct or from a struct with some members, depending on a bool. Using that same bool, I am adding an if constexpr block to access the members of the base class, but I am getting a compiler error
struct A{};
struct B{};
struct C{};
template <typename J0, typename J1>
struct HasFriction {
constexpr static bool value = false;
};
template <> struct HasFriction<A,B> {
constexpr static bool value = true;
};
template <bool> struct Friction { };
template <> struct Friction<true> { int value = 4; };
template <typename J0, typename J1>
struct MyStruct : public Friction<HasFriction<J0, J1>::value> {};
int main()
{
if constexpr (HasFriction<A, C>::value) {
MyStruct<A,C> f;
return f.value;
} else {
MyStruct<A,C> no_f;
return 0;
}
}
Why is this not working, and how should I fix it?
Why is this not working and how should I fix it?
In order to work if constexpr (i.e. discard the false statement at compile time), you need to make it template depended.
From cppreference.com, under the if constexpr section:
Outside a template, a discarded statement is fully checked. if constexpr is not a substitute for the #if preprocessing directive:
void f() {
if constexpr(false) {
int i = 0;
int *p = i; // Error even though in discarded statement
}
}
Therefore, the fix is to wrap the statement into a template function, as follows:
template<typename T1, typename T2> auto func()
{
if constexpr (HasFriction<T1, T2>::value) {
MyStruct<A, C> f;
return f.value;
}
else {
MyStruct<A, C> no_f;
return 0;
}
}
Now in main()
func<A, B>();
See a demo

Declare a constexpr static member that is a function of a potentially-absent member in a template parameter?

I have a templated class for which I would like to provide a constexpr integer whose value is determined by the presence or absence of a constexpr integer in the template parameter:
template<typename Traits>
class Foo
{
static constexpr int MaxDegree =
std::conditional<
std::is_integral<Traits::MaxDegree>::value,
std::integral_constant<int, Traits::MaxDegree>,
std::integral_constant<int, 0>
>::value;
};
struct TraitA { };
struct TraitB { constexpr static int MaxDegree = 1; };
int main()
{
std::cout
<< Foo<TraitA>::MaxDegree /* should be 0 */ << " "
<< Foo<TraitB>::MaxDegree; /* should be TraitB::MaxDegree == 1 */
<< "\n";
}
Obviously, this doesn't work since std::is_integral fails for TraitA. Is there anything that will work?
I'm constrained to c++11.
Traits::MaxDegree
yields a compiler error, if the member doesn't exist. This means you cannot use this code as part of the expression directly.
You could use constexpr functions with SFINAE to implement this though:
template<class T>
constexpr typename std::enable_if<std::is_integral<decltype(T::MaxDegree)>::value, int>::type GetMaxDegree()
{
return T::MaxDegree;
}
template<class T>
constexpr int GetMaxDegree(...) // this one is only used, if the first version results in a substitution failure
{
return 0;
}
template<typename Traits>
class Foo
{
public:
static constexpr int MaxDegree = GetMaxDegree<Traits>();
};

Template non-type parameter with different types

Let's assume an input template parameter T may or may not have internal variable bar. I am trying to write a struct that returns the value of bar when we have it, and returns some constant when we don't. Here is my attempt:
struct A {
static constexpr unsgined int bar = 20;
hasBar = true;
};
struct B {
hasBar = false;
};
template <typename T, typename std::enable_if<T::hasBar, int>::type>
struct getBar {
static constexpr unsigned int bar = T::bar;
};
template <typename T, typename std::enable_if<!T::hasBar, int>::type>
struct getBar {
static constexpr unsigned int bar = 0;
};
int main() {
getBar<A>::bar; // Expect 20
getBar<B>::bar; //Expect 0
}
I cannot compile this code with C++14. The compiler complains that: "template non-type parameter has a different type".
Why we have such an error and how can I address it?
Class templates can't be overloaded (like function templates); You can use specialization instead. e.g.
template <typename T, typename = void>
struct getBar {
static constexpr unsigned int bar = 0;
};
template <typename T>
struct getBar<T, std::enable_if_t<T::hasBar>> {
static constexpr unsigned int bar = T::bar;
};
LIVE
You can detect whether ::bar exists directly without the need for hasbar
something like ...
#include <type_traits>
#include <iostream>
struct A {
static constexpr unsigned int bar = 20;
};
struct B {
};
template <typename T,typename=void>
struct getBar {
static constexpr unsigned int bar = 0;
};
template <typename T>
struct getBar<T,std::void_t<decltype(T::bar)>> {
static constexpr unsigned int bar = T::bar;
};
int main() {
std::cout << getBar<A>::bar << std::endl; // Expect 20
std::cout << getBar<B>::bar << std::endl; //Expect 0
}
Demo
Another solution that doesn't needs hasBar but simply detect the presence of bar (and also maintain the original type of bar, if different from int)
struct A
{ static constexpr unsigned int bar = 20; };
struct B
{ };
template <typename T>
constexpr auto getBarHelper (int) -> decltype( T::bar )
{ return T::bar; }
template <typename T>
constexpr int getBarHelper (long)
{ return 0; }
template <typename T>
struct getBar
{ static constexpr auto bar { getBarHelper<T>(0) }; };
int main()
{
static_assert( 20u == getBar<A>::bar, "!" );
static_assert( 0 == getBar<B>::bar, "!" );
}

How to check for static member variable template?

I need to define a class, foo, with a static member variable template, foo::static_variable_template<T>. This member should only exist when T fulfills certain requirements. For example, when the constexpr static function T::constexpr_static_function() exists. Otherwise, foo::static_variable_template<T> should not exist. Moreover, I would like to be able to test for the existence of foo::static_variable_template<T> at compile-time via SFINAE.
Here is an approximation of what I would like to do:
#include <iostream>
struct foo
{
template<class T>
static constexpr int static_variable_template =
T::constexpr_static_function();
// XXX this works but requires a second defaulted template parameter
// template<class T, int = T::constexpr_static_function()>
// static constexpr int static_variable_template =
// T::constexpr_static_function();
};
struct has_constexpr_static_function
{
static constexpr int constexpr_static_function() { return 42; }
};
struct hasnt_constexpr_static_function
{
};
template<class T, class U,
int = T::template static_variable_template<U>>
void test_for_static_variable_template(int)
{
std::cout << "yes it has\n";
}
template<class T, class U>
void test_for_static_variable_template(...)
{
std::cout << "no it hasn't\n";
}
int main()
{
test_for_static_variable_template<foo, has_constexpr_static_function>(0);
test_for_static_variable_template<foo, hasnt_constexpr_static_function>(0);
}
This approximation nearly works, but only if foo::static_variable_template has a second, defaulted template parameter. Because this second parameter is an implementation detail, I'd like to hide it from the public interface of foo::static_variable_template.
Is this possible in C++17?
I am not sure if your intent is to initialise foo::static_variable_template with 0 if T::constexpr_static_function() is missing or you want to disable it entirely. In case of the former, this might be useful. For example, this (clunky) solution works (requires C++17 for if constexpr; note that your variable is now a function):
#include <iostream>
template <typename T>
class has_func
{
typedef char does;
typedef long doesnt;
template <typename C> static does test( decltype(&C::constexpr_static_function) );
template <typename C> static doesnt test(...);
public:
static constexpr bool value()
{
return sizeof(test<T>(0)) == sizeof(char);
}
};
struct foo
{
template<class T>
static constexpr int static_variable_template()
{
if constexpr (has_func<T>::value())
{
return T::constexpr_static_function();
}
return 0;
}
// XXX this works but requires a second defaulted template parameter
// template<class T, int = T::constexpr_static_function()>
// static constexpr int static_variable_template =
// T::constexpr_static_function();
};
struct has_constexpr_static_function
{
static constexpr int constexpr_static_function() { return 42; }
};
struct hasnt_constexpr_static_function
{
};
template<class T, class U>
void test_for_static_variable_template(...)
{
if constexpr (has_func<U>::value())
{
std::cout << "yes it has\n";
}
else
{
std::cout << "no it hasn't\n";
}
}
int main()
{
std::cout << foo::static_variable_template<has_constexpr_static_function>() << "\n";
std::cout << foo::static_variable_template<hasnt_constexpr_static_function>() << "\n";
/// Original test
test_for_static_variable_template<foo, has_constexpr_static_function>(0);
test_for_static_variable_template<foo, hasnt_constexpr_static_function>(0);
}
Prints
42
0
yes it has
no it hasn't
Tested with clang 5.0.1.
In case you want to disable foo::static_variable_template entirely, you might need to use std::enable_if:
#include <iostream>
template <typename T>
class has_func
{
typedef char does;
typedef long doesnt;
template <typename C> static does test( decltype(&C::constexpr_static_function) );
template <typename C> static doesnt test(...);
public:
static constexpr bool value()
{
return sizeof(test<T>(0)) == sizeof(char);
}
};
struct foo
{
template<class T, typename std::enable_if<has_func<T>::value()>::type ...>
static constexpr int static_variable_template()
{
if constexpr (has_func<T>::value())
{
return T::constexpr_static_function();
}
return 0;
}
// XXX this works but requires a second defaulted template parameter
// template<class T, int = T::constexpr_static_function()>
// static constexpr int static_variable_template =
// T::constexpr_static_function();
};
struct has_constexpr_static_function
{
static constexpr int constexpr_static_function() { return 42; }
};
struct hasnt_constexpr_static_function
{
};
template<class T, class U>
void test_for_static_variable_template(...)
{
if constexpr (has_func<U>::value())
{
std::cout << "yes it has\n";
}
else
{
std::cout << "no it hasn't\n";
}
}
int main()
{
std::cout << foo::static_variable_template<has_constexpr_static_function>() << "\n";
// We can't print this because it doesn't exist.
// std::cout << foo::static_variable_template<hasnt_constexpr_static_function>() << "\n";
/// Original test
test_for_static_variable_template<foo, has_constexpr_static_function>(0);
test_for_static_variable_template<foo, hasnt_constexpr_static_function>(0);
}
In this line of thought, I am not sure if you can disable a static template variable with std::enable_if. To quote the great Riemann, "I have for the time being, after some fleeting vain attempts, provisionally put aside the search for this..."

How to detect whether there is actually a specific member variable in class?

I am purposely using the very same title as this question because I feel that the answer that was accepted does not account for a problem that I am stuck into.
I am looking for a way to detect if some class has some member variable. It is fundamental to note that I am looking for a variable, not a member function or anything else.
Here is the example provided in the question I linked:
template<typename T> struct HasX {
struct Fallback { int x; }; // introduce member name "x"
struct Derived : T, Fallback { };
template<typename C, C> struct ChT;
template<typename C> static char (&f(ChT<int Fallback::*, &C::x>*))[1];
template<typename C> static char (&f(...))[2];
static bool const value = sizeof(f<Derived>(0)) == 2;
};
struct A { int x; };
struct B { int X; };
int main() {
std::cout << HasX<A>::value << std::endl; // 1
std::cout << HasX<B>::value << std::endl; // 0
}
But we will get the very same output if we do something like
template<typename T> struct HasX {
struct Fallback { int x; }; // introduce member name "x"
struct Derived : T, Fallback { };
template<typename C, C> struct ChT;
template<typename C> static char (&f(ChT<int Fallback::*, &C::x>*))[1];
template<typename C> static char (&f(...))[2];
static bool const value = sizeof(f<Derived>(0)) == 2;
};
struct A {
void x()
{
}
};
struct B { int X; };
int main() {
std::cout << HasX<A>::value << std::endl; // 1
std::cout << HasX<B>::value << std::endl; // 0
}
(Please note that in the second example the int x in A was substituted with a member function void x()).
I have no real idea on how to work around this problem. I partially fixed this by doing something like
template <bool, typename> class my_helper_class;
template <typename ctype> class my_helper_class <true, ctype>
{
static bool const value = std :: is_member_object_pointer <decltype(&ctype :: x)> :: value;
};
template <typename ctype> class my_helper_class <false, ctype>
{
static bool const value = false;
};
template <typename T> struct HasX
{
// ...
static bool const value = my_helper_class <sizeof(f <Derived>(0)) == 2, T> :: value;
};
Which actually selects if I am using an object. However, the above doesn't work if there are more overloaded functions with the same name x in my class.
For example if I do
struct A
{
void x()
{
}
void x(int)
{
}
};
Then the pointer is not resolved successfully and the a call to HasX <A> doesn't compile.
What am I supposed to do? Is there any workaround or simpler way to get this done?
The problem is that HasX only checks if the name x exists. The ... gets selected if &C::x is ambiguous (which happens if it matches both in Fallback and T). The ChT<> overload gets selected only if &C::x is exactly Fallback::x. At no point are we actually checking the type of T::x - so we never actually check if x is a variable or function or whatever.
The solution is: use C++11 and just check that &T::x is a member object pointer:
template <class T, class = void>
struct HasX
: std::false_type
{ };
template <class T>
struct HasX<T,
std::enable_if_t<
std::is_member_object_pointer<decltype(&T::x)>::value>
>
: std::true_type { };
If &T::x doesn't exist, substitution failure and we fallback to the primary template and get false_type. If &T::x exists but is an overloaded name, substitution failure. If &T::x exists but is a non-overloaded function, substitution failure on enable_if_t<false>. SFINAE for the win.
That works for all of these types:
struct A {
void x()
{
}
void x(int)
{
}
};
struct B { int X; };
struct C { int x; };
struct D { char x; };
int main() {
static_assert(!HasX<A>::value, "!");
static_assert(!HasX<B>::value, "!");
static_assert(HasX<C>::value, "!");
static_assert(HasX<D>::value, "!");
}