Template parameter of an object validation - c++

I am trying to validate in this function, if the parameter T is of type char* also, how can I achieve that because in this implementation it will return false and getValue returns object of type T
template<class T>
bool Pair<T>::operator==(const Pair<T> &pair)
{
if(strcmp(getKey(),pair.getKey())==0 && pair.getValue()==pair.getValue())
{
return true;
}
return false;
}

If you want to specialize a member function for a template class, you need to specialize the entire class. Here is a bare minimum example to give you an idea.
#include <iostream>
#include <cstring>
template <typename T>
class Pair {
public:
Pair(T val) : value(val) {}
bool operator==(const Pair& other) {
return value == other.value;
}
private:
T value;
};
template <>
class Pair<char*> {
public:
Pair(const char* val) {
std::size_t size = std::strlen(val) + 1;
value = new char[size];
memcpy(value, val, size);
}
~Pair() {
delete value;
}
bool operator==(const Pair& other) {
return std::strcmp(value, other.value) == 0;
}
private:
char* value;
};
int main() {
Pair<int> p1(5), p2(5), p3(4);
Pair<char*> p4("Hey"), p5("Hey"), p6("Bye");
std::cout << (p1 == p2) << '\n' << (p1 == p3) << '\n';
std::cout << (p4 == p5) << '\n' << (p4 == p6) << '\n';
}

Related

Handling custom vector classes

I have come across many occasions where I want to have an item which is selected inside a vector, for this I have written the template class:
// a vector wrapper which allows a specific item to be currently selected
template<typename T>
class VectorSelectable
{
public:
VectorSelectable() {};
VectorSelectable(std::initializer_list<T> items) : m_Items(items) {};
void Add(const T& v) { m_Items.push_back(v); m_CurrentIndex = m_Items.size()-1; } // lvalue & refs
void Add(T&& v) { m_Items.push_back(std::move(v)); m_CurrentIndex = m_Items.size()-1; } // rvalue
void Remove(size_t index) {
assert(index < m_Items.size());
m_Items.erase(m_Items.begin() + index);
if(m_CurrentIndex != -1 && (int)index <= m_CurrentIndex)
m_CurrentIndex--;
}
void RemoveCurrent() { assert(m_CurrentIndex > -1 && m_CurrentIndex < (int)m_Items.size()); Remove(m_CurrentIndex); }
T& CurrentItem() { assert(m_CurrentIndex > -1 && m_CurrentIndex < (int)m_Items.size()); return m_Items[m_CurrentIndex]; }
T& operator [](size_t index) { assert(index < Size()); return m_Items[index]; }
// moves value of n_next onto n, and n_new onto n
void ItemSwap(size_t n, size_t n_Next) {
assert(n < m_Items.size());
assert(n_Next < m_Items.size());
T itemBuf = std::move(m_Items[n]);
m_Items[n] = m_Items[n_Next];
m_Items[n_Next] = std::move(itemBuf);
}
size_t Size() { return m_Items.size(); }
const std::vector<T>& Data() { return m_Items; }
std::vector<T>* DataPtr() { return &m_Items; }
T* ItemPtr(size_t index) { assert(index < m_Items.size()); return &m_Items[index]; }
void SetCurrentIndex(int index) { assert(index >= -1 && index < (int)m_Items.size()); m_CurrentIndex = index; }
int& CurrentIndex() { return m_CurrentIndex; }
bool HasItemSelected() { return m_CurrentIndex != -1; }
private:
std::vector<T> m_Items;
int m_CurrentIndex = -1;
};
I am also coming across many scenarios where I want a vector of unique_ptrs (generally for polymorphic classes), this looks like this:
template<typename T>
class Vector_UniquePtrs
{
public:
// Adds an Item (and returns a raw ptr to it)
// usage: v.Add() ... (equivelent to v.Add<base_class>())
template<typename... Args>
T* Add(Args... args) {
return Add<T>(args...);
}
// Adds a Polymorphic Item (and returns a raw ptr to it)
// usage: v.Add<sub_class>()
template<typename T2, typename... Args>
T* Add(Args... args) {
m_Items.push_back(std::unique_ptr<T>(new T2(args...)));
return m_Items.back().get();
}
// Remove Item
void Remove(size_t index) {
assert(index < m_Items.size());
m_Items.erase(m_Items.begin() + index);
}
T* operator [](size_t index) { assert(index < Size()); return m_Items[index].get(); }
size_t Size() { return m_Items.size(); }
private:
std::vector<std::unique_ptr<T>> m_Items;
};
My question is:
How can I handle a combination of these 2 class types (e.g. VectorSelectable<unique_ptr>) as one returns ptrs, the other returns references, is the only option to write an entirely new class?
You mainly need to put the std::vector<std::unique_ptr<T>> in VectorSelectable and hide all the pointer stuff from the interface. With a few small changes to your class, it could look like this:
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <memory>
#include <utility>
#include <vector>
template <typename T>
class VectorPtrSelectable {
public:
VectorPtrSelectable() = default;
VectorPtrSelectable(std::initializer_list<T> items) :
m_CurrentIndex(items.size() - 1)
{
m_Items.reserve(items.size());
// fill `m_Items` from the initializer list ...
std::transform(items.begin(), items.end(), std::back_inserter(m_Items),
[](const T& item) {
// ... by creating a unique_ptr from each element (transformation)
return std::make_unique<T>(item);
});
};
template <class U, class... Args>
T& Add(Args&&... args) {
// make `Add` forward to `make_unique`
m_Items.emplace_back(std::make_unique<U>(std::forward<Args>(args)...));
m_CurrentIndex = m_Items.size() - 1;
// and return a reference instead
return *m_Items.back();
}
template <class... Args>
T& Add(Args&&... args) {
// forward to Add<U>
return Add<T>(std::forward<Args>(args)...);
}
void Remove(size_t index) {
m_Items.erase(std::next(m_Items.begin(), index));
if (m_CurrentIndex != static_cast<size_t>(-1) && index <= m_CurrentIndex)
m_CurrentIndex--;
}
T& operator[](size_t index) { return *m_Items[index]; }
const T& operator[](size_t index) const { return *m_Items[index]; }
T& CurrentItem() { return *m_Items[m_CurrentIndex]; }
const T& CurrentItem() const { return *m_Items[m_CurrentIndex]; }
void SetCurrentIndex(size_t index) { m_CurrentIndex = index; }
void RemoveCurrent() { Remove(m_CurrentIndex); }
bool HasItemSelected() { return m_CurrentIndex != static_cast<size_t>(-1); }
void ItemSwap(size_t n, size_t n_Next) {
// simplified swapping:
std::swap(m_Items[n], m_Items[n_Next]);
}
// make functions that does not change your instance const qualified:
size_t CurrentIndex() const { return m_CurrentIndex; }
size_t Size() const { return m_Items.size(); }
private:
std::vector<std::unique_ptr<T>> m_Items;
size_t m_CurrentIndex = static_cast<size_t>(-1); // size_t for the index
};
Example usage:
#include <iostream>
#include <string>
int main() {
VectorPtrSelectable<std::string> vs{"World", "Hello"};
std::cout << vs.CurrentItem() << '\n';
vs.ItemSwap(0, 1);
std::cout << vs.CurrentItem() << '\n';
vs.RemoveCurrent();
std::cout << vs.CurrentItem() << '\n';
std::cout << vs.Add("Add and get a reference") << '\n';
}
Output:
Hello
World
Hello
Add and get a reference
I made m_CurrentIndex a size_t because that's idiomatic but if you'd like to keep it as an int, that's fine too.
std::next(m_Items.begin(), index) will do the same as m_Items.begin() + index, but in cases where the iterator returned by m_Items.begin() is a plain pointer, using std::next avoids potential warnings about using pointer arithmetic.
Returning a reference instead of a pointer to the added element makes no difference other than making the interface more idiomatic. It's simply what a user of the class is likely to expect. Returning a pointer also opens up questions like "can it return nullptr?" etc.
The added const qualified functions makes those functions usable in const contexts too.
template<class T>
void foo(const VectorPtrSelectable<T>& vps) { // note: const&
if(vps.Size() > 0) {
std::cout << "the first element is " << vps[0] << '\n';
std::cout << "the current element is " << vps.CurrentItem() << '\n';
}
}
None of the three member functions used above could be used without the const qualified overloads.

How to control value assigned by operator []

I know how to overload operator[] as follows :
T& operator [](int idx) {
return TheArray[idx];
}
T operator [](int idx) const {
return TheArray[idx];
}
But what I want is to control values assigned by arr[i] = value.
I want to control value to be between 0 and 9.
Is there any syntax to do so?
You would have to write a template class that holds a reference to the element in the array (of type T), in this template you implement the assignment operator, and there you can implement your check. Then you return an object of this template class from your [] operator.
Something like this:
template< typename T> class RangeCheck
{
public:
RangeCheck( T& dest): mDestVar( dest) { }
RangeCheck& operator =( const T& new_value) {
if ((0 <= new_value) && (new_value < 9)) { // <= ??
mDestVar = new_value;
} else {
... // error handling
}
return *this;
}
private:
T& mDestVar;
};
Rene has provided a good answer. In addition to this, here is a full example. Note that I added a "user-defined conversion", i.e., operator T, in the proxy_T class.
#include <iostream>
#include <array>
#include <stdexcept>
template <class T>
class myClass
{
std::array<T, 5> TheArray; // Some array...
class proxy_T
{
T& value; // Reference to the element to be modified
public:
proxy_T(T& v) : value(v) {}
proxy_T& operator=(T const& i)
{
if (i >= 0 and i <= 9)
{
value = i;
}
else
{
throw std::range_error(std::to_string(i));
}
return *this;
}
operator T() // This is required for getting a T value from a proxy_T, which make the cout-lines work
{
return value;
}
};
public:
proxy_T operator [](int const idx)
{
return TheArray.at(idx);
}
T operator [](int const idx) const
{
return TheArray[idx];
}
};
int main() {
myClass<int> A;
std::cout << A[0] << std::endl;
A[0] = 2;
std::cout << A[0] << std::endl;
A[1] = 20;
}

Is there a way to have a public member, unmodifiable from outside the class, without accessor wrapper function?

As far as I know, this seems to be impossible in a straightforward way. Making the member const makes it const for everyone. I would like to have a read-only property, but would like to avoid the typical "getter". I'd like const public, mutable private. Is this at all possible in C++?
Currently all I can think of is some trickery with templates and friend. I'm investigating this now.
Might seem like a stupid question, but I have been surprised by answers here before.
A possible solution can be based on an inner class of which the outer one is a friend, like the following one:
struct S {
template<typename T>
class Prop {
friend struct S;
T t;
void operator=(T val) { t = val; }
public:
operator const T &() const { return t; }
};
void f() {
prop = 42;
}
Prop<int> prop;
};
int main() {
S s;
int i = s.prop;
//s.prop = 0;
s.f();
return i, 0;
}
As shown in the example, the class S can modify the property from within its member functions (see S::f). On the other side, the property cannot be modified in any other way but still read by means of the given operator that returns a const reference to the actual variable.
There seems to be another, more obvious solution: use a public const reference member, pointing to the private, mutable, member. live code here.
#include <iostream>
struct S {
private:
int member;
public:
const int& prop;
S() : member{42}, prop{member} {}
S(const S& s) : member{s.member}, prop{member} {}
S(S&& s) : member(s.member), prop{member} {}
S& operator=(const S& s) { member = s.member; return *this; }
S& operator=(S&& s) { member = s.member; return *this; }
void f() { member = 32; }
};
int main() {
using namespace std;
S s;
int i = s.prop;
cout << i << endl;
cout << s.prop << endl;
S s2{s};
// s.prop = 32; // ERROR: does not compile
s.f();
cout << s.prop << endl;
cout << s2.prop << endl;
s2.f();
S s3 = move(s2);
cout << s3.prop << endl;
S s4;
cout << s4.prop << endl;
s4 = s3;
cout << s4.prop << endl;
s4 = S{};
cout << s4.prop << endl;
}
I like #skypjack's answer, but would have written it somehow like this:
#include <iostream>
template <class Parent, class Value> class ROMember {
friend Parent;
Value v_;
inline ROMember(Value const &v) : v_{v} {}
inline ROMember(Value &&v) : v_{std::move(v)} {}
inline Value &operator=(Value const &v) {
v_ = v;
return v_;
}
inline Value &operator=(Value &&v) {
v_ = std::move(v);
return v_;
}
inline operator Value& () & {
return v_;
}
inline operator Value const & () const & {
return v_;
}
inline operator Value&& () && {
return std::move(v_);
}
public:
inline Value const &operator()() const { return v_; }
};
class S {
template <class T> using member_t = ROMember<S, T>;
public:
member_t<int> val = 0;
void f() { val = 1; }
};
int main() {
S s;
std::cout << s.val() << "\n";
s.f();
std::cout << s.val() << "\n";
return 0;
}
Some enable_ifs are missing to really be generic to the core, but the spirit is to make it re-usable and to keep the calls looking like getters.
This is indeed a trickery with friend.
You can use curiously recurring template pattern and friend the super class from within a property class like so:
#include <utility>
#include <cassert>
template<typename Super, typename T>
class property {
friend Super;
protected:
T& operator=(const T& val)
{ value = val; return value; }
T& operator=(T&& val)
{ value = val; return value; }
operator T && () &&
{ return std::move(value); }
public:
operator T const& () const&
{ return value; }
private:
T value;
};
struct wrap {
wrap() {
// Assign OK
prop1 = 5; // This is legal since we are friends
prop2 = 10;
prop3 = 15;
// Move OK
prop2 = std::move(prop1);
assert(prop1 == 5 && prop2 == 5);
// Swap OK
std::swap(prop2, prop3);
assert(prop2 == 15 && prop3 == 5);
}
property<wrap, int> prop1;
property<wrap, int> prop2;
property<wrap, int> prop3;
};
int foo() {
wrap w{};
w.prop1 = 5; // This is illegal since operator= is protected
return w.prop1; // But this is perfectly legal
}

How can I create new style for creating loop?

I want to use macros to create my source code simpler
This is my code
constexpr auto make_index_sequence_array(size_t i ,std::index_sequence<arg...>) {
return std::array<size_t, sizeof...(arg)> {i+arg...};
}
#define RANGE(start , end) make_index_sequence_array(start,std::make_index_sequence<end-start>{})
#define ZeroTo(end) RANGE(0 , end)
#define Repeat(end) for(auto itr : RANGE(0 , end))
void main() {
vector<int> a = { 1,2,3 };
for (auto row : RANGE(0,a.size()))
cout << std::setw(4) << a[row];
cout << '\n';
}
I know I can use :
void main() {
vector<int> a = { 1,2,3 };
for (auto itr: a)
cout << std::setw(4) << itr;
cout << '\n';
}
But it is a simple example and I want to use this style in more situations.
The error while compiling is:
Error C2975 '_Size': invalid template argument for 'std::make_index_sequence', expected compile-time constant expression
How can I use my macros? Or even is it possible?
My recommendation is that you use iterators, I wrote an example below. Something like this would do it in C++ < C++17:
#include <iostream>
template <class T>
struct RangeIter {
RangeIter(T from, T to, T curr ) :
_from(from), _to(to), _curr(curr) {
}
T operator*() const {
return _curr;
}
T operator++() {
++_curr;
return _curr;
}
bool operator==(const RangeIter & other) {
assert(_from == other._from && _to == other._to);
return _curr == other._curr;
}
bool operator!=(const RangeIter & other) {
return !(_curr == other._curr);
}
T _from, _to, _curr;
};
template <class T>
struct Range {
Range(T from, T to) : _from(from), _to(to) {}
RangeIter<T> begin() { return RangeIter<T>(_from, _to, _from); }
RangeIter<T> end() {
return RangeIter<T>(_from, _to, _to);
}
T _from, _to;
};
template <class T>
Range<T> makeRange(T to, T from) {
return Range<T>(to, from);
}
int main() {
for (auto i : makeRange(0, 10)) {
std::cout << i << std::endl;
}
}
For C++17 you can use different types for the begin and end iterator and improve on this. You can use sentinels. You could take a look here: How the new range-based for loop in C++17 helps Ranges TS?
A C++-17 only solution here:
#include <iostream>
template <class T>
struct RangeSentinel {
RangeSentinel(T stopVal) : _stopVal(stopVal) {}
T _stopVal;
};
template <class T>
struct RangeIter {
RangeIter(T from, T to, T curr) :
_from(from), _to(to), _curr(curr) {
}
T operator*() const {
return _curr;
}
T operator++() {
++_curr;
return _curr;
}
bool operator==(const RangeSentinel<T> & other) {
assert(_from == other._from && _to == other._to);
return _curr == other._stopVal;
}
bool operator!=(const RangeSentinel<T> & other) {
return !(_curr == other._stopVal);
}
T _from, _to, _curr;
};
template <class T>
struct Range {
Range(T from, T to) : _from(from), _to(to) {}
RangeIter<T> begin() { return RangeIter<T>(_from, _to, _from); }
RangeSentinel<T> end() {
return RangeSentinel<T>(_to);
}
T _from, _to;
};
template <class T>
Range<T> makeRange(T to, T from) {
return Range<T>(to, from);
}
int main() {
for (auto i : makeRange(0, 10)) {
std::cout << i << std::endl;
}
}
As you can see, in the C++17 solution I do not need to store again _from and _to variables, since the sentinel is a different type.

Delete void* in C++11 using type erasure

I'm trying to fix a double free or corruption in this class:
struct Holder
{
template <typename T>
Holder(const T& v)
{
_v = new T{};
memcpy(_v, &v, sizeof(T));
_deleter = [this]{
if (_v != nullptr)
{
delete reinterpret_cast<T*>(_v);
_v = nullptr;
}
};
}
template <typename T>
T get()
{
T t;
memcpy(&t, _v, sizeof(T));
return t;
}
~Holder()
{
std::cout << "~Holder() " << std::endl;
_deleter();
}
private:
void* _v;
std::function<void()> _deleter;
};
The goal of this class is to Hold a value of a particular type, like boost::any. So I'm trying to understand the mechanism to safely deallocate all memory.
Probably this line of code:
delete reinterpret_cast<T*>(_v);
doesn't do what I expect ...
**** After Suggestions ****
I've rewrite the code using comment suggestions and adding a move constructor
struct Holder
{
template <typename T>
Holder(const T& v)
{
std::cerr << "create " << N << std::endl;
_v = new T(v);
_deleter = [this]{
if (_v != nullptr)
{
std::cerr << "deleter " << N << std::endl;
delete reinterpret_cast<T*>(_v);
_v = nullptr;
}
};
}
Holder(Holder&& rs)
{
_v = rs._v;
_deleter = std::move(rs._deleter);
rs._deleter = []{}; //usefull to avoid a bad function call
}
template <typename T>
T get() const
{
return *reinterpret_cast<T*>(_v);
}
~Holder()
{
//std::cout << "~Holder() " << N << std::endl;
_deleter();
}
private:
void* _v;
std::function<void()> _deleter;
};
Now seems work but I have to manage others corner case :)
Probably the best solution is to use boost::any:
struct Holder
{
template <typename T>
Holder(const T& v)
{
_v = v;
}
template <typename T>
T get()
{
return boost::any_cast<T>(_v);
}
private:
boost::any _v;
};
But I'am trying to understand how it coudl works without it.
This is my last version:
struct Holder
{
template <typename T>
Holder(const T& v)
{
std::cerr << "create " << N << std::endl;
_v = new T(v);
_deleter = [](void* ptr){
if (ptr != nullptr)
{
std::cerr << "deleter " << std::endl;
delete reinterpret_cast<T*>(ptr);
}
};
_builder = [](void* &dest, void* src){
dest = new T(*reinterpret_cast<T*>(src));
};
}
Holder(const Holder& rs)
{
std::cerr << "copy constr" << std::endl;
if (this != &rs)
{
rs._builder(_v, rs._v);
_deleter = rs._deleter;
_builder = rs._builder;
}
}
Holder(Holder&& rs)
{
std::cerr << "move constr" << std::endl;
if (this != &rs)
{
_v = rs._v;
_deleter = std::move(rs._deleter);
_builder = std::move(rs._builder);
rs._deleter = [](void*){};
}
}
Holder& operator=(const Holder& rs)
{
std::cerr << "copy operator" << std::endl;
if (this != &rs)
{
rs._builder(_v, rs._v);
_deleter = rs._deleter;
_builder = rs._builder;
}
return *this;
}
Holder& operator=(Holder&& rs)
{
std::cerr << "move operator" << std::endl;
if (this != &rs)
{
_v = rs._v;
_deleter = std::move(rs._deleter);
_builder = std::move(rs._builder);
rs._deleter = [](void*){};
}
return *this;
}
template <typename T>
T get() const
{
return *reinterpret_cast<T*>(_v);
}
~Holder()
{
//std::cout << "~Holder() " << N << std::endl;
_deleter(_v);
}
private:
void* _v;
std::function<void(void* ptr)> _deleter;
std::function<void(void* &, void* src)> _builder;
};
Don't reimplement the horse.
using pvoid_holder = std::unique_ptr<void, std::function<void(void*)>>
template<class T>
pvoid_holder pvoid_it( T* t ) {
return { t, [](void* v){ if (v) delete static_cast<T*>(v); } };
}
Now store a pvoid_holder in your Holder class. It will handle memory lifetime for you.
You could use a naked pvoid_holder, but it might have a richer interface than you want (for example, it will allow the stored pointer to be changed without changing the deleter).
You can also replace std::function with void(*)(void*) for a marginal performance gain.
Here is a random idea. I still don't like it though. The whole idea behind this design is bad.
template <typename T>
struct Holder
{
public:
Holder(T const& v)
{
new (&m_v) T(v);
}
T const& get() const
{
return reinterpret_cast<T const&>(m_v);
}
T& get()
{
return reinterpret_cast<T&>(m_v);
}
~Holder()
{
std::cout << "~Holder() " << std::endl;
get().~T();
}
private:
char m_v[sizeof(T)];
};
This class doesn't do the same as yours anymore, ie it can't store arbitrary types in a std::vector<Holder> but only the same type (std::vector<Holder<Foo>>). A comment was too small to contain this code though and I wanted to show a better looking syntax for what you're playing with ;).
That being said, the only way you can do what you're trying to do is when you add a second layer for the reference counting. Ie, you replace your void* _v with something that resembles shared_ptr but which doesn't call delete when the count reaches zero but calls deleter (which therefore should be stored inside this new class). In fact your class looks mostly like this new class, except that you should make it non-copyable and provide reference counting (ie through boost::intrusive_ptr). Then Holder can be a wrapper around that that is copyable.
Probably this line of code: delete reinterpret_cast<T*>(_v); doesn't do what I expect ...
Not exactly. Your types are likely using a default copy ctor; this copies your data pointer _v, and your deleter. So when both objects destruct, both deleters trigger, causing the data to be deleted twice. (Side note--you shouldn't name variables starting with _; such identifiers are reserved for implementations).
Here's what it takes to do type erasure properly, assuming I've no bugs in it. A better way would be to stick to using boost::any.
#include <utility>
struct EmptyType {}; // Thrown if unexpectedly empty
struct InvalidType {}; // Thrown if Holder(T) but get<U>.
struct Holder
{
Holder()
: data_()
, deleter_(e_deleter)
, copier_(e_copier)
, typetag_()
{
}
template<typename T>
Holder(const T& t)
: data_(erase_cast(new T))
, deleter_(deleter<T>)
// Need to explicitly carry T's copy behavior
// because Holder's default copy ctor isn't going to
, copier_(copier<T>)
// You need some way to protect against getting
// an Orange out of a Holder that holds an Apple.
, typetag_(id<T>())
{
}
Holder(const Holder& rhs)
: data_(rhs.copy())
, deleter_(rhs.deleter_)
, copier_(rhs.copier_)
, typetag_(rhs.typetag_)
{
}
template<typename T>
T get()
{
if (!data_) throw EmptyType();
T rv(fetch<T>());
return rv;
}
Holder(Holder&& rhs)
: data_()
, copier_(rhs.copier_)
, deleter_(rhs.deleter_)
, typetag_(rhs.typetag_)
{
std::swap(data_, rhs.data_);
}
~Holder()
{
destroy();
}
private:
// Reinterpret_cast wrappers labeled semantically
template<typename T>
static void* erase_cast(T* t) { return reinterpret_cast<void*>(t); }
template<typename T>
static T* unerase_cast(void* t) { return reinterpret_cast<T*>(t); }
// Return a data copy
void* copy() const { return copier_(data_); }
// Return const reference to data
template<typename T>
const T& fetch() {
if (typetag_!=id<T>()) throw InvalidType();
return *unerase_cast<T>(data_);
}
// Destroy data
void destroy() { deleter_(data_); data_=0; }
// ==== Type erased copy semantics ===
void*(*copier_)(void*);
template<typename T>
static void* copier(void* v) {
return erase_cast<T>(new T(*unerase_cast<T>(v)));
}
static void* e_copier(void*) { return 0; }
// ==== Type erased delete semantics ===
void(*deleter_)(void*);
template<typename T>
static void deleter(void* v) {
delete unerase_cast<T>(v);
}
static void e_deleter(void*) {}
// ==== Type protection using tagging (could also use typeid)
static int makenewid() { static int i=0; return i++;}
template<typename T>
static int id() { static int i=makenewid(); return i; }
// Type erased data
void* data_;
// Type erased tag
int typetag_;
};
...and here is some test/demo code:
#include <iostream>
#include <vector>
#define FAIL() std::cout << "Fail" << std::endl; return 1
int foos=0;
struct Foo { Foo(){++foos;} Foo(const Foo&){++foos;} ~Foo(){--foos;} };
int bars=0;
struct Bar { Bar(){++bars;} Bar(const Bar&){++bars;} ~Bar(){--bars;} };
int main() {
{
std::vector<Holder> v;
Foo fx,fy,fz; Bar ba,bb;
v.push_back(fx); v.push_back(fy); v.push_back(fz);
v.push_back(ba); v.push_back(ba); v.push_back(bb);
v.push_back(Holder());
try {
Foo y = v[2].get<Foo>();
}
catch (EmptyType&) { FAIL(); }
catch (InvalidType&) { FAIL(); }
try {
Foo y = v[4].get<Foo>();
FAIL();
}
catch (EmptyType&) { FAIL(); }
catch (InvalidType&) { }
try {
Foo y = v[6].get<Foo>();
FAIL();
}
catch (EmptyType&) { }
catch (InvalidType&) { FAIL(); }
}
if (foos||bars) { FAIL(); }
std::cout << "Pass" << std::endl;
}
Test results:
$ ./a.exe
Pass