Can someone skilled in loops say how this task can be optimized - at least a bit? Maybe some cache? or loop un switching?
memory limit 512 m
#include <iostream>
using namespace std;
const int MOD = 1000000007;
int main() {
int n;
cin >> n;
int x = 0;
for (int i = 0; i < n; ++i) {
for (int j = i; j < n; ++j) {
for (int k = i; k <= j; ++k) {
x = (x + 1) % MOD;
}
}
}
cout << x << endl;
}
Any help is appreciated
A simple WolframAlpha query gives you a closed-form expression for the loop that you are calculating:
x = (1/6 * n * (n + 1) * (n + 2)) % MOD
Please give us MathJax support on StackOverflow!
Then, it's just a matter of turning that closed-form expression into code. Because we do not want x to overflow, we must occasionally perform modulo before the end of the operation:
long long x = n % MOD;
x = (x * (n + 1)) % MOD;
x = (x * (n + 2) / 6) % MOD;
With this, the number of mathematical operations is independent of the size of n, and certainly much faster than your loop.
Related
The below code is to calculate 2^n where n is equal to 1 <= n <= 10^5. So to calculate such large numbers I have used concept of modular exponentian. The code is giving correct output but due to large number of test cases it is exceeding the time limit. I am not getting a way to minimize the solution so it consumes less time. As the "algo" function is called as many times as the number of test cases. So I want to put the logic used in "algo" function in the main() function so it consumes time less than 1 sec and also gives the correct output. Here "t" represents number of test cases and it's value is 1 <= t <= 10^5.
Any suggestions from your side would be of great help!!
#include<iostream>
#include<math.h>
using namespace std;
int algo(int x, int y){
long m = 1000000007;
if(y == 0){
return 1;
}
int k = algo(x,y/2);
if (y % 2 == 1){
return ((((1ll * k * k) % m) * x) % m);
} else if (y % 2 == 0){
return ((1ll * k * k) % m);
}
}
int main(void)
{
int n, t, k;
cin>>t; //t = number of test cases
for ( k = 0; k < t; k++)
{
cin >> n; //power of 2
cout<<"the value after algo is: "<<algo(2,n)<<endl;
}
return 0;
}
You can make use of binary shifts to find powers of two
#include <iostream>
using namespace std;
int main()
{
unsigned long long u = 1, w = 2, n = 10, p = 1000000007, r;
//n -> power of two
while (n != 0)
{
if ((n & 0x1) != 0)
u = (u * w) % p;
if ((n >>= 1) != 0)
w = (w * w) % p;
}
r = (unsigned long)u;
cout << r;
return 0;
}
This is the function that I often use to calculate
Any integer X raised to power Y modulo M
C++ Function to calculate (X^Y) mod M
int power(int x, int y, const int mod = 1e9+7)
{
int result = 1;
x = x % mod;
if (x == 0)
return 0;
while (y > 0)
{
if (y & 1)
result = ( (result % mod) * (x % mod) ) % mod;
y = y >> 1; // y = y / 2
x = ( (x % mod) * (x % mod) ) % mod;
}
return result;
}
Remove the Mod if you don't want.
Time Complexity of this Function is O(log2(Y))
There can be a case of over flow so use int , long , long long etc as per your need.
Well your variables won't sustain the boundary test cases, introducing 2^10000, 1 <= n <= 10^5. RIP algorithms
19950631168807583848837421626835850838234968318861924548520089498529438830221946631919961684036194597899331129423209124271556491349413781117593785932096323957855730046793794526765246551266059895520550086918193311542508608460618104685509074866089624888090489894838009253941633257850621568309473902556912388065225096643874441046759871626985453222868538161694315775629640762836880760732228535091641476183956381458969463899410840960536267821064621427333394036525565649530603142680234969400335934316651459297773279665775606172582031407994198179607378245683762280037302885487251900834464581454650557929601414833921615734588139257095379769119277800826957735674444123062018757836325502728323789270710373802866393031428133241401624195671690574061419654342324638801248856147305207431992259611796250130992860241708340807605932320161268492288496255841312844061536738951487114256315111089745514203313820202931640957596464756010405845841566072044962867016515061920631004186422275908670900574606417856951911456055068251250406007519842261898059237118054444788072906395242548339221982707404473162376760846613033778706039803413197133493654622700563169937455508241780972810983291314403571877524768509857276937926433221599399876886660808368837838027643282775172273657572744784112294389733810861607423253291974813120197604178281965697475898164531258434135959862784130128185406283476649088690521047580882615823961985770122407044330583075869039319604603404973156583208672105913300903752823415539745394397715257455290510212310947321610753474825740775273986348298498340756937955646638621874569499279016572103701364433135817214311791398222983845847334440270964182851005072927748364550578634501100852987812389473928699540834346158807043959118985815145779177143619698728131459483783202081474982171858011389071228250905826817436220577475921417653715687725614904582904992461028630081535583308130101987675856234343538955409175623400844887526162643568648833519463720377293240094456246923254350400678027273837755376406726898636241037491410966718557050759098100246789880178271925953381282421954028302759408448955014676668389697996886241636313376393903373455801407636741877711055384225739499110186468219696581651485130494222369947714763069155468217682876200362777257723781365331611196811280792669481887201298643660768551639860534602297871557517947385246369446923087894265948217008051120322365496288169035739121368338393591756418733850510970271613915439590991598154654417336311656936031122249937969999226781732358023111862644575299135758175008199839236284615249881088960232244362173771618086357015468484058622329792853875623486556440536962622018963571028812361567512543338303270029097668650568557157505516727518899194129711337690149916181315171544007728650573189557450920330185304847113818315407324053319038462084036421763703911550639789000742853672196280903477974533320468368795868580237952218629120080742819551317948157624448298518461509704888027274721574688131594750409732115080498190455803416826949787141316063210686391511681774304792596709376
Fear not my friend, someone did tried to solve the problem https://www.quora.com/What-is-2-raised-to-the-power-of-50-000, you are looking for Piyush Michael's answer , here is his sample code
#include <stdio.h>
int main()
{
int ul=16,000;
int rs=50,000;
int s=0,carry[ul],i,j,k,ar[ul];
ar[0]=2;
for(i=1;i<ul;i++)ar[i]=0;
for(j=1;j<rs;j++)
{for(k=0;k<ul;k++)carry[k]=0;
for(i=0;i<ul;i++)
{ar[i]=ar[i]*2+carry[i];
if(ar[i]>9)
{carry[i+1]=ar[i]/10;
ar[i]=ar[i]%10;
}
}
}
for(j=ul-1;j>=0;j--)printf("%d",ar[j]);
for(i=0;i<ul-1;i++)s+=ar[i];
printf("\n\n%d",s);
}
Question is as follows :
Given two numbers n and k. For each number in the interval [1, n], your task is to calculate its largest divisor that is not divisible by k. Print the sum of all these divisors.
Note: k is always a prime number.
t=3*10^5,1<=n<=10^9, 2<=k<=10^9
My approach toward the question:
for every i in range 1 to n, the required divisors is i itself,only when that i is not a multiple of k.
If that i is multiple of k, then we have to find the greatest divisor of a number and match with k. If it does not match, then this divisor is my answer. otherwise, 2nd largest divisor is my answer.
for example,take n=10 and k=2, required divisors for every i in range 1 to 10 is 1, 1, 3, 1, 5, 3, 7, 1, 9, 5. sum of these divisors are 36. So ans=36.
My code,which works for a few test cases and failed for some.
#include<bits/stdc++.h>
using namespace std;
#define ll long long int
ll div2(ll n, ll k) {
if (n % k != 0 || n == 1) {
return n;
}
else {
for (int i = 2; i * i <= n; i++) {
if (n % i == 0) {
ll aa = n / i;
if (aa % k != 0) {
return aa;
}
}
}
}
return 1;
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
int t;
cin >> t;
while (t--) {
ll n, k;
cin >> n >> k;
ll sum = 0, pp;
for (pp = 1; pp <= n; pp++) {
//cout << div2(pp, k);
sum = sum + div2(pp, k);
}
cout << sum << '\n';
}
}
Can someone help me where I am doing wrong or suggest me some faster logic to do this question as some of my test cases is showing TIME LIMIT EXCEED
after looking every possible explanation , i modify my code as follows:
#include<bits/stdc++.h>
using namespace std;
#define ll long long int
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
int t;
cin >> t;
while (t--) {
ll n, i;
ll k, sum;
cin >> n >> k;
sum = (n * (n + 1)) / 2;
for (i = k; i <= n; i = i + k) {
ll dmax = i / k;
while (dmax % k == 0) {
dmax = dmax / k;
}
sum = (sum - i) + dmax;
}
cout << sum << '\n';
}
}
But still it is giving TIME LIMIT EXCEED for 3 test cases. Someone please help.
Like others already said, look at the constraints: t=3*10^5,1<=n<=10^9, 2<=k<=10^9.
If your test has a complexity O(n), which computing the sum via a loop has, you'll end up doing a t * n ~ 10^14. That's too much.
This challenge is a math one. You'll need to use two facts:
as you already saw, if i = j * k^s with j%k != 0, the largest divisor is j;
sum_{i=1}^t i = (t * (t+1)) / 2
We start with
S = sum(range(1, n)) = n * (n+1) / 2
then for all number of the form k * x we added too much, let's correct:
S = S - sum(k*x for x in range(1, n/k)) + sum(x for x in range(1, n/k))
= S - (k - 1) * (n/k) * (n/k + 1) / 2
continue for number of the form k^2 * x ... then k^p * x until the sum is empty...
Ok, people start writing code, so here's a small Python function:
def so61867604(n, k):
S = (n * (n+1)) // 2
k_pow = k
while k_pow <= n:
up = n // k_pow
S = S - (k - 1) * (up * (up + 1)) // 2
k_pow *= k
return S
and in action here https://repl.it/repls/OlivedrabKeyProjections
In itself this is more of a mathematical problem:
If cur = [1..n], as you have already noticed, the largest divisor = dmax = cur is, if cur % k != 0, otherwise dmax must be < cur. From k we know that it is at most divisible into other prime numbers... Since we want to make sure that dmax is not divisible by k we can do this with a while loop... whereby this is certainly also more elegantly possible (since dmax must be a prime number again due to the prime factorization).
So this should look like this (without guarantee just typed down - maybe I missed something in my thinking):
#include <iostream>
int main() {
unsigned long long n = 10;
unsigned long long k = 2;
for (auto cur_n = decltype(n){1}; cur_n <= n; cur_n++)
{
if (cur_n % k != 0) {
std::cout << "Largest divisor for " << cur_n << ": " << cur_n << " (SELF)" << std::endl;
} else {
unsigned long long dmax= cur_n/k;
while (dmax%k == 0)
dmax= dmax/k;
std::cout << "Largest divisor for " << cur_n << ": " << dmax<< std::endl;
}
}
}
I wonder if something like this is what One Lyner means.
(Note, this code has two errors in it, which are described in the comments, as well as can be elucidated by One Lyner's new code.)
C++ code:
#include <vector>
#include <iostream>
using namespace std;
#define ll long long int
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
int t;
cin >> t;
while (t--) {
ll n;
ll k, _k, result;
vector<ll> powers;
cin >> n >> k;
result = n * (n + 1) / 2;
_k = k;
while (_k <= n) {
powers.push_back(_k);
_k = _k * k;
}
for (ll p : powers) {
ll num_js = n / p;
result -= num_js * (num_js + 1) / 2 * (p - 1);
int i = 0;
while (p * powers[i] <= n) {
result += powers[i] * (p - 1);
i = i + 1;
}
}
cout << result << '\n';
}
}
im struggle to solve this math formula and i don't see where i made mistake. Little hint would be welcome.
using namespace std;
double sum, quo;
int n, i;
sum = 0;
quo = 1;
for (n = 1; n <= 5; n++) {
sum = sum + quo;
}
for (i = 1; i <= 6; i++) {
quo = quo * (n + i);
}
sum = sum + quo;
cout << (sum);}
Answer should be 569520, but in my code is 665285
As #Yksisarvinen said,
Hint
Multiplication is inside summation in the formula.
Hint 2
You can use 2 for loop inside each others
Stop here and try it yourself then come back to see the answer.
the answer :
#include <iostream>
#include <windows.h>
using namespace std;
int main() {
int sum, quo;
int n, i;
sum = 0;
quo = 1;
for (n = 1; n <= 5; n++) {
for (i = 1; i <= 6; i++) {
quo *= (n + i);
}
sum+=quo;
quo =1;
}
cout << (sum);
}
It's been a while since I've done this sort of maths, but I think your nesting is incorrect.
What I think the formula is saying is:
((1 + 1) * (1 + 2) * (1 + 3) ...)
+
((2 + 1) * (2 + 2) * (2 + 3) ...)
+
...
However, you're summing loop only apply to i=1. I think this is just an incorrectly placed brace.
for (n = 1; n <= 5; n++) {
//The n loop should encompass the whole of the i loop
//And you should only update sum at the end
double quo = 1;
for (i = 1; i <= 6; i++) {
quo = quo * (n + i);
}
sum = sum + quo;
}
As an answer to a particular problem, I have to print n*k^n - (n-1)*k.
for(i=0;i<n;i++){
c=(c%p*k%p)%p;
c=(c%p*n%p)%p;
d=((n-1)%p*k%p)%p;
s=(c%p-d%p)%p;
cout<<s<<endl;
}
Initially c=1, p=1000000007 and s is my final answer.
I have to take the modulo of s with respect to p.
For large values of n, s becomes negative. This happens because the modulo value changes. So even if c>d, it is possible that c%p<d%p. For n=1000000000 and k=25, s=-727999801. I am not being able to think of a suitable workaround.
-2 % 7 = 5, because -2 = 7 * (-1) + 5, while c++ modulo operation would return -2, so to get positive number you just need to add p.
if (s < 0) s += p;
I advise you to rewrite your code in the following way:
for (int i = 0; i < n; i++) {
c = (c * (k % p)) % p;
}
c = (c * (n % p)) % p;
int d = ((n - 1) % p * (k % p)) % p;
int s = (c - d) % p;
if (s < 0) s += p;
cout << s << endl;
To check with some small inputs you can use the following line:
cout << (n * (int)pow(k, n) - (n-1)*k) % p << endl;
Try to run with this input:
const int n = 5;
const int p = 7;
const int k = 10;
int c = 1;
You will see that without if (s < 0) s += p; it is -1. This line fixes it to 6 - the right answer.
I'm working on problem 9 in Project Euler:
There exists exactly one Pythagorean triplet for which a + b + c = 1000.
Find the product abc.
The following code I wrote uses Euclid's formula for generating primes. For some reason my code returns "0" as an answer; even though the variable values are correct for the first few loops. Since the problem is pretty easy, some parts of the code aren't perfectly optimized; I don't think that should matter. The code is as follows:
#include <iostream>
using namespace std;
int main()
{
int placeholder; //for cin at the end so console stays open
int a, b, c, m, n, k;
a = 0; b = 0; c = 0;
m = 0; n = 0; k = 0; //to prevent initialization warnings
int sum = 0;
int product = 0;
/*We will use Euclid's (or Euler's?) formula for generating primitive
*Pythagorean triples (a^2 + b^2 = c^2): For any "m" and "n",
*a = m^2 - n^2 ; b = 2mn ; c = m^2 + n^2 . We will then cycle through
*values of a scalar/constant "k", to make sure we didn't miss anything.
*/
//these following loops will increment m, n, and k,
//and see if a+b+c is 1000. If so, all loops will break.
for (int iii = 1; m < 1000; iii++)
{
m = iii;
for (int ii = 1; n < 1000; ii++)
{
n = ii;
for (int i = 1; k <=1000; i++)
{
sum = 0;
k = i;
a = (m*m - n*n)*k;
b = (2*m*n)*k;
c = (m*m + n*n)*k;
if (sum == 1000) break;
}
if (sum == 1000) break;
}
if (sum == 1000) break;
}
product = a * b * c;
cout << "The product abc of the Pythagorean triplet for which a+b+c = 1000 is:\n";
cout << product << endl;
cin >> placeholder;
return 0;
}
And also, is there a better way to break out of multiple loops without using "break", or is "break" optimal?
Here's the updated code, with only the changes:
for (m = 2; m < 1000; m++)
{
for (int n = 2; n < 1000; n++)
{
for (k = 2; (k < 1000) && (m > n); k++)
{
sum = 0;
a = (m*m - n*n)*k;
b = (2*m*n)*k;
c = (m*m + n*n)*k;
sum = a + b + c;
if ((sum == 1000) && (!(k==0))) break;
}
It still doesn't work though (now gives "1621787660" as an answer). I know, a lot of parentheses.
The new problem is that the solution occurs for k = 1, so starting your k at 2 misses the answer outright.
Instead of looping through different k values, you can just check for when the current sum divides 1000 evenly. Here's what I mean (using the discussed goto statement):
for (n = 2; n < 1000; n++)
{
for (m = n + 1; m < 1000; m++)
{
sum = 0;
a = (m*m - n*n);
b = (2*m*n);
c = (m*m + n*n);
sum = a + b + c;
if(1000 % sum == 0)
{
int k = 1000 / sum;
a *= k;
b *= k;
c *= k;
goto done;
}
}
}
done:
product = a * b * c;
I also switched around the two for loops so that you can just initialize m as being larger than n instead of checking every iteration.
Note that with this new method, the solution doesn't occur for k = 1 (just a difference in how the loops are run, this isn't a problem)
Presumably sum is supposed to be a + b + c. However, nowhere in your code do you actually do this, which is presumably your problem.
To answer the final question: Yes, you can use a goto. Breaking out of multiple nested loops is one of the rare occasions when it isn't considered harmful.