Pass multiple InputPaths to a StepFunctions Task - amazon-web-services

While invoking a state's task, is it possible to specify multiple InputPaths, or 'pick' more than one JSON nodes to be passed to the task's input ?
Example:
If this is the execution input:
{
"id":"identifier",
"nestedObjectA": {
"doubleNestedObjectA": {
"valueA": "value"
}
},
"nestedObjectB" : {
"valueB": "value"
}
}
is it possible to pass the following as input to one task:
{
"id":"identifier",
"nestedObjectB" : {
"valueB": "value"
}
}
and the following to other ?
{
"id":"identifier",
"nestedObjectA": {
"doubleNestedObjectA": {
"valueA": "value"
}
}
}

This was not initially possible using JsonPath, but can now be easily done using parameters in stepfunctions.

Related

Cannot read property 'node' of undefined while npm run build

I have the method which gets data from contentful using graphql and returns some data:
exports.getMetadata = async (graphql, reporter, query) => {
const result = await graphql(query)
if (result.errors) {
reporter.panicOnBuild("Error while running medatada GraphQL query")
}
const {
data: {
allContentfulPages: {
edges: {
0: {
node: { meta, opengraph },
},
},
},
},
} = result
const metaJson = JSON.parse(meta.internal.content)
const opengraphJson = JSON.parse(opengraph.internal.content)
return { metaJson, opengraphJson }
}
that's how graphql query looks:
query {
# since our Contentful has enabled "locales", but pages slug doesn't need it, get only default language data
allContentfulPages(filter: { node_locale: { eq: "en-US" }, slug:{eq: "insights"} }) {
edges {
node {
meta {
internal {
content
}
}
opengraph {
internal {
content
}
}
}
}
}
}
when i start project executing npm run develop everything works fine and i don't have any error in console but while building npm run build i get TypeError: Cannot read property 'node' of undefined i tried to add statement like if result !== null ... and if result....edges[0].node !== null in many variants it didn't work, application all time breaks in one place. Please help me to figure out what;s going on ?
Too much [unguarded/unconditional] decomposition... stop at must exist node:
const { data: { allContentfulPages: { edges }}} = result;
if( edges && edges[0] ) {
return {
metaJson: JSON.parse(edges[0].node.meta.internal.content),
opengraphJson: JSON.parse(edges[0].node.opengraph.internal.content)
};

How to query non keyword field in elasticsearch

I want to filter records by non keyword field.
I am using aws elasticsearch service, where there are some fields are keyword and some are normal. I want to apply filtration on non keyword (text) data type field.
GET ES_INDEX_NAME/_search
{
"query" : {
"term" : { "listing_group" : "Other"}
}
}
listing_group field name is of text data type.
Thanks in advance !
You can try with match or match_phrase?
For partial match,
GET ES_INDEX_NAME/_search
{
"query": {
"match" : {
"listing_group" : "Other"
}
}
}
For phrase match,
GET ES_INDEX_NAME/_search
{
"query" : {
"match_phrase" : {
"listing_group" : "Other"
}
}
}

lookback API where filter with multiple conditions

When using loopback API, is 'AND' operator redundant in 'where' filter with multiple conditions?
For example, I tested the following two queries and they return the same result:
<model>.find({ where: { <condition1>, <condition2> } });
<model>.find({ where: { and: [<condition1>, <condtion2>] } });
To be more specific, suppose this is the table content:
name value
---- -----
a 1
b 2
When I execute 'find()' using two different 'where' filters, I get the first record in both cases:
{ where: { name: 'a', value: 1 } }
{ where: { and: [ { name: 'a'}, { value: 1 } ] } }
I've read through the API documents, but didn't find what logical operator is used when there are multiple conditions.
If 'AND' is redundant as shown in my test, I prefer not using it. But I just want to make sure if this is true in general, or if it just happens to work with postgreSQL which I'm using.
This is a valid query which could only be accomplished with an and statement.
{
"where": {
"or": [
{"and": [{"classification": "adn"}, {"series": "2"}]},
{"series": "3"}
]
}
}
EDIT: https://github.com/strongloop/loopback-filters/blob/master/index.js
function matchesFilter(obj, filter) {
var where = filter.where;
var pass = true;
var keys = Object.keys(where);
keys.forEach(function(key) {
if (key === 'and' || key === 'or') {
if (Array.isArray(where[key])) {
if (key === 'and') {
pass = where[key].every(function(cond) {
return applyFilter({where: cond})(obj);
});
return pass;
}
if (key === 'or') {
pass = where[key].some(function(cond) {
return applyFilter({where: cond})(obj);
});
return pass;
}
}
}
if (!test(where[key], getValue(obj, key))) {
pass = false;
}
});
return pass;
}
It iterates through the keys of the where object where looking for failure, so it acts like an implicit and statement in your case.
EDIT 2: https://github.com/strongloop/loopback-datasource-juggler/blob/cc60ef8202092ae4ed564fc7bd5aac0dd4119e57/test/relations.test.js
The loopback datasource juggler contains tests which use the implicit and format
{PictureLink.findOne({where: {pictureId: anotherPicture.id, imageableType: 'Article'}},
{pictureId: anotherPicture.id, imageableId: article.id, imageableType: 'Article',}
But I just want to make sure if this is true in general, or if it just happens to work with postgreSQL which I'm using.
Is it true in general? No.
It appears that this is handled for PostgreSQL and MySQL (and probably other SQL databases) in SQLConnector. So, it is possible connectors not using SQLConnector (e.g MongoDB) don't support this. However, given the many examples I've seen online, I would say it's safe to assume other connectors have implemented it this way, too.

Jenkins Job DSL: how do you set "Default subview"?

I am trying to create nested tabs with a Jenkins Job DSL Groovy script. It creates them, but I can find no way to set the "Default subview" in the DSL API. It does not appear to display the tabs correctly until I do this. Once I manually, change that default, it displays correctly. Here is the code:
nestedView(viewName) {
views {
listView("Builds (Staging)") {
jobs {
name(buildJobName)
}
columns {
status()
weather()
name()
lastSuccess()
lastFailure()
lastDuration()
buildButton()
}
}
listView("Deployments (Staging)") {
jobs {
name(deployJobName)
}
columns {
status()
weather()
name()
lastSuccess()
lastFailure()
lastDuration()
buildButton()
}
}
}
}
Original view
Corrected view after manually changing Default subview in Edit View
You can use a Configure Block to any missing config XML elements.
nestedView('test') {
views {
listView("Builds (Staging)") {
jobs {
name('foo')
}
columns {
status()
weather()
name()
}
}
listView("Deployments (Staging)") {
jobs {
name('bar')
}
columns {
status()
weather()
name()
}
}
}
configure { view ->
view / defaultView('Builds (Staging)')
}
}
Please file a ticket or open a pull request for any missing DSL methods.
If you happen to be configuring views under a folder, you can set it there.
folder(abc)
{
views {
listView('foo') {
primaryView('foo')
}
}
It looks like it's available since version 1.36

Advanced update using mongodb [duplicate]

In MongoDB, is it possible to update the value of a field using the value from another field? The equivalent SQL would be something like:
UPDATE Person SET Name = FirstName + ' ' + LastName
And the MongoDB pseudo-code would be:
db.person.update( {}, { $set : { name : firstName + ' ' + lastName } );
The best way to do this is in version 4.2+ which allows using the aggregation pipeline in the update document and the updateOne, updateMany, or update(deprecated in most if not all languages drivers) collection methods.
MongoDB 4.2+
Version 4.2 also introduced the $set pipeline stage operator, which is an alias for $addFields. I will use $set here as it maps with what we are trying to achieve.
db.collection.<update method>(
{},
[
{"$set": {"name": { "$concat": ["$firstName", " ", "$lastName"]}}}
]
)
Note that square brackets in the second argument to the method specify an aggregation pipeline instead of a plain update document because using a simple document will not work correctly.
MongoDB 3.4+
In 3.4+, you can use $addFields and the $out aggregation pipeline operators.
db.collection.aggregate(
[
{ "$addFields": {
"name": { "$concat": [ "$firstName", " ", "$lastName" ] }
}},
{ "$out": <output collection name> }
]
)
Note that this does not update your collection but instead replaces the existing collection or creates a new one. Also, for update operations that require "typecasting", you will need client-side processing, and depending on the operation, you may need to use the find() method instead of the .aggreate() method.
MongoDB 3.2 and 3.0
The way we do this is by $projecting our documents and using the $concat string aggregation operator to return the concatenated string.
You then iterate the cursor and use the $set update operator to add the new field to your documents using bulk operations for maximum efficiency.
Aggregation query:
var cursor = db.collection.aggregate([
{ "$project": {
"name": { "$concat": [ "$firstName", " ", "$lastName" ] }
}}
])
MongoDB 3.2 or newer
You need to use the bulkWrite method.
var requests = [];
cursor.forEach(document => {
requests.push( {
'updateOne': {
'filter': { '_id': document._id },
'update': { '$set': { 'name': document.name } }
}
});
if (requests.length === 500) {
//Execute per 500 operations and re-init
db.collection.bulkWrite(requests);
requests = [];
}
});
if(requests.length > 0) {
db.collection.bulkWrite(requests);
}
MongoDB 2.6 and 3.0
From this version, you need to use the now deprecated Bulk API and its associated methods.
var bulk = db.collection.initializeUnorderedBulkOp();
var count = 0;
cursor.snapshot().forEach(function(document) {
bulk.find({ '_id': document._id }).updateOne( {
'$set': { 'name': document.name }
});
count++;
if(count%500 === 0) {
// Excecute per 500 operations and re-init
bulk.execute();
bulk = db.collection.initializeUnorderedBulkOp();
}
})
// clean up queues
if(count > 0) {
bulk.execute();
}
MongoDB 2.4
cursor["result"].forEach(function(document) {
db.collection.update(
{ "_id": document._id },
{ "$set": { "name": document.name } }
);
})
You should iterate through. For your specific case:
db.person.find().snapshot().forEach(
function (elem) {
db.person.update(
{
_id: elem._id
},
{
$set: {
name: elem.firstname + ' ' + elem.lastname
}
}
);
}
);
Apparently there is a way to do this efficiently since MongoDB 3.4, see styvane's answer.
Obsolete answer below
You cannot refer to the document itself in an update (yet). You'll need to iterate through the documents and update each document using a function. See this answer for an example, or this one for server-side eval().
For a database with high activity, you may run into issues where your updates affect actively changing records and for this reason I recommend using snapshot()
db.person.find().snapshot().forEach( function (hombre) {
hombre.name = hombre.firstName + ' ' + hombre.lastName;
db.person.save(hombre);
});
http://docs.mongodb.org/manual/reference/method/cursor.snapshot/
Starting Mongo 4.2, db.collection.update() can accept an aggregation pipeline, finally allowing the update/creation of a field based on another field:
// { firstName: "Hello", lastName: "World" }
db.collection.updateMany(
{},
[{ $set: { name: { $concat: [ "$firstName", " ", "$lastName" ] } } }]
)
// { "firstName" : "Hello", "lastName" : "World", "name" : "Hello World" }
The first part {} is the match query, filtering which documents to update (in our case all documents).
The second part [{ $set: { name: { ... } }] is the update aggregation pipeline (note the squared brackets signifying the use of an aggregation pipeline). $set is a new aggregation operator and an alias of $addFields.
Regarding this answer, the snapshot function is deprecated in version 3.6, according to this update. So, on version 3.6 and above, it is possible to perform the operation this way:
db.person.find().forEach(
function (elem) {
db.person.update(
{
_id: elem._id
},
{
$set: {
name: elem.firstname + ' ' + elem.lastname
}
}
);
}
);
I tried the above solution but I found it unsuitable for large amounts of data. I then discovered the stream feature:
MongoClient.connect("...", function(err, db){
var c = db.collection('yourCollection');
var s = c.find({/* your query */}).stream();
s.on('data', function(doc){
c.update({_id: doc._id}, {$set: {name : doc.firstName + ' ' + doc.lastName}}, function(err, result) { /* result == true? */} }
});
s.on('end', function(){
// stream can end before all your updates do if you have a lot
})
})
update() method takes aggregation pipeline as parameter like
db.collection_name.update(
{
// Query
},
[
// Aggregation pipeline
{ "$set": { "id": "$_id" } }
],
{
// Options
"multi": true // false when a single doc has to be updated
}
)
The field can be set or unset with existing values using the aggregation pipeline.
Note: use $ with field name to specify the field which has to be read.
Here's what we came up with for copying one field to another for ~150_000 records. It took about 6 minutes, but is still significantly less resource intensive than it would have been to instantiate and iterate over the same number of ruby objects.
js_query = %({
$or : [
{
'settings.mobile_notifications' : { $exists : false },
'settings.mobile_admin_notifications' : { $exists : false }
}
]
})
js_for_each = %(function(user) {
if (!user.settings.hasOwnProperty('mobile_notifications')) {
user.settings.mobile_notifications = user.settings.email_notifications;
}
if (!user.settings.hasOwnProperty('mobile_admin_notifications')) {
user.settings.mobile_admin_notifications = user.settings.email_admin_notifications;
}
db.users.save(user);
})
js = "db.users.find(#{js_query}).forEach(#{js_for_each});"
Mongoid::Sessions.default.command('$eval' => js)
With MongoDB version 4.2+, updates are more flexible as it allows the use of aggregation pipeline in its update, updateOne and updateMany. You can now transform your documents using the aggregation operators then update without the need to explicity state the $set command (instead we use $replaceRoot: {newRoot: "$$ROOT"})
Here we use the aggregate query to extract the timestamp from MongoDB's ObjectID "_id" field and update the documents (I am not an expert in SQL but I think SQL does not provide any auto generated ObjectID that has timestamp to it, you would have to automatically create that date)
var collection = "person"
agg_query = [
{
"$addFields" : {
"_last_updated" : {
"$toDate" : "$_id"
}
}
},
{
$replaceRoot: {
newRoot: "$$ROOT"
}
}
]
db.getCollection(collection).updateMany({}, agg_query, {upsert: true})
(I would have posted this as a comment, but couldn't)
For anyone who lands here trying to update one field using another in the document with the c# driver...
I could not figure out how to use any of the UpdateXXX methods and their associated overloads since they take an UpdateDefinition as an argument.
// we want to set Prop1 to Prop2
class Foo { public string Prop1 { get; set; } public string Prop2 { get; set;} }
void Test()
{
var update = new UpdateDefinitionBuilder<Foo>();
update.Set(x => x.Prop1, <new value; no way to get a hold of the object that I can find>)
}
As a workaround, I found that you can use the RunCommand method on an IMongoDatabase (https://docs.mongodb.com/manual/reference/command/update/#dbcmd.update).
var command = new BsonDocument
{
{ "update", "CollectionToUpdate" },
{ "updates", new BsonArray
{
new BsonDocument
{
// Any filter; here the check is if Prop1 does not exist
{ "q", new BsonDocument{ ["Prop1"] = new BsonDocument("$exists", false) }},
// set it to the value of Prop2
{ "u", new BsonArray { new BsonDocument { ["$set"] = new BsonDocument("Prop1", "$Prop2") }}},
{ "multi", true }
}
}
}
};
database.RunCommand<BsonDocument>(command);
MongoDB 4.2+ Golang
result, err := collection.UpdateMany(ctx, bson.M{},
mongo.Pipeline{
bson.D{{"$set",
bson.M{"name": bson.M{"$concat": []string{"$lastName", " ", "$firstName"}}}
}},
)