Gather Addresses of all Static C Strings at Compile Time - c++

Let's say I have a function like
void foo(const char* bar, ...)
And it has been called in multiple places.
Is it possible to gather addresses of all static strings that are known at compile time in main()?
For example, foo("abc"), I want in main() to be able to get the address of "abc". If someone calls foo(someVariable), the address of someVariable might not be known, and so it can be ignored.
Is it possible?

If you agree to use registration, you might do something like
// Would contain each registered string.
std::vector<const char*>& registered_vector()
{
static std::vector<const char*> v;
return v;
}
bool Register(const char* s)
{
registered_vector().push_back(s);
return true;
}
// Class which holds the unique pointer as buffer.
template <typename Char, Char... Cs>
struct static_string
{
static constexpr Char s[] = {Cs..., 0};
};
template <typename Char, Char... Cs>
constexpr Char static_string<Char, Cs...>::s[];
// string literal operator templates are a GNU extension
// MACRO can replace the operator to avoid that extension.
template <typename Char, Char... Cs>
static_string<Char, Cs...> operator ""_ss()
{
static_string<Char, Cs...> res;
static const bool dummy = Register(res.s); // Register only once :-)
static_cast<void>(dummy); // Avoid warning for unused variable
return res;
}
And now, test it:
int main() {
"Hello"_ss;
"World"_ss;
"Hello"_ss;
"Hi"_ss;
"42"_ss;
for (const auto s : registered_vector()) {
std::cout << s << std::endl;
}
}
Demo

Is it possible to gather addresses of all static strings that are known at compile time in main()?
At compile time strings from other translation units are unavailable.
You can dump string literals from your executable or shared library using readelf -W -p .rodata <executable> command.

Related

store a string in a constexpr struct

Is it possible to store a string in a constexpr struct:
So far I could only come up with:
struct A
{
constexpr A(std::string_view n): m_name(n) {}
constexpr auto name(){ return m_name; }
std::string_view m_name; // This might become dangling!!
}
which is cleary only a good idea if this class is only used like this
A a = {"Hello"};
constexpr A b = {"World"};
and not like this
auto makeA(std::string n) { return A{n}; }
A a = makeA("Hello"); // Dangling internal std::string_view
I need the constexpr to construct the struct at compile time.
Is it possible to make this safer at run-time, because with std::string_view, its not.
This is not really a question of safety as much as it is a question of semantics. Nothing prevents you from doing the exact same thing at compiletime:
constexpr A blub()
{
char str[] = "asdf";
return { str };
}
Since there is no way to ever call this function in a core constant expression, a program that contains code like this is ill-formed, no diagnostic required [dcl.constexpr]/5, which really isn't any better than invoking undefined behavior at runtime…
Compiletime or not, you have to ask yourself the question: Should this struct own a string or refer to an existing string? I would strongly recommend against making your struct own a string in a runtime context and refer to an existing string in a compiletime context, even if you find a way to pull this off in theory. We're talking about completely different semantics here. Completely different semantics should generally better be modeled by different types rather than one type that completeley changes its meaning depending on context…
If you want to make a constexpr struct own a string, you'll currently have to resort to some constexpr string implementation such as, e.g., this one. Since your question is tagged with c++20, note that std::string will be useable in a constexpr context starting with C++20 [basic.string]. So, in C++20, you will be able to just have the member be an std::string…
You might do:
template<typename Char, Char... Cs>
struct CharSeq
{
static constexpr const Char s[] = {Cs..., 0}; // The unique address
};
// That template uses the extension
template<typename Char, Char... Cs>
constexpr CharSeq<Char, Cs...> operator"" _cs() {
return {};
}
See my answer from String-interning at compiletime for profiling to have MAKE_STRING macro if you cannot used the extension (Really more verbose, and hard coded limit for accepted string length).
Then
struct A
{
template <char ... Cs>
constexpr A(CharSeq<char, Cs...>) : m_name(CharSeq<char, Cs...>::s) {}
constexpr auto name(){ return m_name; }
std::string_view m_name;
};
With only valid usages similar to:
A a = {"Hello"_cs};
constexpr A b = {"World"_cs};

c++: using constexpr to XOR data doesn't work

Here is my code:
template<int... I>
class MetaString1
{
public:
constexpr MetaString1(constexpr char* str)
: buffer_{ encrypt(str[I])... } { }
const char* decrypt()
{
for (int i = 0; i < sizeof...(I); ++i)
buffer_[i] = decrypt1(buffer_[i]);
buffer_[sizeof...(I)] = 0;
return buffer_;
}
private:
constexpr char encrypt(constexpr char c) const { return c ^ 0x55; }
constexpr char decrypt1(constexpr char c) const { return encrypt(c); }
private:
char buffer_[sizeof...(I)+1];
};
#define OBFUSCATED1(str) (MetaString1<0, 1, 2, 3, 4, 5>(str).decrypt())
int main()
{
constexpr char *var = OBFUSCATED1("Post Malone");
std::cout << var << std::endl;
return 1;
}
This is the code from the paper that I'm reading Here. The Idea is simple, to XOR the argument of OBFUSCATED1 and then decrypt back to original value.
The problem that I'm having is that VS 2017 gives me error saying function call must have a constant value in constant expression.
If I only leave OBFUSCATED1("Post Malone");, I have no errors and program is run, but I've noticed that if I have breakpoints in constexpr MetaString1 constructor, the breakpoint is hit, which means that constexpr is not evaluated during compile time. As I understand it's because I don't "force" compiler to evaluate it during compilation by assigning the result to a constexpr variable.
So I have two questions:
Why do I have error function call must have a constant value in constant expression?
Why do people use template classes when they use constexpr functions? As I know template classes get evaluated during compilation, so using template class with constexpr is just a way to push compiler to evaluate those functions during compilation?
You try to assign a non constexpr type to a constexpr type variable,
what's not possible
constexpr char *var = OBFUSCATED1("Post Malone")
// ^^^ ^^^^^^^^^^^
// type of var is constexpr, return type of OBFUSCATED1 is const char*
The constexpr keyword was introduced in C++11, so before you had this keyword you had to write complicated TMP stuff to make the compiler do stuff at compile time. Since TMP is turing complete you theoretically don't need something more than TMP, but since TMP is slow to compile and ugly to ready, you are able to use constexpr to express things you want evaluate at compile time in a more readable way. Although there is no correlation between TMP and constexpr, what means, you are free to use constexpr without template classes.
To achieve what you want, you could save both versions of the string:
template <class T>
constexpr T encrypt(T l, T r)
{
return l ^ r;
}
template <std::size_t S, class U>
struct in;
template <std::size_t S, std::size_t... I>
struct in<S, std::index_sequence<I...>>
{
constexpr in(const char str[S])
: str_{str[I]...}
, enc_{encrypt(str[I], char{0x12})...}
{}
constexpr const char* dec() const
{
return str_;
}
constexpr const char* enc() const
{
return enc_;
}
protected:
char str_[S];
char enc_[S];
};
template <std::size_t S>
class MetaString1
: public in<S, std::make_index_sequence<S - 1>>
{
public:
using base1_t = in<S, std::make_index_sequence<S - 1>>;
using base1_t::base1_t;
constexpr MetaString1(const char str[S])
: base1_t{str}
{}
};
And use it like this:
int main()
{
constexpr char str[] = "asdffasegeasf";
constexpr MetaString1<sizeof(str)> enc{str};
std::cout << enc.dec() << std::endl;
std::cout << enc.enc() << std::endl;
}

Template code and literal strings

I am currently writing some template code where the template parameter is the char type to use. This causes a problem when referring to literal strings. I can, of course, make a struct with the strings I use but I was thinking if it would be possible to make something like:
template<typename chartype, char32_t... chars>
struct tr {
/* some magic here */
};
so that tr<char32_t,U"hello world"> would result in U"hello world"
and tr<char16_t,U"Hello world"> would result in u"hello world"
and tr<char,U"hello world"> would result in "hello world" (in UTF-8).
The magic should of course correctly translate codes above 0x10000 to lead code and follow code for char16_t and to proper 2, 3 and 4 byte codes for UTF-8
at compile time.
Problem is: how do you define a constant C-style string of a given char type using the char32_t... chars template argument? You can extract the characters
from it but how do you rebuild a new string based on the chars of the input string in template code?
Note, the preprocessor can correctly define a string such as "hello world" with suitable prefix u or U if you like but it cannot access the individual characters of the string to properly translate it.
EDIT:
Strings as template arguments are definitely possible in new C++, however,
the template argument is NOT declared as const char * or something like that:
template <char... txt>
struct foo { ... }
allows you to write foo<"hello"> as a type with the string "hello" as template argument. The problem is how to build the string from those characters.
I mean at some point you want the struct to contain a string value to return:
template <char32_t... txt>
struct foo;
template <>
struct foo<> {
static const char16_t * txt() { return ""; }
};
template <char32_t a, char32_t... rest>
struct foo<a, rest...> {
static const char16_t * txt()
{
char16_t buf[100];
int k = 0;
if (a < 0x10000) buf[k++] = a;
else {
buf[k++] = 0xd800 | ((a - 0x10000) >> 10);
buf[k++] = 0xdc00 | ((a-0x10000) & 0x3ff);
}
// copy rest of string into buf + 2..99
u16strcpy(buf + k, foo<rest...>::txt());
return buf;
}
}
Several obvious problems with this "solution", one problem is that buf only have room for 100 characters which will fail if the string is longer. but the main problem is that I wanted this to happen in compile time and this looks very much like run time code to me and is not at all what I wanted to do.
Basically I wanted something that works this way:
foo<char, "hello"> results in something that is effectively a string literal
"hello" or u8"hello".
foo<char16_t, "hello"> results in something that is effectively a string literal u"hello" and foo<char32_t, "hello"> results in something that is effectively a string literal U"hello".
The problem is when writing template code to handle various character formats and then having string literals involved. Yes, you can write a simple struct:
template <typename ChT> struct bar;
template <>
struct bar<char32_t> {
static const char32_t * txta = U"AAAA";
static const char32_t * txtb = U"BBBB";
};
and so on and bar<char16_t> has txta = u"AAAA" etc. Then refer to the strings
in your templated code by bar<T>::txta etc. However, I wish there was a way that you could specify those strings directly in templated code and the compiler would do the right thing. A templated string literal in other words.
Maybe it should be added as a feature to the language that
T<char32_t> string-literal is the same as U string-literal etc
so that you could write
template <typename ChT>
struct foo {
static const ChT * txta = T<ChT> "AAAAA";
};
and the compiler would do the right thing.
This would appear to simply not be legal, even the following is rejected (vs2017, with standard set to latest):
template<char const * ptr>
struct test
{};
void bar()
{
test<"testing"> t;
}
with the error: invalid expression as a template argument for 'ptr', and if that's not going to work trying to convert it at compile-time is a non-starter. And honestly this doesn't seem all that surprising that a pointer-to-data isn't constant enough. to be a template argument.
Here are some tools to make it work in C++17 (might be portable to C++11 and C++14):
static constexpr data member of templated class
The output literal you wish to work with needs some "storage". I suggest to instantiate a unique class template for each literal, e.g., Literal<char, 'f', 'o', 'o', '\0'>. That class can hold the data as astatic constexpr` member.
template<class C, C... cs>
struct Literal {
static_assert(sizeof...(cs) >= 1);
static constexpr C data[] = {cs...};// or use `std::array<C, sizeof...(cs)>`
};
template<class C, C... cs>
constexpr C Literal<C, cs...>::data[];
user-defined string literal to simplify syntax
Of course you wish to avoid typing, e.g., Literal<char, 'f', 'o', 'o', '\0'>. A useful tool to achieve that is the following overload for user-defined string literals.
template<class C, C... cs>
constexpr Literal<C, cs..., C('\0')> operator""_c() {// or use `auto`
return Literal<C, cs..., C('\0')>{};
}
Note how the input literal is passed as non-type template parameters to that overload. That way, it is possible to "carry the value as a type".
constexpr algorithms for re-encoding
So far, you can type "foo"_c to obtain a Literal<char, 'f', 'o', 'o', '\0'> which has a static constexpr data member yielding the same as "foo". Next you can pass that Literal<char, 'f', 'o', 'o', '\0'> to a function which returns a const char16_t(&)[4] to data of the corresponding Literal<char16_t, ..., '\0'>. The syntax could read tr<char16_t>("foo"_c).
The code that transforms a Literal<char, ...> into the corresponding Literal<char16_t, ...> may be based on constexpr algorithms as shown below.
template<
class OutChar, class InChar, InChar... cs,
std::size_t... input_indices, std::size_t... output_indices
>
constexpr auto& tr_impl(// called by `tr` with appropriate `index_sequence`s
Literal<InChar, cs...>,
std::index_sequence<input_indices...>,
std::index_sequence<output_indices...>
) {
constexpr std::size_t outsize = sizeof...(output_indices);
using Buffer = std::array<OutChar, outsize>;
constexpr Buffer buf = encode_as<OutChar, outsize>({cs...});
return Literal<OutChar, buf[output_indices]...>::data;
}
template<class OutChar, class InChar, InChar... cs>
constexpr auto& tr(Literal<InChar, cs...> literal) {
constexpr std::size_t outsize = count_as<OutChar>({cs...});
return tr_impl<OutChar>(
literal,
std::make_index_sequence<sizeof...(cs)>{},// input indices
std::make_index_sequence<outsize>{}// output indices
);
}
The remaining part would be to implement those functions count_as and encode_as.
assign to constexpr auto& in final usage
Finally you can assign to constexpr auto& to verify that type and value are equivalent to the plain string literal based on the desired character type.
static_assert(std::size(U"𝄞𝄞") == 3);
static_assert(std::size(u"𝄞𝄞") == 5);
constexpr auto& test = tr<char16_t>(U"𝄞𝄞"_c);
static_assert(std::is_same<decltype(test), const char16_t(&)[5]>{});
for(std::size_t i=0; i<std::size(u"𝄞𝄞"); ++i) {
assert(test[i] == u"𝄞𝄞"[i]);
std::cout << i << ": " << test[i] << std::endl;
}

How to concatenate static strings at compile time?

I am trying to use templates to create an analogue of the type_info::name() function which emits the const-qualified name. E.g. typeid(bool const).name() is "bool" but I want to see "bool const". So for generic types I define:
template<class T> struct type_name { static char const *const _; };
template<class T> char const *const type_name<T>::_ = "type unknown";
char const *const type_name<bool>::_ = "bool";
char const *const type_name<int>::_ = "int";
//etc.
Then type_name<bool>::_ is "bool". For non-const types obviously I could add a separate definition for each type, so char const *const type_name<bool const>::_ = "bool const"; etc. But I thought I would try a partial specialization and a concatenation macro to derive in one line the const-qualified name for any type which has its non-const-qualified name previously defined. So
#define CAT(A, B) A B
template<class T> char const *const type_name<T const>::_
= CAT(type_name<T>::_, " const"); // line [1]
But then type_name<bool const>::_ gives me error C2143: syntax error: missing ';' before 'string' for line [1]. I think that type_name<bool>::_ is a static string known at compile time, so how do I get it concatenated with " const" at compile time?
I tried more simple example but same problem:
char str1[4] = "int";
char *str2 = MYCAT(str1, " const");
I recently revisited this problem, and found that the previous answer I gave produced ridiculously long compile times when concatenating more than a handful of strings.
I have produced a new solution which leverages constexpr functions to remove the recursive templates responsible for the long compilation time.
#include <array>
#include <iostream>
#include <string_view>
template <std::string_view const&... Strs>
struct join
{
// Join all strings into a single std::array of chars
static constexpr auto impl() noexcept
{
constexpr std::size_t len = (Strs.size() + ... + 0);
std::array<char, len + 1> arr{};
auto append = [i = 0, &arr](auto const& s) mutable {
for (auto c : s) arr[i++] = c;
};
(append(Strs), ...);
arr[len] = 0;
return arr;
}
// Give the joined string static storage
static constexpr auto arr = impl();
// View as a std::string_view
static constexpr std::string_view value {arr.data(), arr.size() - 1};
};
// Helper to get the value out
template <std::string_view const&... Strs>
static constexpr auto join_v = join<Strs...>::value;
// Hello world example
static constexpr std::string_view hello = "hello";
static constexpr std::string_view space = " ";
static constexpr std::string_view world = "world";
static constexpr std::string_view bang = "!";
// Join them all together
static constexpr auto joined = join_v<hello, space, world, bang>;
int main()
{
std::cout << joined << '\n';
}
This gives much quicker compile times, even with a large quantity of strings to concatenate.
I personally find this solution easier to follow as the constexpr impl function is akin to how this could be solved at runtime.
Edited with improvements thanks to #Jarod42
EDIT - See my new, improved answer here.
Building on #Hededes answer, if we allow recursive templates, then concatenation of many strings can be implemented as:
#include <string_view>
#include <utility>
#include <iostream>
namespace impl
{
/// Base declaration of our constexpr string_view concatenation helper
template <std::string_view const&, typename, std::string_view const&, typename>
struct concat;
/// Specialisation to yield indices for each char in both provided string_views,
/// allows us flatten them into a single char array
template <std::string_view const& S1,
std::size_t... I1,
std::string_view const& S2,
std::size_t... I2>
struct concat<S1, std::index_sequence<I1...>, S2, std::index_sequence<I2...>>
{
static constexpr const char value[]{S1[I1]..., S2[I2]..., 0};
};
} // namespace impl
/// Base definition for compile time joining of strings
template <std::string_view const&...> struct join;
/// When no strings are given, provide an empty literal
template <>
struct join<>
{
static constexpr std::string_view value = "";
};
/// Base case for recursion where we reach a pair of strings, we concatenate
/// them to produce a new constexpr string
template <std::string_view const& S1, std::string_view const& S2>
struct join<S1, S2>
{
static constexpr std::string_view value =
impl::concat<S1,
std::make_index_sequence<S1.size()>,
S2,
std::make_index_sequence<S2.size()>>::value;
};
/// Main recursive definition for constexpr joining, pass the tail down to our
/// base case specialisation
template <std::string_view const& S, std::string_view const&... Rest>
struct join<S, Rest...>
{
static constexpr std::string_view value =
join<S, join<Rest...>::value>::value;
};
/// Join constexpr string_views to produce another constexpr string_view
template <std::string_view const&... Strs>
static constexpr auto join_v = join<Strs...>::value;
namespace str
{
static constexpr std::string_view a = "Hello ";
static constexpr std::string_view b = "world";
static constexpr std::string_view c = "!";
}
int main()
{
constexpr auto joined = join_v<str::a, str::b, str::c>;
std::cout << joined << '\n';
return 0;
}
I used c++17 with std::string_view as the size method is handy, but this could easily be adapted to use const char[] literals as #Hedede did.
This answer is intended as a response to the title of the question, rather than the more niche problem described.

Passing a string literal as a type argument to a class template

I want to declare a class template in which one of the template parameters takes a string literal, e.g. my_class<"string">.
Can anyone give me some compilable code which declares a simple class template as described?
Note: The previous wording of this question was rather ambiguous as to what the asker was actually trying to accomplish, and should probably have been closed as insufficiently clear. However, since then this question became multiple times referred-to as the canonical ‘string literal type parameter’ question. As such, it has been re-worded to agree with that premise.
You can have a const char* non-type template parameter, and pass it a const char[] variable with static linkage, which is not all that far from passing a string literal directly.
#include <iostream>
template<const char *str>
struct cts {
void p() {std::cout << str;}
};
static const char teststr[] = "Hello world!";
int main() {
cts<teststr> o;
o.p();
}
http://coliru.stacked-crooked.com/a/64cd254136dd0272
Further from Neil's answer: one way to using strings with templates as you want is to define a traits class and define the string as a trait of the type.
#include <iostream>
template <class T>
struct MyTypeTraits
{
static const char* name;
};
template <class T>
const char* MyTypeTraits<T>::name = "Hello";
template <>
struct MyTypeTraits<int>
{
static const char* name;
};
const char* MyTypeTraits<int>::name = "Hello int";
template <class T>
class MyTemplateClass
{
public:
void print() {
std::cout << "My name is: " << MyTypeTraits<T>::name << std::endl;
}
};
int main()
{
MyTemplateClass<int>().print();
MyTemplateClass<char>().print();
}
prints
My name is: Hello int
My name is: Hello
C++20 fixed_string + "Class Types in Non-Type Template Parameters"
Apparently, a proposal for this was first accepted, but then removed: "String literals as non-type template parameters"
The removal was partly because it was deemed to be easy enough to do with another proposal that was accepted: "Class Types in Non-Type Template Parameters".
The accepted proposal contains an example with the following syntax:
template <std::basic_fixed_string Str>
struct A {};
using hello_A = A<"hello">;
I'll try to update this with an example that actually tells me anything once I see a compiler that supports it.
A Redditor has also shown that the following compiles on GCC master, provided you define your own version of basic_fixed_string which was not in the standard library yet: https://godbolt.org/z/L0J2K2
template<unsigned N>
struct FixedString {
char buf[N + 1]{};
constexpr FixedString(char const* s) {
for (unsigned i = 0; i != N; ++i) buf[i] = s[i];
}
constexpr operator char const*() const { return buf; }
};
template<unsigned N> FixedString(char const (&)[N]) -> FixedString<N - 1>;
template<FixedString T>
class Foo {
static constexpr char const* Name = T;
public:
void hello() const;
};
int main() {
Foo<"Hello!"> foo;
foo.hello();
}
g++ -std=c++2a 9.2.1 from the Ubuntu PPA fails to compile that with:
/tmp/ccZPAqRi.o: In function `main':
main.cpp:(.text+0x1f): undefined reference to `_ZNK3FooIXtl11FixedStringILj6EEtlA7_cLc72ELc101ELc108ELc108ELc111ELc33EEEEE5helloEv'
collect2: error: ld returned 1 exit status
Bibliography: https://botondballo.wordpress.com/2018/03/28/trip-report-c-standards-meeting-in-jacksonville-march-2018/
Finally, EWG decided to pull the previously-approved proposal to allow string literals in non-type template parameters, because the more general facility to allow class types in non-type template parameters (which was just approved) is a good enough replacement. (This is a change from the last meeting, when it seemed like we would want both.) The main difference is that you now have to wrap your character array into a struct (think fixed_string or similar), and use that as your template parameter type. (The user-defined literal part of P0424 is still going forward, with a corresponding adjustment to the allowed template parameter types.)
This will be especially cool with the C++17 if constexpr: if / else at compile time in C++?
This kind of feature appears to be in line with the awesome "constexpr everything" proposals that went into C++20, such as: Is it possible to use std::string in a constexpr?
Sorry, C++ does not currently support the use of string literals (or real literals) as template parameters.
But re-reading your question, is that what you are asking? You cannot say:
foo <"bar"> x;
but you can say
template <typename T>
struct foo {
foo( T t ) {}
};
foo <const char *> f( "bar" );
This is a solution with MPLLIBS to pass a strings as template arguments ( C++11 ).
#include <iostream>
#include <mpllibs/metaparse/string.hpp> // https://github.com/sabel83/mpllibs
#include <boost/mpl/string.hpp>
// -std=c++11
template<class a_mpl_string>
struct A
{
static const char* string;
};
template<class a_mpl_string>
const char* A< a_mpl_string >
::string { boost::mpl::c_str< a_mpl_string >::value }; // boost compatible
typedef A< MPLLIBS_STRING ( "any string as template argument" ) > a_string_type;
int main ( int argc, char **argv )
{
std::cout << a_string_type{}.string << std::endl;
return 0;
}
prints:
any string as template argument
The lib on github: https://github.com/sabel83/mpllibs
inline const wchar_t *GetTheStringYouWant() { return L"The String You Want"; }
template <const wchar_t *GetLiteralFunc(void)>
class MyType
{
void test()
{
std::cout << GetLiteralFunc;
}
}
int main()
{
MyType<GetTheStringYouWant>.test();
}
Try it with pasing the address of a function as the template argument.
EDIT: ok the title of your question seems to be misleading
"I want a class which takes two parameters in its constructor. The first can be either an int, double or float, so , and the second is always a string literal "my string", so I guess const char * const."
It looks like you're trying to achieve:
template<typename T>
class Foo
{
public:
Foo(T t, const char* s) : first(t), second(s)
{
// do something
}
private:
T first;
const char* second;
};
This would work for any type, for the first parameter: int, float, double, whatever.
Now if you really want to restrict the type of the first parameter to be only int, float or double; you can come up with something more elaborate like
template<typename T>
struct RestrictType;
template<>
struct RestrictType<int>
{
typedef int Type;
};
template<>
struct RestrictType<float>
{
typedef float Type;
};
template<>
struct RestrictType<double>
{
typedef double Type;
};
template<typename T>
class Foo
{
typedef typename RestrictType<T>::Type FirstType;
public:
Foo(FirstType t, const char* s) : first(t), second(s)
{
// do something
}
private:
FirstType first;
const char* second;
};
int main()
{
Foo<int> f1(0, "can");
Foo<float> f2(1, "i");
Foo<double> f3(1, "have");
//Foo<char> f4(0, "a pony?");
}
If you remove the comment on the last line, you'll effectively get a compiler error.
String literals are not allowed by C++2003
ISO/IEC 14882-2003 §14.1:
14.1 Template parameters
A non-type template-parameter shall have one of the following (optionallycv-qualified) types:
— integral or enumeration type,
— pointer to object or pointer to function,
— reference to object or reference to function,
— pointer to member.
ISO/IEC 14882-2003 §14.3.2:
14.3.2 Template non-type arguments
A template-argument for a non-type, non-template template-parameter shall be one of:
— an integral constant-expression of integral or enumeration type; or
— the name of a non-type template-parameter; or
— the address of an object or function with external linkage, including function templates and function template-ids but excluding non-static class members, expressed as & id expression where the & is optional if the name refers to a function or array, or if the corresponding template-parameter is a reference; or
— a pointer to member expressed as described in 5.3.1.
[Note:A string literal (2.13.4) does not satisfy the requirements of any of these categories and thus is not an acceptable template-argument.
[Example:
template<class T, char* p> class X {
//...
X();
X(const char* q) { /* ... */ }
};
X<int,"Studebaker"> x1; //error: string literal as template-argument
char p[] = "Vivisectionist";
X<int,p> x2; //OK
—end example] —end note]
And it looks like it's not going to change in the upcoming C++0X, see the current draft 14.4.2 Template non-type arguments.
Based on your comments under Niel's answer, another possibility is the following:
#include <iostream>
static const char* eventNames[] = { "event_A", "event_B" };
enum EventId {
event_A = 0,
event_B
};
template <int EventId>
class Event
{
public:
Event() {
name_ = eventNames[EventId];
}
void print() {
std::cout << name_ << std::endl;
}
private:
const char* name_;
};
int main()
{
Event<event_A>().print();
Event<event_B>().print();
}
prints
event_A
event_B
You cannot pass a string literal directly as a template parameter.
But you can get close:
template<class MyString = typestring_is("Hello!")>
void MyPrint() {
puts( MyString::data() );
}
...
// or:
MyPrint<typestring_is("another text")>();
...
All you need is a small header file from here.
Alternatives:
Define a global char const * and pass it to the template as pointer. (here)
Drawback: Requires additional code outside of the template argument list. It is not suitable, if you need to specify the string literal "inline".
Use a non-standard language extension. (here)
Drawback: Not guaranteed to work with all compilers.
Use BOOST_METAPARSE_STRING. (here)
Drawback: Your code will depend on the Boost library.
Use a variadic template parameter pack of char, e.g. str_t<'T','e','s','t'>.
This is what the above solution does for you behind the scenes.
Use proxy static constexpr const char type_name_str[] = {"type name"}; for passing string as template parameter. Defining string using [] is important.
#include <iostream>
template<typename T, const char* const t_name>
struct TypeName
{
public:
static constexpr const char* Name()
{
return t_name;
};
};
static constexpr const char type_name_str[] = {"type name"};
int main()
{
std::cout<<TypeName<float, type_name_str>::Name();
return 0;
}
I want a class which takes two parameters in its constructor. The first can be either an int, double or float, so , and the second is always a string literal "my string"
template<typename T>
class demo
{
T data;
std::string s;
public:
demo(T d,std::string x="my string"):data(d),s(x) //Your constructor
{
}
};
I am not sure but is this something what you want?
Maybe not what the OP is asking, but if you use boost, you can create a macro like this for example:
#define C_STR(str_) boost::mpl::c_str< BOOST_METAPARSE_STRING(str_) >::value
Then use as follows:
template<const char* str>
structe testit{
};
testit<C_STR("hello")> ti;
template <char... elements>
struct KSym /* : optional_common_base */ {
// We really only care that we have a unique-type and thus can exploit being a `""_ksym singleton`
const char z[sizeof...(elements) + 1] = { elements..., '\0' };
// We can have properties, we don't need anything to be constexpr for Rs
};
template <typename T, T... chars>
auto&& operator""_ksym() {
static KSym<chars...> kSym; // Construct the unique singleton (lazily on demand)
return kSym;
}
static auto ksym_example1 = "a unique string symbol1\n"_ksym.z;
static auto ksym_example2 = "a unique string symbol2\n"_ksym.z;
auto dont_care = []() {
::OutputDebugString(ksym_example1);
::OutputDebugString("a unique string symbol2\n"_ksym.z);
assert("a unique string symbol1\n"_ksym.z == ksym_example1);
assert("a unique string symbol2\n"_ksym.z == ksym_example2);
return true;
}();
The above is working for me in production using Clang 11 on Windows.
(edited) I now use exactly this in clang on Windows:
// P0424R1: http://www.open-std.org/jtc1/SC22/wg21/docs/papers/2017/p0424r1.pdf
template <char... chars_ta> struct KSymT;
template <typename T, T... chars_ta> // std::move(KSymT<chars_ta...>::s);
auto operator""_ksym()->KSymT<chars_ta...>& { return KSymT<chars_ta...>::s; }
struct KSym {
virtual void onRegister() {}
virtual std::string_view zview_get() = 0;
};
template <char... chars_ta>
struct KSymT : KSym {
inline static KSymT s;
// We really only care that we have a unique-type and thus can exploit being a `""_ksym singleton`
inline static constexpr char z[sizeof...(chars_ta) + 1] = { chars_ta..., '\0' };
inline static constexpr UIntPk n = sizeof...(chars_ta);
// We can have properties, we don't need anything to be constexpr for Rs
virtual std::string_view zview_get() { return std::string_view(z); };
//#KSym-support compare with `Af_CmdArgs`
inline bool operator==(const Af_CmdArgs& cmd) {
return (cmd.argl[0] == n && memcmp(cmd.argv[0], z, n) == 0);
}
};
I was struggling with a similar problem and finally came up with a concise implementation that unpacks the string literal into a char... template parameter pack and without using the GNU literal operator template extension:
#include <utility>
template <char ...Chars>
struct type_string_t {
static constexpr const char data[sizeof...(Chars)] = {Chars...};
};
template <char s(std::size_t), std::size_t ...I>
auto type_string_impl(std::index_sequence<I...>) {
return type_string_t<s(I)...>();
}
#define type_string(s) \
decltype (type_string_impl<[] -> constexpr (std::size_t i) {return s[i];}> \
(std::make_index_sequence<sizeof (s)>()))
static_assert (std::is_same<type_string("String_A"),
type_string("String_A")>::value);
static_assert (!std::is_same<type_string("String_A"),
type_string("String_B")>::value);
A major caveat: this depends on a C++20 feature (class values as non-type template arguments; P0732, P1907), which (as of December 2020) is only (partially) implemented in GCC 9 and later (preprocessor feature test: (__cpp_nontype_template_args >= 201911L) || (__GNUG__ >= 9)). However, since the feature is standard, it is only a matter of time before other compilers catch up.
Another C++20 solution I don't see mentioned, but which was sufficiently simple and suitable for my own needs, is to use a constexpr lambda as the NTTP returning the string:
#include <string_view>
template<auto getStrLambda>
struct MyType {
static constexpr std::string_view myString{getStrLambda()};
};
int main() {
using TypeWithString = MyType<[]{return "Hello world!";}>;
return 0;
}
Compiler explorer example here.
here is a solution and extensions/examples
my solution extends https://ctrpeach.io/posts/cpp20-string-literal-template-parameters/
#include <iostream>
#include <algorithm>
#include <string>
template<size_t N>
struct StringLiteral {
char value[N];
constexpr StringLiteral(const char(&str)[N]) {
std::copy_n(str, N, value);
}
};
template <StringLiteral T>
struct String {
static constexpr std::string str() {
return T.value;
}
};
template <typename... Strings>
struct JoinedString {
static constexpr std::string str() {
return (Strings::str() + ...);
}
};
template <typename Delim, typename String, typename... Strings>
struct DelimJoinedString {
static constexpr std::string str() {
if constexpr (sizeof...(Strings))
return JoinedString<String, Delim, DelimJoinedString<Delim, Strings...>>::str();
else
return String::str();
}
};
int main() {
// "123"
using s123 = String<"123">;
std::cout << s123::str() << "\n";
// "abc"
using abc = String<"abc">;
std::cout << abc::str() << "\n";
// "abc123abc123"
using abc123abc123 = JoinedString<abc, s123, abc, s123>;
std::cout << abc123abc123::str() << "\n";
// "abc, 123"
using abccomma123 = DelimJoinedString<String<", ">, abc, s123>;
std::cout << abccomma123::str() << "\n";
// "abc, 123, 123, abc"
using commaabc123123abc = DelimJoinedString<String<", ">, abc, s123, s123, abc>;
std::cout << commaabc123123abc::str() << "\n";
return 0;
}
a string literal "my string", so I guess const char * const
Actually, string literals with n visible characters are of type const char[n+1].
#include <iostream>
#include <typeinfo>
template<class T>
void test(const T& t)
{
std::cout << typeid(t).name() << std::endl;
}
int main()
{
test("hello world"); // prints A12_c on my compiler
}