Separate Compilation and Linking of CUDA C++ Device Code with cmake - c++

I want to add cuda code in existing C++ code base that uses cmake build systems. I found an article(link below) from NVIDIA that exactly shows how it can be done except it uses make build. I am new to cmake build system, but I gave good try by reading and experimenting stuff from other links on this website. So far no success! Does anybody has an idea about it ? If yes then please guide me.
https://devblogs.nvidia.com/separate-compilation-linking-cuda-device-code/
Here is my CMakeLists.txt file
cmake_minimum_required(VERSION 3.5.1)
message(STATUS "CMake version: ${CMAKE_VERSION}")
project(CUDAwithC)
find_package(CUDA 9.1 REQUIRED)
INCLUDE(FindCUDA)
INCLUDE_DIRECTORIES(/usr/local/cuda-9.1/include include)
set(SOURCE_FILES src/app.cpp src/particle.cpp src/v3.cpp)
cuda_add_executable(
tee ${SOURCE_FILES}
)
set(
CUDA_NVCC_FLAGS
${CUDA_NVCC_FLAGS};
-x cu -gencode -arch=compute_20 -dc
)
target_link_libraries(
tee /usr/local/cuda/lib64/libcudart.so
)

It would help to see the error messages.
From just looking at your code, instead of specifying the library path, use ${CUDA_LIBRARIES}.
Dump the flags section and use the OPTIONS argument for cuda_add_executable to pass the -arch flag.
Don't use include_directories (best practices), use target_include_directories instead and pass it ${CUDA_INCLUDE_DIRS}. You shouldn't have to do that at all as cuda_add_executable does that for you (reportedly).
It's helpful to enable compile_commands.json to see what the build system is trying to do.
set( CMAKE_EXPORT_COMPILE_COMMANDS ON )
Also worth reading through FindCUDA.cmake to see what it offers.
/usr/share/cmake-3.10/Modules/FindCUDA.cmake

Related

what is the proper way of configuring visual studio code to use sdl2 over mingw32 and cmake [duplicate]

I'm trying to use CLion to create a SDL2 project.
The problem is that the SDL headers can't be found when using #include's.
My CMakeLists.txt file:
cmake_minimum_required(VERSION 2.8.4)
project(ChickenShooter)
set(SDL2_INCLUDE_DIR C:/SDL/SDL2-2.0.3/include)
set(SDL2_LIBRARY C:/SDL/SDL2-2.0.3/lib/x64)
include_directories(${SDL2_INCLUDE_DIR})
set(SOURCE_FILES main.cpp)
add_executable(ChickenShooter ${SOURCE_FILES})
target_link_libraries(ChickenShooter ${SDL2_LIBRARY})
My test main.cpp:
#include <iostream>
#include "SDL.h" /* This one can't be found */
int main(){
if (SDL_Init(SDL_INIT_VIDEO) != 0){
std::cout << "SDL_Init Error: " << SDL_GetError() << std::endl;
return 1;
}
SDL_Quit();
return 0;
}
Thank you for any help you could give me.
Edit:
I'm using Windows and CLion is configured to use cygwin64.
This blog post shows how you can do it: Using SDL2 with CMake
On Linux you can use a recent CMake (e.g. version 3.7) and using SDL2 works out of the box.
cmake_minimum_required(VERSION 3.7)
project(SDL2Test)
find_package(SDL2 REQUIRED)
include_directories(SDL2Test ${SDL2_INCLUDE_DIRS})
add_executable(SDL2Test Main.cpp)
target_link_libraries(SDL2Test ${SDL2_LIBRARIES})
Under Windows you can download the SDL2 development package, extract it somewhere and then create a sdl-config.cmake file in the extracted location with the following content:
set(SDL2_INCLUDE_DIRS "${CMAKE_CURRENT_LIST_DIR}/include")
# Support both 32 and 64 bit builds
if (${CMAKE_SIZEOF_VOID_P} MATCHES 8)
set(SDL2_LIBRARIES "${CMAKE_CURRENT_LIST_DIR}/lib/x64/SDL2.lib;${CMAKE_CURRENT_LIST_DIR}/lib/x64/SDL2main.lib")
else ()
set(SDL2_LIBRARIES "${CMAKE_CURRENT_LIST_DIR}/lib/x86/SDL2.lib;${CMAKE_CURRENT_LIST_DIR}/lib/x86/SDL2main.lib")
endif ()
string(STRIP "${SDL2_LIBRARIES}" SDL2_LIBRARIES)
When you now configure inside the CMake-GUI application there will be a SDL2_DIR variable. You have to point it to the SDL2 directory where you extracted the dev package and reconfigure then everything should work.
You can then include SDL2 headers by just writing #include "SDL.h".
Don't set the path to SDL2 by hand. Use the proper find command which uses FindSDL. Should look like:
find_file(SDL2_INCLUDE_DIR NAME SDL.h HINTS SDL2)
find_library(SDL2_LIBRARY NAME SDL2)
add_executable(ChickenShooter main.cpp)
target_include_directories(ChickenShooter ${SDL2_INCLUDE_DIR})
target_link_libraries(ChickenShooter ${SDL2_LIBRARY})
If SDL2 is not found, you have to add the path to SDL2 to CMAKE_PREFIX_PATH, that's the place where CMake looks for installed software.
If you can use Pkg-config, its use might be easier, see How to use SDL2 and SDL_image with cmake
If you feel more comfortable to use a FindSDL2.cmake file similar to FindSDL.cmake provided by CMake, see https://brendanwhitfield.wordpress.com/2015/02/26/using-cmake-with-sdl2/
You can also pull in the SDL source repository as a submodule and build/link it statically along with your main program via add_subdirectory() and target_link_libraries():
cmake_minimum_required( VERSION 3.18.0 )
project( sdl2-demo )
set( SDL_STATIC ON CACHE BOOL "" FORCE )
set( SDL_SHARED OFF CACHE BOOL "" FORCE )
# 'external/sdl' should point at a SDL
# repo clone or extracted release tarball
add_subdirectory( external/sdl )
add_executable(
${CMAKE_PROJECT_NAME}
"src/main.cpp"
)
target_link_libraries( ${CMAKE_PROJECT_NAME} SDL2main SDL2-static )
(At least as of the release-2.0.9 tag, possibly earlier.)
I recently discovered the latest version of SDL2 (version 2.0.12) now comes with all the required CMake config/install scripts, so there's no need to use FindSDL anymore.
I downloaded the SDL source from https://www.libsdl.org/download-2.0.php then from the root folder ran...
cmake -S . -B build/debug -G Ninja -DCMAKE_INSTALL_PREFIX=./install -DCMAKE_BUILD_TYPE=Debug
cmake --build build/debug --target install
This will build and install the debug version of the library, you can then also run...
cmake -S . -B build/release -G Ninja -DCMAKE_INSTALL_PREFIX=./install -DCMAKE_BUILD_TYPE=Release
cmake --build build/release --target install
Which will build and install the release version of the library (and because the SDL CMake script uses DEBUG_POSTFIX the release version of the library won't overwrite the debug one as the debug versions all have 'd' appended to their name).
In your CMakeLists.txt file you can then simply do this:
find_package(SDL2 REQUIRED)
add_executable(${PROJECT_NAME} ...)
target_link_libraries(
${PROJECT_NAME} PRIVATE
SDL2::SDL2
SDL2::SDL2main
You'll need to tell your application where to find the SDL install folder if you used a custom location as I've done in the example. To do this from the root folder of your app run:
cmake -S . -B build/debug -G Ninja -DCMAKE_BUILD_TYPE=Debug -DCMAKE_PREFIX_PATH=</absolute/path/to/install/dir>
cmake --build build/debug
Note: You can use $(pwd) (*nix/macOS) or %cd% (Windows) to create a hybrid relative path which can be very useful.
You can omit both DCMAKE_INSTALL_PREFIX and DCMAKE_PREFIX_PATH if you want to install SDL to the default system location.
In the examples I've opted to use the Ninja generator as it is consistent across macOS/Windows - it can be used with MSVC/Visual Studio, just make sure you run this (path may differ slightly depending on year/version) to add Ninja to your path.
C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Auxiliary\Build\vcvars64.bat
Update:
One other thing I remembered which is useful on Windows is the ability to copy the SDL .dll file into the application binary directory, this can be achieved like so:
if (WIN32)
# copy the .dll file to the same folder as the executable
add_custom_command(
TARGET ${PROJECT_NAME} POST_BUILD
COMMAND ${CMAKE_COMMAND} -E copy_if_different
$<TARGET_FILE:SDL2::SDL2>
$<TARGET_FILE_DIR:${PROJECT_NAME}>
VERBATIM)
endif()
Using the SDL2 CMake module that I developed, you can integrate the SDL2 library easily in a modern and portable approach.
You should just copy the module in cmake/sdl2 (Or just clone the modules repo) in your project:
git clone https://github.com/aminosbh/sdl2-cmake-modules cmake/sdl2
Then add the following lines in your CMakeLists.txt:
list(APPEND CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/cmake/sdl2)
find_package(SDL2 REQUIRED)
target_link_libraries(${PROJECT_NAME} SDL2::Main)
Note: If CMake didn't find the SDL2 library (in Windows), we can specify the CMake option SDL2_PATH as follows:
cmake .. -DSDL2_PATH="/path/to/sdl2"
For more details, please read the README.md file.
The SDL2 CMake modules support other related libraries : SDL2_image, SDL2_ttf, SDL2_mixer, SDL2_net and SDL2_gfx.
You can find a list of examples/samples and projects that uses these modules here : https://github.com/aminosbh/sdl-samples-and-projects
With the compiled version of SDL2-2.0.9 with MinGW-w64 in Windows, the following configuration works for me:
find_package(SDL2 REQUIRED)
add_executable(sdl-test ${SOURCES})
target_link_libraries(sdl-test
mingw32
SDL2::SDL2main
SDL2::SDL2
)
A longer explanation
By reading SDL2Targets.cmake file, I've learned that SDL2 is providing several targets:
SDL2::SDL2main (lib/libSDL2main.a)
SDL2::SDL2 (lib/libSDL2.dll.a)
SDL2::SDL2-static (lib/libSDL2-static.a)
Each of them has INTERFACE_INCLUDE_DIRECTORIES defined, which means we don't need to manually specify include_directories for SDL2.
But by only adding SDL2::SDL2main and SDL2::SDL2 as target_link_libraries is not enough. The g++ compiler might be complaining about "undefined reference to `WinMain'".
By inspecting the compiler options, I found that the SDL2 libraries are added before -lmingw32 option. In order to make the -lmingw32 option comes before SDL2 libraries, we have to also specify mingw32 as the first target_link_libraries. Which will make this configuration working.
The command that I have used for building it is:
$ mkdir build && cd build && cmake .. -G"MinGW Makefiles" && cmake --build .
The only small problem here is in the finally generated compiler options, the -lmingw32 option is duplicated. But since it doesn't affect the linking process, I've ignored it for now.
On Linux, in Clion, this works:
cmake_minimum_required(VERSION 3.20)
project(first_game)
set(CMAKE_CXX_STANDARD 14)
find_package(SDL2 REQUIRED)
include_directories(${SDL2_INCLUDE_DIRS})
add_executable(${PROJECT_NAME} main.cpp)
target_link_libraries(${PROJECT_NAME} ${SDL2_LIBRARIES})
You don't seems to have a CMake error whike generating your make file. But I think your problem is, the SDL Header are located in a subfolder named "SDL2".
Change your CMakeLists.txt to include
C:/SDL/SDL2-2.0.3/include/SDL2
Instead of
C:/SDL/SDL2-2.0.3/include
I had the same problem and none of the other solutions worked.
But I finally got it working by following this solution : How to properly link libraries with cmake?
In a nutshell, the problem was that the SDL2 library was not linked properly in my CMakeLists.txt. And by writing this into the file, it worked (more explainations in the other thread) :
project (MyProgramExecBlaBla) #not sure whether this should be the same name of the executable, but I always see that "convention"
cmake_minimum_required(VERSION 2.8)
ADD_LIBRARY(LibsModule
file1.cpp
file2.cpp
)
target_link_libraries(LibsModule -lpthread)
target_link_libraries(LibsModule liblapack.a)
target_link_libraries(LibsModule -L/home/user/libs/somelibpath/)
ADD_EXECUTABLE(MyProgramExecBlaBla main.cpp)
target_link_libraries(MyProgramExecBlaBla LibsModule)
Highlighting the steps of how I was able to eventually accomplish this using the FindSDL2.cmake module:
Download SDL2-devel-2.0.9-VC.zip (or whatever version is out after this answer is posted) under the Development Libraries section of the downloads page.
Extract the zip folder and you should see a folder similar to "SDL2-2.0.9". Paste this folder in your C:\Program Files(x86)\ directory.
Copy the FindSDL2.cmake module and place it in a new "cmake" directory within your project. I found a FindSDL2.cmake file in the answer referenced in the Accepted Answer: https://brendanwhitfield.wordpress.com/2015/02/26/using-cmake-with-sdl2/
Find the SET(SDL2_SEARCH_PATHS line in the FindSDL2.cmake and add your copied development directory for SDL2 as a new line: "/Program Files (x86)/SDL2-2.0.9" # Windows
Within my CMakeLists.txt, add this line: set(CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake)
After this, running CMake worked for me. I'm including the rest of my CMakeLists just in case it further clarifies anything I may have left out:
cmake_minimum_required(VERSION 2.8.4)
project(Test_Project)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11")
# includes cmake/FindSDL2.cmake
set(CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake)
set(SOURCE_FILES src/main.cpp src/test.cpp)
add_executable(test ${SOURCE_FILES})
# The two lines below have been removed to run on my Windows machine
#INCLUDE(FindPkgConfig)
#PKG_SEARCH_MODULE(SDL2 REQUIRED sdl2)
find_package(SDL2 REQUIRED)
INCLUDE_DIRECTORIES(${SDL2_INCLUDE_DIR})
TARGET_LINK_LIBRARIES(chip8 ${SDL2_LIBRARY})
Hope this helps somebody in the near future.
by the time of my answer, SDL2 is provided with sdl2-config executable (as I understand, developers call him "experimental").
After "make install" of SDL2 you can try calling it from terminal with
sdl2-config --cflags --libs to see what it outputs.
And then you can add call to it in your makefile:
set(PROJECT_NAME SomeProject)
project(${PROJECT_NAME})
execute_process(COMMAND /usr/local/bin/sdl2-config --libs RESULT_VARIABLE CMD_RES OUTPUT_VARIABLE SDL2_CFLAGS_LIBS ERROR_VARIABLE ERR_VAR OUTPUT_STRIP_TRAILING_WHITESPACE)
message("SDL2_CFLAGS_LIBS=${SDL2_CFLAGS_LIBS}; CMD_RES=${CMD_RES}; ERR_VAR=${ERR_VAR}")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11 ${SDL2_CFLAGS_LIBS}")
set(SOURCE_FILES main.cpp)
add_executable(${PROJECT_NAME} ${SOURCE_FILES})
Here I have a problem - if I only put an executable name without path like
execute_process(COMMAND sdl2-config --libs <...>
I get error "No such file", i.e. cmake does not search in current path and I don't know how to write it properly by now.
One more notice: in my makefile I do not user --cflags option, because cmake finds includes correctly and I do not need to specify them explicitly.
For your information, I was able to successfully cmake and compile SDL2_ttf while linking to SDL2 source code.
At first I was getting errors due to cmake not being able to locate SDL2, even though it was specified in cmake using the SLD2_DIR variable in cmake.
It seems that for some reason cmaking SDL2 fails to create the SDL2Targets.cmake file which is searched for by SDL2_ttf
If this is the case for you, get the SDL2Targets.cmake file from https://bugs.archlinux.org/task/57972 and modify the file like so:
You can remove the following lines:
get_filename_component(_IMPORT_PREFIX "${CMAKE_CURRENT_LIST_FILE}" PATH)
get_filename_component(_IMPORT_PREFIX "${_IMPORT_PREFIX}" PATH)
get_filename_component(_IMPORT_PREFIX "${_IMPORT_PREFIX}" PATH)
get_filename_component(_IMPORT_PREFIX "${_IMPORT_PREFIX}" PATH)
if(_IMPORT_PREFIX STREQUAL "/")
set(_IMPORT_PREFIX "")
endif()
and add this one:
set(_IMPORT_PREFIX "C:/SDL2-2.0.12")
Obviously change the filepath to the place you unpacked the SDL2 source code
I'm not sure if this is exactly your issue, but there it is.

Linking of CUDA library in CMake

I am using CMake 3.10 and have a problem linking a compiled library to a test executable in CMake.
I searched a lot and found that in earlier versions there was a problem where you could not link intermediate libraries in the result executable. I was not able to tell if this was resolved or still an issue.
My CMake files look like this:
Algo:
cmake_minimum_required (VERSION 3.9)
project(${MODULE_NAME}_core LANGUAGES CXX CUDA)
add_subdirectory("${core_impl_dir}" implementation)
set(cuda_src "parallel/ParallelComputation.cu")
set(cuda_hdr "parallel/ParallelComputation.h")
add_library(${PROJECT_NAME} STATIC "${cuda_src}" "${cuda_hdr}"
)
target_include_directories (${PROJECT_NAME} PUBLIC "include/"
"parallel/"
)
source_group("parallel" FILES "${cuda_src}" "${cuda_hdr}")
set_property(TARGET ${PROJECT_NAME} PROPERTY FOLDER ${MODULE_NAME})
Test:
project(${MODULE_NAME}_gtest LANGUAGES CXX CUDA)
add_subdirectory("${gtest_impl_dir}" implementation)
add_executable(${PROJECT_NAME} "${gtest_impl_src}")
target_link_libraries(${PROJECT_NAME} ${MODULE_NAME}_core)
enable_testing()
find_package(GTest REQUIRED)
include_directories("${GTEST_INCLUDE_DIRS}")
target_link_libraries(${PROJECT_NAME} ${GTEST_BOTH_LIBRARIES})
source_group("Implementation\\Source Files" FILES "${gtest_impl_src}" )
set_property(TARGET ${PROJECT_NAME} PROPERTY FOLDER ${MODULE_NAME})
add_test(${PROJECT_NAME} ${PROJECT_NAME})
Building just Algo works fine, but when also building Test, I get linking errors, for example
../implementation/libmatrix1_testCuda_core.a(ParallelComputation.cu.o): In Funktion 'cudaError cudaMalloc(float**, unsigned long)':
tmpxft_00005ad0_00000000-5_ParallelComputation.cudafe1.cpp:(.text+0x4f2): Undefined reference 'cudaMalloc'
EDIT
using make VERBOSE=1 I got this linking command:
/usr/bin/c++ -Wl,--no-as-needed -pthread -g -std=c++14 -Wall
CMakeFiles/matrix1_testCuda_gtest.dir//tests/eclipseProject/algos/testCuda/test/src/main.cpp.o
CMakeFiles/matrix1_testCuda_gtest.dir/cmake_device_link.o -o
matrix1_testCuda_gtest ../implementation/libmatrix1_testCuda_core.a
/usr/lib/libgtest.a /usr/lib/libgtest_main.a
I got this to work by calling
find_package(CUDA 9.0 REQUIRED)
in both CMake files.
Also, in the Algo file (which contains the device code), I had to do
target_link_libraries(${PROJECT_NAME} ${CUDA_LIBRARIES})
I was expecting that the language support for CUDA would make those steps unnecessary, but apparently not.
I just ran into something very similar to this where the root problem was that most of my binary was being compiled with my system cxx compiler, and the cuda bits were being compiled with the cuda gcc compiler (9.1 for system, 8.3 for cuda).
Surprisingly it was fixed by changing:
project(MyProject LANGUAGES CXX CUDA)
to
project(MyProject LANGUAGES CUDA CXX)
After that change, CMake picked up the cuda version of the gcc compiler as the main compiler, and my binary started building again. I'm not sure if this could introduce problems for other packages, but it fixed the linking problem I was hitting.
Adding the possible way in CMake 3.18 and further
When you wish not to include any CUDA code, but e.g. using only calls to cufft from C++ it is sufficient to do the following
find_package(CUDAToolkit)
target_link_libraries(project CUDA::cudart)
target_link_libraries(project CUDA::cufft)
If you are however enabling CUDA support, unless you want to get into troubles call it after enabling CUDA.
include(CheckLanguage)
check_language(CUDA)
if(CMAKE_CUDA_COMPILER)
enable_language(CUDA)
find_package(CUDAToolkit)
target_link_libraries(project CUDA::cudart)
target_link_libraries(project CUDA::cuda_driver)
else()
message(STATUS "No CUDA compiler found")
endif()
Because CUDAToolkit respects enable CUDA runtime added but it does not work vice versa.

CMake third party library undefined reference

I already read and searched a lot (e.g. 1 2 3, several docs for CMake, similar projects, etc. to find a solution but I have not been able to solve my problem. I am relatively new to Cmake and Linux (Ubuntu 14.04).
I want to use libsbp (https://github.com/swift-nav/libsbp) to write a program in C++ to communicate with a GPS module. I cloned the repository and installed the C-Library. So now in /usr/local/lib there are two files: libsbp.so and libsbp-static.a and the headers are in /usr/local/include/libsbp
In my own project I include the headers with #include "libsbp/sbp.h" which also works.
Now the Problem: if I want to use a method from libsbp e.g. sbp_state_init(&s); I get undefined reference to "sbp_state_init(sbp_state_t*)"
The relevant part of my Cmake for my own project:
link_directories(/usr/local/lib)
add_executable(main ${QT_SOURCES} ${QT_HEADER_HPP})
target_link_libraries(main ${QT_LIBRARIES} ${catkin_LIBRARIES} sbp)
As I said before, I tried some things:
find_library(SBP_LIB sbp /usr/local/lib) -> same error
same goes for using libsbp in target_link_libraries or searching for it
link_directory(/usr/local/lib)
trying different paths, even moveing libsbp.so into the project directory and "finding" it with ${CMAKE_CURRENT_SOURCE_DIR}
Maybe you can help me!
edit:
this is the CMakeList.txt from the libsbp/c/src directory
if (NOT DEFINED BUILD_SHARED_LIBS)
set(BUILD_SHARED_LIBS ON)
endif (NOT DEFINED BUILD_SHARED_LIBS)
file(GLOB libsbp_HEADERS "${PROJECT_SOURCE_DIR}/include/libsbp/*.h")
include_directories("${PROJECT_SOURCE_DIR}/CBLAS/include")
include_directories("${PROJECT_SOURCE_DIR}/clapack-3.2.1-CMAKE/INCLUDE")
include_directories("${PROJECT_SOURCE_DIR}/lapacke/include")
include_directories("${PROJECT_SOURCE_DIR}/include/libsbp")
set(libsbp_SRCS
edc.c
sbp.c
)
add_library(sbp-static STATIC ${libsbp_SRCS})
install(TARGETS sbp-static DESTINATION lib${LIB_SUFFIX})
if(BUILD_SHARED_LIBS)
add_library(sbp SHARED ${libsbp_SRCS})
install(TARGETS sbp DESTINATION lib${LIB_SUFFIX})
else(BUILD_SHARED_LIBS)
message(STATUS "Not building shared libraries")
endif(BUILD_SHARED_LIBS)
install(FILES ${libsbp_HEADERS} DESTINATION include/libsbp)
this is the CMakeList.txt from /libsbp/c/
cmake_minimum_required(VERSION 2.8.9)
project(libsbp)
# Setup flags for Code Coverage build mode
set(CMAKE_CXX_FLAGS_COVERAGE "${CMAKE_CXX_FLAGS_DEBUG} --coverage" CACHE STRING
"Flags used by the C++ compiler for building with code coverage."
FORCE )
set(CMAKE_C_FLAGS_COVERAGE "${CMAKE_C_FLAGS_DEBUG} --coverage" CACHE STRING
"Flags used by the C compiler for building with code coverage."
FORCE )
SET(CMAKE_EXE_LINKER_FLAGS_COVERAGE
"${CMAKE_EXE_LINKER_FLAGS_DEBUG} --coverage" CACHE STRING
"Flags used for linking binaries with code coverage."
FORCE )
set(CMAKE_SHARED_LINKER_FLAGS_COVERAGE
"${CMAKE_SHARED_LINKER_FLAGS_DEBUG} --coverage" CACHE STRING
"Flags used by the shared libraries linker during builds with code coverage."
FORCE )
mark_as_advanced(
CMAKE_CXX_FLAGS_COVERAGE
CMAKE_C_FLAGS_COVERAGE
CMAKE_EXE_LINKER_FLAGS_COVERAGE
CMAKE_SHARED_LINKER_FLAGS_COVERAGE )
# Update the documentation string of CMAKE_BUILD_TYPE for GUIs
set(CMAKE_BUILD_TYPE "${CMAKE_BUILD_TYPE}" CACHE STRING
"Choose the type of build, options are: None Debug Release RelWithDebInfo MinSizeRel Coverage."
FORCE )
# Set project version using Git tag and hash.
execute_process(
COMMAND git describe --dirty --tags --always
WORKING_DIRECTORY ${PROJECT_SOURCE_DIR}
RESULT_VARIABLE GIT_VERSION_FOUND
ERROR_QUIET
OUTPUT_VARIABLE GIT_VERSION
OUTPUT_STRIP_TRAILING_WHITESPACE
)
if (GIT_VERSION_FOUND)
set(VERSION "unknown")
else (GIT_VERSION_FOUND)
set(VERSION ${GIT_VERSION})
endif (GIT_VERSION_FOUND)
# Set project version explicitly for release tarballs.
#set(VERSION foo)
message(STATUS "libsbp version: ${VERSION}")
cmake_minimum_required(VERSION 2.8)
set(CMAKE_MODULE_PATH "${CMAKE_SOURCE_DIR}/cmake")
# Some compiler options used globally
set(CMAKE_C_FLAGS "-Wall -Wextra -Wno-strict-prototypes -Wno-unknown-warning-option -Werror -std=gnu99 ${CMAKE_C_FLAGS}")
add_subdirectory(src)
add_subdirectory(docs)
add_subdirectory(test)
It seems that your program uses C++ and the library is written in C.
Symbols in C and C++ are encoded differently (mangled). When including C headers from C++ you need to tell the compiler. This can be done by declaring the symbols extern "C".
extern "C" {
#include <libsbp/sbp.h>
}
Some libraries already include this in their headers, but not sbp.
You have (at least) two possibilities:
Installing the library (this is what you did)
Integrating the library in your CMake project
When installing the library, the target_link_libraries command needs to be modified slightly:
find_library(SBP_LIB sbp /usr/local/lib)
target_link_libraries(main ${QT_LIBRARIES} ${catkin_LIBRARIES} ${SBP_LIB})
When you integrate the library in your CMake project, you can directly use the following command without using find_library. This works, because the library is known to CMake since it is built within the current project.
target_link_libraries(main ${QT_LIBRARIES} ${catkin_LIBRARIES} sbp)

how to include NTL using CMake

I use this line to compile a simple program:
g++ main.cc -lntl -lm -lgmp
How do you include this into CMake?
find_package(NTL REQUIRED)
find_package(GMP REQUIRED)
Doesn't work. And gives the following error:
CMake Error at CMakeLists.txt:30 (find_package):
Could not find module FindNTL.cmake or a configuration file for package
NTL.
...
.
and
SET(CMAKE_CXX_FLAGS ${CMAKE_CXX_FLAGS} -std=c++0x -lntl -lm -lgmp)
Doesn't work either (but I think it's just wrong in general).
Thank you!
If ntl, m, and gmp libraries are usually installed to somewhere in the default path (e.g. /usr/ or /usr/local/), you could simply do something like:
cmake_minimum_required(VERSION 2.8 FATAL_ERROR)
project(Test)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++0x")
add_executable(test main.cc)
target_link_libraries(test ntl m gmp)
This is probably closest to your original g++ command, but it isn't very robust however; if any of the libraries aren't found, you won't know about it until you try linking. If you want to fail at configure time (i.e. while running CMake), you could add find_library calls for each of the required libs, e.g.
find_library(NTL_LIB ntl)
if(NOT NTL_LIB)
message(FATAL_ERROR "ntl library not found. Rerun cmake with -DCMAKE_PREFIX_PATH=\"<path to lib1>;<path to lib2>\"")
endif()
You'd then have to change your target_link_libraries command to
target_link_libraries(test ${NTL_LIB} ${M_LIB} ${GMP_LIB})
You'd probably also then have to do a find_file for one of each lib's header files to find out the appropriate path to add via the include_directories command (which translates to -I for g++).
Note, it's important to put quotes around the extra CXX_FLAGS arguments, or CMake treats them like separate values in a list and inserts a semi-colon between the flags.
For further information about find_library, find_file, etc. run:
cmake --help-command find_library
cmake --help-command find_file
Regarding your error:
It doesn't look like there's a FindNTL.cmake module included with CMake. That means you'll have to either:
Write your own FindNTL.cmake,
Find another that somebody else has written,
Hack together a solution that:
Checks if NTL is installed
Provides link targets, relevant flags, etc.
From a (rather quick) Google search, it appears somebody has an NTL module for CMake. Since NTL use GMP, you will probably need the associated GMP module for CMake. It doesn't look like a fully-featured CMake module, but it also appears to be the best thing out there (again, it was a quick Google search, and I don't use NTL).
To use, you'll want to add some things to your CMakeLists.txt:
# Let CMake know where you've put the FindNTL.cmake module.
set(CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/build/CMake/Modules")
# Call the FindNTL module:
find_package(NTL REQUIRED)
SET(CMAKE_CXX_FLAGS ${CMAKE_CXX_FLAGS} -std=c++0x -lntl -lm -lgmp)
Yes, this is wrong. You don't want to be setting your CXX_FLAGS with linking directives. I would use:
SET ( CMAKE_CXX_FLAGS ${CMAKE_CXX_FLAGS} -std=cxx0x )
to set the Cxx standard you want to use. To actually link to libraries, you'll want to:
Ensure that you've found the libraries (with the relevant find_package ( FOO ) lines)
Link those against your target, like this:
# Build the Foo executable. (Or library, or whatever)
add_executable (FooEXE ${Foo_SOURCES} )
target_link_libraries (FooEXE
${bar_LIBRARIES}
${baz_LIBRARY}
)
Please note! ${bar_LIBRARIES} and ${baz_LIBRARY} is not a typo; there's no standard way of setting the relevant libraries in the FindFOO.cmake modules, which is, in my opinion, an annoyance. If one doesn't work, try the other, or, worst case, have a look in the relevant FindFOO.cmake file (there's a bunch installed with CMake by default) to see what each one uses. With the link i provided, you can use ${NTL_LIB} and ${GMP_LIB}.

How to link google protobuf libraries via cmake on linux?

I'm trying to make it same way I made it for boost :
find_package(Boost COMPONENTS system filesystem REQUIRED)
find_package(ProtocolBuffers)
## Compiler flags
if(CMAKE_COMPILER_IS_GNUCXX)
set(CMAKE_CXX_FLAGS "-O2")
set(CMAKE_EXE_LINKER_FLAGS "-lsqlite3 -lrt -lpthread")
endif()
target_link_libraries(complex
${Boost_FILESYSTEM_LIBRARY}
${Boost_SYSTEM_LIBRARY}
${PROTOBUF_LIBRARY}
)
(googled it somewhere) but got bad output:
CMake Warning at complex/CMakeLists.txt:18 (find_package):
Could not find module FindProtocolBuffers.cmake or a configuration file for
package ProtocolBuffers.
Adjust CMAKE_MODULE_PATH to find FindProtocolBuffers.cmake or set
ProtocolBuffers_DIR to the directory containing a CMake configuration file
for ProtocolBuffers. The file will have one of the following names:
ProtocolBuffersConfig.cmake
protocolbuffers-config.cmake
How can I link it with cmake? or maybe I even can compile .proto file using cmake?
You could try CMake's FindProtobuf module:
include(FindProtobuf)
find_package(Protobuf REQUIRED)
include_directories(${PROTOBUF_INCLUDE_DIR})
...
target_link_libraries(complex
${Boost_FILESYSTEM_LIBRARY}
${Boost_SYSTEM_LIBRARY}
${PROTOBUF_LIBRARY}
)
For further info, run
cmake --help-module FindProtobuf
Spent a lot of time on this..
A. Different versions may require regeneration of cc files (obviously)
B. Different versions have different naming (PROTOBUF_LIBRARY vs. Protobuf_LIBRARIES)
Do note that the previous answer refers to view the FindProtobuf help which states the naming convention.
Also, Use '''message(STATUS "debug protobuf lib location:${PROTOBUF_LIBRARIES} '''
to debug.