i try to write a function [int] -> int to count the sum of a list of integers with an iterative function (result should equal the build in function sum)
19>sumList :: [Int] -> Int
20>sumList [list] | length[list] > 0 = [list]!!0 + sumList (drop 1 [list])
21> | otherwise = 0
This is the result if i try to run it
uebung1.lhs:20:2: warning: [-Wincomplete-patterns]
Pattern match(es) are non-exhaustive
In an equation for ‘sumList’:
Patterns not matched:
[]
(_:_:_)
Ok, modules loaded: Main.
*Main> sumList []
*** Exception: uebung1.lhs:(20,2)-(21,31): Non-exhaustive patterns in function sumList
*Main> sumList [3]
*** Exception: uebung1.lhs:(20,2)-(21,31): Non-exhaustive patterns in function sumListi i i i i
What have i done wrong? I've slept a night over it but i just dont see where the problem is. The guarded equations should catch all cases of list lengths. Thanks for any advise.
The problem is that your pattern matches only a list with one element.
For example, if you try to define a function in ghci:
a [x] = x
And then try to call it with the lists with a different number of elements:
a [1] results with 1
a [] results with Exception: <interactive>:5:1-13: Non-exhaustive patterns in function a
a [1,2] results with Exception: <interactive>:1:1-9: Non-exhaustive patterns in function a
The following modification makes your function work:
sumList :: [Int] -> Int
sumList list | length list > 0 = list!!0 + sumList (drop 1 list)
| otherwise = 0
But, certainly, the following definition would be more idiomatic and performant:
sumList :: [Int] -> Int
sumList [] = 0
sumList (x:xs) = x + sumList xs
By (x:xs) pattern you immediately receive x as a head of your list (list!!0) and xs as a tail of it (drop 1 list)
The function will not work for an empty list, or any list with more than one item.
Your problem is that you are matching against [list], a list with one member which is list. Instead, try matching against just list. This means it will match anything of type [Int] from your type signature.
I get your confusion, as the type [a] is for lists of any length, but [a] will only match a list of one element.
I have also attached another way of writing your function using pattern matching, which hopefully you will find useful.
sumList :: [Int] -> Int
sumList [] = 0
sumList (x:xs) = x + sumList xs
It is unusual to use guards, but you did, your code would look like this:
sumList :: [Int] -> Int
sumList list
| length list > 0 = head list + sumList (tail list)
| otherwise = 0
Notice how [list] has been replaced by list, and !! 0 has been replaced by head, and drop 1 has been replaced by tail.
Hoogle is your friend!
You could also move the check for an empty list to the first guard, like so:
sumList :: [Int] -> Int
sumList list
| list == [] = 0
| otherwise = head list + sumList (tail list)
Note how similar this code is to the pattern matching code.
Others have already answered, but I want to stress that the warning emitted by the compiler spotted the issue:
Pattern match(es) are non-exhaustive
In an equation for ‘sumList’:
Patterns not matched:
[]
(_:_:_)
This is saying that the code is not handling some cases in its pattern matching. The empty list [] above is reported as non-matched, meaning that the program will crash on the empty list. Also, the lists of the form (_:_:_) are not matched: these are lists having at least two elements, such as 1:2:rest which is a list starting with elements 1 and 2 and then proceeding with list rest for the next elements.
So, the warning is telling us that we only handle lists of length one. Indeed, we only handle the pattern [_], which is the same of _:[] -- a list starting with one element and then ending there.
If you are a beginner, I think you did not learn pattern matching yet. This should be your priority for learning Haskell: it is one of the most important features. Generally speaking, if your recursive code uses length, !!, tail, head it is very likely that your are doing it wrong. There are some places where these functions are needed, but in many simple exercises they are not, pattern matching being usually sufficient and elegant.
Related
I have an if-else statement, and in the else block I want it to first recurse to the function, except for the last two elements of the list, and then return two elements.
In the following function, after the if-else statement, I have 2 lines of code. however this doesnt compile. I believe the compiler reads these two lines as a single line of code. How do you fix that?
doubleEveryOther :: [Integer] -> [Integer] --outputs the input list, but every 2nd element(from the right) is doubled
doubleEveryOther [] = []
doubleEveryOther x = if (length x <2)
then
x
else
doubleEveryOther init (init x) -- These two lines
[2*last(init x), last x] -- These two lines
The compiler says:
* Couldn't match expected type: [Integer]
with actual type: [a0] -> [a0]
* Probable cause: `init' is applied to too few arguments
In the first argument of `doubleEveryOther', namely `init'
In the expression: doubleEveryOther init (init x)
In the expression:
[doubleEveryOther init (init x), 2 * last (init x), last x]
|
19 | [doubleEveryOther init (init x), 2*last(init x), last x]
|
You can not return two lists. If you have two results you want to combine, you use some function, like (++) :: [a] -> [a] -> [a].
That being said, you here don't need this. You can work with simple pattern matching:
doubleEveryOtherFromLeft :: Num a => [a] -> [a]
doubleEveryOtherFromLeft (x:y:xs) = 2*x : y : doubleEveryOtherFromLeft xs
doubleEveryOtherFromLeft xs = xs
then our doubleEveryOther can reverse the list twice:
doubleEveryOther:: Num a => [a] -> [a]
doubleEveryOther = reverse . doubleEveryOtherFromLeft . reverse
I think you are just missing the append operator ++:
doubleEveryOther (init (init x))
++ [2 * last (init x), last x]
I have an if-else statement, and in the else block I want it to first
recurse to the function, except for the last two elements of the list,
and then return two elements
OK. I sort of understand what you're doing. The function name is good - the best name is verb-noun, here doubleEveryOther. However, the code looks a lot like Lisp, probably Scheme - the repeated use of init gives it away. That's not how you write Haskell. (I also write Lisp in Haskell syntax too much...)
Haskell recursion works using pattern matching.
lst = [2,3,4]
1 : [2,3,4] -- [1,2,3,4]
lst = [1,2,3,4]
(x:xs) = lst -- x is 1, xs = [2,3,4]
So, in this case, you want to match your list against x:y:xs:
lst = [1,2,3,4]
(x:y:xs) = lst -- x is 1, y is 2, xs=[3,4]
Hence:
doubleEveryOther :: Num a => [a] -> [a]
doubleEveryOther [] = []
doubleEveryOther [x] = [2*x]
doubleEveryOther (x:y:xs) = (2*x):doubleEveryOther xs
Please note the number of special cases which need to be handled. If I am given an empty list, I should return an empty list. If I am given a single value, I need to double it (in analogy to your if .. else clause). If I am given two or more values, this matches x=first, y=second, xs=[] or more.
As for returning more than one value, you can return only one thing from a function. It can be a single value, a single tuple, a single list, and so on.
In this case, you have written a function which says doubleEveryOther - good - but then you want to return the last two values unchanged. You would be better taking off the last two values, running the simple doubleEveryOther and then bolting the last two values on the end. Otherwise, you are overburdening your function.
let rec (l:int list) f int list =
match l with
| [] -> []
| hd::tl -> 2+tl
I want to know is hd the first element and then tl is the second element because when i do this I keep getting an error, if tl is not the second element how would i access the second element an in depth explanation of hd::tl would be highly appreciated thank you
No tl is not the second element, it is the rest of the list and it has type 'a list. Here hd and tl are just variable names that you choose to bind to the first element of a list, and to the rest of the list (i.e., to a list that contains all elements except the first one). You can choose other names, e.g., fst::rest. Getting the second element, in that case would be as easy as fst::snd::rest (or x::y::rest - again the name doesn't matter).
What you're trying to use is called pattern matching. It is a feature of some languages, that provides a mechanism to easily deconstruct compound data structures. The idea is that if you're deconstructing data structures the same way as you're constructing them, e.g,
let xs = [1;2;3;4]
and here is the deconstructing
let [x1;x2;x3;x4] = xs
In fact, [x;y;...;z] is a syntactic sugar for a more basic syntax x :: y:: ... :: z :: [], so another way to construct the [1;2;3;4] list is to use the following construct: 1::2::3::4::[]. The same works in the opposite direction, e.g.,
let x1::x2::x3::x4::[] = xs
Now we are ready to the next step, what if the structure on the right doesn't match the structure on the left, e.g.,
let [x;y;z] = [1;2]
or
let x::y::z::[] = 1::2::[]
In that case, the matching will fail. In our case in runtime. To prevent this, and to allow programmers to handle all possible configuration of their data structures OCaml provides the match construct in which you specify multiple variants of the value structure, and the first one that matches is chosen, e.g.,
let orcish_length xs = match xs with
| [] -> 0
| x :: [] -> 1
| x :: y :: [] -> 2
| x :: y :: z :: [] -> 3
The function above anticipates only lists that have up to three elements (because Orcs can't count beyond three). But we can. For this we will use the following feature -- if the last element of the list pattern is not [] (that is matches only and only with the empty list, and designates the end-of-list), but anything else (i.e., a variable), then this variable will be bound to all elements, e.g.,
let rec elvish_length xs = match xs with
| [] -> 0
| x :: [] -> 1
| x :: y :: [] -> 2
| x :: y :: z :: [] -> 3
| x :: y :: z :: leftovers -> 3 + elvish_length leftovers
So now, we anticipate all possible list patterns. However, the function is now overcomplicated (because Elves are complicating). Now, let's finally derive a normal, human readable, length function,
let rec length xs = match xs with
| [] -> 0
| x :: xs -> 1 + length xs
As an exercise, try to prove to yourself that this function anticipates all possible lists.
:: is read cons and is an infix version of List.cons. In a functional language like Ocaml, list is a linked list where i.e.[e1; e2; e3; e4] can be reduced to something like this:
cons(::)
/ \
e1 cons(::)
/ \
e2 cons(::)
/ \
e3 cons(::)
/ \
e4 [ ]
Basically, any list can be reduced to a tree of recursive cons expressions, which makes recursion so useful in Ocaml or similar functional languages. At each level, you can reduce a list to its head and its tail, where tail is the list minus its head and can be reduced further until last :: []. So with the above example, you can recursively reduce the list until you find the last element by pattern-matching:
let find_last li =
match li with
| [] -> None (* no element *)
| [last] -> Some last (* found last *)
| head :: tail -> find_last tail (* keep finding *)
;;
Note that [last] can be replaced with last::[] and head::tail with List.cons head tail. What is important is at any point a list can always be reduced to head :: tail, where head is the first element and tail is the list without head.
Pattern-matching is useful in matching the "shape" or state of the reducing list.
Good evening everyone, I'm new to haskell. I'm trying to sum up a list of reading a string Unicode values and store them in a list and then sum the integers up.
getLetterUnicodeValue :: Char -> Int
getLetterUnicodeValue l = (ord l) - 64
unicodeValueList :: String -> [Int]
unicodeValueList x = getLetterUnicodeValue (head x) : unicodeValueList (tail x)
total :: [Int] -> Int
total [] = 0
total x = (head x) + (total (tail x))
I got the error of empty list when the string come to the last character and the sum up function cannot successfully execute. Is there any way to stop the function unicodeValueList when it comes to its end.
*** Exception: Prelude.head: empty list
The surest way to avoid this exception is not to use head. Instead you can use pattern matching to get the head and tail of a list:
unicodeValueList (x:xs) = getLetterUnicodeValue x : unicodeValueList xs
total (x:xs) = x + total xs
This way x and xs will only be available when the list is non-empty and it is guaranteed that you never accidentally access the head or tail of an empty list.
Of course now you'll get a warning that the pattern match is incomplete: You don't specify what should happen when the list is empty. Of course this was true before as well, but now that you use pattern matching the compiler can actually see this and warn you about it (whereas the previous code crashed at runtime without any prior warning).
So what should be done when the list is empty? Well, an empty string contains no unicode values, right? So it should return the empty list when the input is empty:
unicodeValueList [] = []
Of course you don't need pattern matching to fix your error. You could just use an if to make sure that you only call head and tail when the list is not empty. But if you do that, the compiler won't be able to verify that your checks are in order. If you use pattern matching and avoid the unsafe head and tail functions completely, you'll never be able to accidentally access the head or tail of an empty list and the compiler will warn you if you ever forget to consider that the list might be empty.
Yep, you just will have to pattern match in unicodeValueList
unicodeValueList :: String -> [Int]
unicodeValueList [] = []
unicodeValueList (x:xs) = getLetterUnicodeValue x : unicodeValueList xs
Note this could be written more nicely as unicodeValueList = map getLetterUnicodeValue. The reason you are getting the error for head is that your recursion had no base case - it keeps trying to recurse, even when it has reached the empty list.
I have been working with Haskell for a little over a week now so I am practicing some functions that might be useful for something. I want to compare two lists recursively. When the first list appears in the second list, I simply want to return the index at where the list starts to match. The index would begin at 0. Here is an example of what I want to execute for clarification:
subList [1,2,3] [4,4,1,2,3,5,6]
the result should be 2
I have attempted to code it:
subList :: [a] -> [a] -> a
subList [] = []
subList (x:xs) = x + 1 (subList xs)
subList xs = [ y:zs | (y,ys) <- select xs, zs <- subList ys]
where select [] = []
select (x:xs) = x
I am receiving an "error on input" and I cannot figure out why my syntax is not working. Any suggestions?
Let's first look at the function signature. You want to take in two lists whose contents can be compared for equality and return an index like so
subList :: Eq a => [a] -> [a] -> Int
So now we go through pattern matching on the arguments. First off, when the second list is empty then there is nothing we can do, so we'll return -1 as an error condition
subList _ [] = -1
Then we look at the recursive step
subList as xxs#(x:xs)
| all (uncurry (==)) $ zip as xxs = 0
| otherwise = 1 + subList as xs
You should be familiar with the guard syntax I've used, although you may not be familiar with the # syntax. Essentially it means that xxs is just a sub-in for if we had used (x:xs).
You may not be familiar with all, uncurry, and possibly zip so let me elaborate on those more. zip has the function signature zip :: [a] -> [b] -> [(a,b)], so it takes two lists and pairs up their elements (and if one list is longer than the other, it just chops off the excess). uncurry is weird so lets just look at (uncurry (==)), its signature is (uncurry (==)) :: Eq a => (a, a) -> Bool, it essentially checks if both the first and second element in the pair are equal. Finally, all will walk over the list and see if the first and second of each pair is equal and return true if that is the case.
Hello All I am trying to flatten a list in Ocaml. I am a newbie so please pardon me if my mistake is dumb
So for example, if input is [[1];[2;3];[4]] I should end up with [1;2;3;4].
The idea I am trying to use is as follows
Iterate through the list from the right (Using fold_right) with accumaltor = []
The pseudo code is as follows
func flatten(list, accumalator)
For each item from right to left in list
If Item is a scalar then n :: accumalator
Else fi Item is a list of form head :: tail then
head :: flatten (tail, accumalator).
I think that theoretically the algorithm is correct, but please let me know if you disagree.
Now to my OCaml code to implement this algorithm
let rec flatten acc x =
match x with
n -> n :: acc
| [x] -> x :: acc
| head :: remainder ->
head :: ( my_flat acc remainder )
and my_flat = List.fold_right flatten
;;
my_flat [] [[1];[2;3];[4]]
The Error I get is the following
Error: This expression has type 'a but an expression was expected of type
'a list
The error occurs on the line that reads head :: ( my_flat acc remainder ) in the last pattern in the match statement
Any help is appreciated.
In OCaml, all the elements of a list must be the same type. Thus the value [1; [2; 3]; 4] is invalid all by itself. It contains two elements that are of type int and one element of type int list. In essence, your statement of the problem to be solved is impossible.
$ ocaml312
Objective Caml version 3.12.0
# [1; [2; 3]; 4];;
Characters 4-10:
[1; [2; 3]; 4];;
^^^^^^
Error: This expression has type 'a list
but an expression was expected of type int
This sounds like a homework problem, so I'll just say that restricting yourself to lists that are valid in OCaml may make it easier to solve.
Edit
OK, the problem can now be solved!
The essence of the reported type error is something like this. You have your accumulated result acc (of type int list in the example). You want to add the list x (also of type int list) to it. You've broken x into head (an int) and remainder (an int list). As you can see, remainder is not a suitable argument for your my_flat function. It wants an int list list, i.e., a list of lists of ints. In fact, your recursive call should almost certainly go to flatten and not to my_flat.
Another problem I see: the arguments of List.fold_right are: a function, a list, and a starting value. In your test call to my_flat, you're supplying the last two in the other order. The empty list [] is your starting value.
I hope this is enough to get you going. Since you're just starting out with OCaml there will probably be another problem or two before it works.
Edit 2
Here are a couple more comments, which might be spoilers if you're still working on your own solution....
A tidier version of your function my_flat is in the OCaml standard library under the name List.flatten. It's interesting to look at the implementation:
let rec flatten = function
[] -> []
| l::r -> l # flatten r
I'd call this a very elegant solution, but unfortunately it's not tail recursive. So it will consume some (linear) amount of stack space, and might even crash for a very long list.
Here's one based on the same idea, using the standard FP accumulator trick to get tail recursive behavior (as noted by Thomas):
let flatten2 ll =
let rec go acc = function
| [] -> List.rev acc
| l :: r -> go (List.rev_append l acc) r
in
go [] ll
As is often the case, the tail recursive version accumulates the result in reverse order, and reverses it at the end.
You can start by writing directly your algorithm, by decomposing the base cases of your input value, ie. the input list is either empty, or the head of the input list is empty, or the head of the input list has a head and a tail:
let rec flatten = function
| [] -> []
| [] :: t -> flatten t
| (x::y) :: t -> x :: (flatten (y::t))
You can then optimize the function, because this code is not tail-recursive and thus will crash when lists become too big. So you can rewrite this by using the usual technique:
let flatten list =
let rec aux accu = function
| [] -> accu
| [] :: t -> aux accu t
| (x::y) :: t -> aux (x::accu) (y::t) in
List.rev (aux [] list)
So my advice is: start by decomposing your problem based on the input types, and then later use accumulators to optimize your code.
I like this one, where the auxiliary function takes the accumulator, the first element of the list of lists, and the rest of the list of lists, it is clearer for me :
let flatten list =
let rec aux acc list1 list2 =
match list1 with
| x :: tail -> aux (x :: acc) tail list2
| [] ->
match list2 with
| [] -> List.rev acc
| x :: tail -> aux acc x tail
in
aux [] [] list
Thanks for all your help
Here is the code I used to solve this problem
let flatten list =
let rec flatten_each acc x =
match x with
[] -> acc
| head :: remainder -> head :: ( flatten_each acc remainder )
in
List.fold_right flatten_each ( List.rev list ) []
;;
Edit: as pointed out by Thomas this solution is not tail recursive. Tail recursive version is below
let flatten list =
let rec flatten_each acc x =
match x with
[] -> acc
| head :: remainder -> (flatten_each (acc # [head]) remainder )
in
List.fold_right flatten_each list []
;;