Defining a virtual method inherited more than once - c++

I've been trying to find an answer to this question but I couldn't (I don't even know how to properly formulate this) so I decided to write my first post ever on StackOverflow =).
The context is the following:
I have this parent class:
class Parent
{
public:
Parent(){};
void foo(void)
{
//Do some common things
bar();
//Do some more common things
};
protected:
virtual void bar(void) = 0;
};
And I want to create an indefinite amount of derived Childs:
class Child1 : public Parent
{
public:
Child1() : Parent(), child1Variable(0) {};
protected:
virtual void bar(void) = 0;
private:
uint32_t child1Variable;
};
class Child2 : public Parent
{
public:
Child2() : Parent(), child2Variable(0) {};
protected:
virtual void bar(void) = 0;
private:
uint32_t child2Variable;
};
.
.
.
class ChildN : public Parent
{
public:
ChildN() : Parent(), childNVariable(0) {};
protected:
virtual void bar(void) = 0;
private:
uint32_t childNVariable;
};
The reason being mainly not repeating the code in Parent's foo()
Then I would like to create my final instantiable classes as, for instance:
class ExampleFinal : public Child1, public Child3, public Child27
{
//How to define Child1::bar(), Child3::bar() and Child27::bar() ??
private:
void bar(void); //????
};
So the questions are:
How can I define the method for (abusing notation) ExampleFinal::Child1::bar, ExampleFinal::Child3::bar, ...
Am I so stuck on this that I'm overlooking a much simpler solution?
The final goal is being able to do something like:
ExampleFinal test;
test.Child1::foo(); //should end up on "ExampleFinal::Child1::bar"
test.Child3::foo(); //should end up on "ExampleFinal::Child3::bar"
Thanks!

Implementing ExampleFinal::bar() (side-note: bar(void) is a C-ism which has no use in C++) will override all of the bars you have declared at once. If you want to have different versions, you'll need to interpose another layer of classes:
struct GrandChild1 : Child1 {
void bar() override { /*...*/ }
};
// And so on...
struct ExampleFinal : GrandChild1, GrandChild3, GrandChild27 {
// Nothing needed here.
};
Then the behaviour you described will work. Be aware, though, that your inheritance graph means that an ExampleFinal has one Parent subobject per Child. This is not an issue in itself but might not model what you want -- maybe you need virtual inheritance here, but beware of the rabbit hole.
If you want to keep the overrides for all ChildN::bars inside ExampleFinal, you can add tag-dispatching to discern them, at the cost of one more virtual call:
struct Parent {
void foo() {
bar();
};
protected:
template <class Child>
struct tag { };
virtual void bar() = 0;
};
struct Child1 : Parent {
protected:
virtual void bar(tag<Child1>) = 0;
void bar() final override {
return bar(tag<Child1>{});
}
int child1Var;
};
struct Child2 : Parent {
protected:
virtual void bar(tag<Child2>) = 0;
void bar() final override {
return bar(tag<Child2>{});
}
int child2Var;
};
struct ExampleFinal : Child1, Child2 {
protected:
using Parent::tag;
void bar(tag<Child1>) final override {
std::cout << "Child1::bar\n";
}
void bar(tag<Child2>) final override {
std::cout << "Child2::bar\n";
}
};
Note that the bar() to bar(tag<ChildN>) bridge can easily be hidden behind a macro. If you want to avoid the cost of the second virtual call, a CRTP can also be applied here.

Related

C++ 11 avoiding "Call Super" code smell

I'm looking for ways to avoid the "call super" code smell. This code smell is present when a subclass is required to invoke the super class's version of a virtual function when re-implementing that function.
class Base
{
public:
virtual void foo(){ ... }
}
class Derived : public Base
{
public:
virtual void foo(){ Base::foo();// required! ... }
}
If inheritance went only a single layer deep, I could use the template method
class Base
{
public:
void foo(){ ... ; foo_impl(); }
protected:
virtual void foo_impl(){}
}
class Derived : public Base
{
protected:
virtual void foo_impl(){ ... }
}
But if I need to subclass Derived, I'm back where I started.
I'm considering a registration approach.
class Base
{
public:
Base()
{
_registerCallback( [this](){ _baseFoo(); } );
}
void foo()
{
for( auto f : _callbacks )
f();
}
protected:
void registerCallback( std::function<void()> f )
{
_callbacks << f;
}
private:
void _baseFoo() { ... }
std::list< std::function<void()> > _callbacks;
}
class Derived : public Base
{
public:
Derived()
{
_registerCallback( [this](){ _derivedFoo(); } );
}
private:
virtual void _derivedFoo(){ ... }
}
Is there a more standard approach? Any problems with or improvements to this approach?
Use of
class Derived : public Base
{
public:
virtual void foo(){ Base::foo();// required! ... }
}
is the best approach IMO. I am not sure why you would consider that "code smell".
The potential for error is higher in the last approach you suggested.
It's easier to detect a missed call to Base::foo().
If all the classed derived from Base need to implement what Base::foo() does, it's better that the common code be in Base::foo(). The derived classes simply need to make the call.
For what it's worth, we use the pattern at my work a lot and it has proven to be robust over 20+ years of usage.
You can continue using template methods all the way down if you introduce new virtual member function on each level and override it on next one:
template <typename> struct tag {};
class Base
{
public:
void foo() { ... ; foo_impl(tag<Base>{}); }
protected:
virtual void foo_impl(tag<Base>) {}
};
class Derived1 : public Base
{
protected:
virtual void foo_impl(tag<Base>) override final { ... ; foo_impl(tag<Derived1>{}); }
virtual void foo_impl(tag<Derived1>) {}
};
class Derived2 : public Derived1
{
protected:
virtual void foo_impl(tag<Derived1>) override final { ... ; foo_impl(tag<Derived2>{}); }
virtual void foo_impl(tag<Derived2>) {}
};
class Derived3 : public Derived2
{
protected:
virtual void foo_impl(tag<Derived2>) override final { ... ; foo_impl(tag<Derived3>{}); }
virtual void foo_impl(tag<Derived3>) {}
};
If you dislike tag dispatch you can just give methods different names instead, perhaps something like foo_impl_N.
I consider all this overengineering.
chris mentioned a primary concern regards childs not calling their parent's corresponding member functions, this gives an idea about fixing that part:
#include <cassert>
class Base {
public:
void foo() {
foo_impl();
assert(base_foo_called && "call base class foo_impl");
}
protected:
virtual void foo_impl() { base_foo_called = true; }
private:
bool base_foo_called = false;
};
class DerivedFine : public Base {
protected:
void foo_impl() override {
Base::foo_impl();
}
};
class DerivedDerivedFine : public DerivedFine {
protected:
void foo_impl() override {
DerivedFine::foo_impl();
}
};
class DerivedDerivedNotFine : public DerivedFine {
protected:
void foo_impl() override {}
};
int main() {
DerivedFine foo;
foo.foo();
DerivedDerivedFine bar;
bar.foo();
DerivedDerivedNotFine baz;
baz.foo(); // this asserts
}
CRTP can solve everything.
For each foo method, you implement an empty non-virtual foo_before() that does nothing in your CRTP helper.
CRTP helper takes a derived and a base. Its virtual void foo() invokes static_cast<Derived*>(this)->foo_before() then Base::foo() then after_foo().
struct Base {
virtual void foo() { std::cout << "foo\n"; }
virtual ~Base() {};
};
template<class D, class B=Base>
struct foo_helper:B {
virtual void foo() {
static_cast<D*>(this)->before_foo();
this->B::foo();
static_cast<D*>(this)->after_foo();
}
private:
void before_foo() {}; void after_foo() {};
};
struct Derived1 : foo_helper<Derived1> {
void before_foo() { std::cout << "before1\n"; }
};
struct Derived2 : foo_helper<Derived2> {
void before_foo() { std::cout << "before2\n"; }
void after_foo() { std::cout << "after2\n"; }
};
struct DoubleDerived : foo_helper<DoubleDerived, Derived2> {
void after_foo() { std::cout << "even more after\n"; }
};
int main() {
std::cout << "---- Derived1\n";
Derived1 d1;
d1.foo();
std::cout << "---- Derived2\n";
Derived2 d2;
d2.foo();
std::cout << "---- DoubleDerived\n";
DoubleDerived dd;
dd.foo();
}
Live example.
Output:
---- Derived1
before1
foo
---- Derived2
before2
foo
after2
---- DoubleDerived
before2
foo
after2
even more after
Here's an idea inspired by this answer
The idea is to use the fact that constructors and destructors of a struct / class provides a sort of "pre/post function calling" mechanism that gets inherited. So instead of doing the pre/post function calls in the virtual method itself, we can use a functor and define the pre/post function call in the constructor / destructor. That way, functors that inherit from the base functor will inherit the pre/post function call.
Code
struct BasePrePostFunctor
{
BasePrePostFunctor()
{
printf("Base pre-func\n");
}
virtual void operator()()
{
printf("Base Main func\n");
}
~BasePrePostFunctor()
{
printf("Base post-func\n");
}
};
struct DerivedPrePostFunctor : BasePrePostFunctor
{
DerivedPrePostFunctor()
{
printf("Derived pre-func\n");
}
void operator()() override
{
printf("Derived main func\n");
}
~DerivedPrePostFunctor()
{
printf("Derived post-func\n");
}
};
class BaseClass
{
public:
virtual void virtual_func()
{
BasePrePostFunctor func;
func();
}
};
class DerivedClass : public BaseClass
{
public:
void virtual_func() override
{
DerivedPrePostFunctor func;
func();
}
};
int main(int argc, char** argv)
{
DerivedClass derived;
derived.virtual_func();
};
Output
Base pre-func
Derived pre-func
Derived main func
Derived post-func
Base post-func

How to get rid of duplicate code in derived classes?

I have a class hierarchy like:
class A {
list<A*> children;
public:
void update() {
do_something();
update_current();
for(auto child : children)
children->update();
}
protected:
virtual void update_current() {};
};
class B : public A {
protected:
void update_current() override {
do_something_important();
};
};
class C1 : public B {
protected:
void update_current() override {
B::update_current();
do_something_very_important();
};
};
class C2 : public B {
protected:
void update_current() override {
B::update_current();
do_something_very_important_2();
};
};
int main() {
A* a = new A();
//fill a's childred list somehow
while(come_condition) {
//some code
a.update();
//something else
}
return 0;
}
The question is: how can I remove duplicate B::update_current(); calls from derived classes without changing program's behaviour? Is it possible or are there no solutions except calling base class functions manually? Thank you.
You could make B's children override a different function:
class B : public A {
protected:
void update_current() override final {
do_something_important();
do_something_important_later();
};
virtual void do_something_important_later() = 0;
};
With:
class C2 : public B {
protected:
void do_something_important_later() override {
do_something_very_important_2();
};
};

Avoid new when storing base-typed member variable that could be initialized with different derived types

My code structure is like below where multiple classes implement Interface. In Example class I store a pointer to the Interface and new() it in the constructor appropriately (depending on constructor parameters not shown here). I'm looking for ways to avoid using new() in this scenario but haven't got a solution yet. What's the best practice for something like this?
class Interface
{
virtual void Foo() = 0;
};
class A : public Interface
{
void Foo() { ... }
};
class B : public Interface
{
void Foo() { ... }
};
class Example
{
private:
Interface* m_bar;
public:
Example()
{
m_bar = new A(); // deleted in destructor
}
};
There are two ways this is typically done, each with their own merits.
If A is truely defined at compile time, than a typical way to handle this is to simply use a template type:
template <typename T>
class TemplateExample
{
T m_bar;
public:
TemplateExample() : m_bar() {};
}
This has some downsides. TemplateExample<A> becomes unrelated to TemplateExample<B>, the error messages when T doesn't follow the correct interface are pretty obtuse, ect. The upside is this may use duck typing rather than interface typing, and m_bar is a concrete instance.
The other (arguable more common) way is to do the following
class UniquePtrExample
{
std::unique_ptr<Interface> m_bar;
public:
UniquePtrExample() : m_bar(new A()){}
};
This has the benefit of being able to be run time configuratble if you follow a cloable pattern:
class Interface
{
public:
virtual void Foo() = 0;
virtual Interface* clone() const = 0;
};
template <typename T>
class CloneHelper : public Interface
{
public:
virtual Interface* clone() const { return new T(static_cast<const T&>(*this));}
};
class A : public CloneHelper<A>
{
virtual void Foo() { std::cout << 'A' << std::endl; }
};
class B : public CloneHelper<B>
{
virtual void Foo() { std::cout << 'B' << std::endl; }
};
class UniquePtrExample
{
std::unique_ptr<Interface> m_bar;
public:
UniquePtrExample() : m_bar(new A()){}
UniquePtrExample(const Interface& i) : m_bar(i.clone());
};
Note you can further extend the above to have a move variant of the clone function.

is virtual inheritance from pure abstract classes (interfaces) necessary

Why is it that in the code below the compiler complains that PureAbstractBase is an ambiguous base class of MultiplyInheritedClass? I realize I have two copies of the PureAbstractBase in MultiplyInheritedClass and that FirstConreteClass and SecondConreteClass should be derived virtually because they're the middle row of the diamond (and that does indeed fix the problem with the code below). But even though I have two copies of the interface why is it that the code in MultiplyInheritedClass does not just override both and unambiguously pick the interface class defined in MultiplyInheritedClass?
#include <iostream>
using namespace std;
class PureAbstractBase {
public:
virtual void interface() = 0;
};
// I know that changing the following line to:
// class FirstConcreteClass : public virtual PureAbstractBase {
// fixes the problem with this hierarchy
class FirstConcreteClass : public PureAbstractBase {
public:
virtual void interface() { implementation(); }
private:
void implementation() { cout << "This is object FirstConcreteClass\n"; }
};
// I know that changing the following line to:
// class SecondConcreteClass : public virtual PureAbstractBase {
// fixes the problem with this hierarchy
class SecondConcreteClass : public PureAbstractBase {
public:
virtual void interface() { implementation(); }
private:
void implementation() { cout << "This is object SecondConcreteClass\n"; }
};
class MultiplyInheritedClass : public FirstConcreteClass,
public SecondConcreteClass {
public:
virtual void interface() { implementation(); }
private:
void implementation() { cout << "This is object MultiplyInheritedClass\n"; }
};
Further, why do I not have issues with the following hierarchy? Doesn't the ConcreteHandler class have three copies of the AbstractTaggingInterface in this case? So why doesn't it have the same issue as the example above?
#include <iostream>
using namespace std;
class AbstractTaggingInterface {
public:
virtual void taggingInterface() = 0;
};
class FirstAbstractHandler : public AbstractTaggingInterface {
public:
virtual void taggingInterface() { cout << "FirstAbstractHandler\n"; }
virtual void handleFirst() = 0;
};
class SecondAbstractHandler : public AbstractTaggingInterface {
public:
virtual void taggingInterface() { cout << "SecondAbstractHandler\n"; }
virtual void handleSecond() = 0;
};
class ThirdAbstractHandler : public AbstractTaggingInterface {
public:
virtual void taggingInterface() { cout << "ThridAbstractHandler\n"; }
virtual void handleThird() = 0;
};
class ConcreteHandler : public FirstAbstractHandler,
public SecondAbstractHandler,
public ThirdAbstractHandler {
public:
virtual void taggingInterface() = { cout << "ConcreteHandler\n"; }
virtual void handleFirst() {}
virtual void handleSecond() {}
virtual void handleThird() {}
};
I am trying to wrap my head around all of this because I had a conversation with a colleague recently where he claimed that if you were inheriting from pure virtual classes (interfaces) without any data members then virtual inheritance was not necessary. I think understanding why the former code example does not work and the latter does would go a long way to getting this straight in my head (and clear up what exactly he meant by his comment). Thanks in advance.
You need virtual inheritance to overcome the diamond-ambiguity:
class FirstConcreteClass : public virtual PureAbstractBase { ... };
class SecondConcreteClass : public virtual PureAbstractBase { ... };
Long-winded explanation: Suppose you have this:
// *** Example with errrors! *** //
struct A { virtual int foo(); };
struct B1 : public A { virtual int foo(); };
struct B2 : public A { virtual int foo(); };
struct C: public B1, public B2 { /* ... */ }; // ambiguous base class A!
int main() {
A * px = new C; // error, ambiguous base!
px->foo(); // error, ambiguous override!
}
The inheritance of the virtual function foo is ambiguous because it comes in three ways: from B1, from B2 and from A. The inheritance diagram forms a "diamond":
/-> B1 >-\
A-> ->C
\-> B2 >-/
By making the inheritance virtual, struct B1 : public virtual A; etc., you allow any baseclass of C* to call the correct member:
struct A { virtual int foo(); };
struct B1 : public virtual A { virtual int foo(); };
struct B2 : public virtual A { virtual int foo(); };
struct C: public B1, public B2 { virtual int foo(); };
We must also define C::foo() for this to make sense, as otherwise C would not have a well-defined member foo.
Some more details: Suppose we now have a properly virtually-inheriting class C as above. We can access all the various virtual members as desired:
int main() {
A * pa = new C;
pa->foo(); // the most derived one
pa->A::foo(); // the original A's foo
B1 * pb1 = new C;
pb1->foo(); // the most derived one
pb1->A::foo(); // A's foo
pb1->B1::foo(); // B1's foo
C * pc = new C;
pc->foo(); // the most derived one
pc->A::foo(); // A's foo
pc->B1::foo(); // B1's foo
pc->B2::foo(); // B2's foo
pc->C::foo(); // C's foo, same as "pc->foo()"
}
Update: As David says in the comment, the important point here is that the intermediate classes B1 and B2 inherit virtually so that further classes (in this case C) can inherit from them while simultaneously keeping the inheritance from A unambiguous. Sorry for the initial mistake and thanks for the correction!
Your first example fails because the compiler cannot disambiguate between the three implementations of implementation(). You are overriding that method in MultiplyInheritedClass, which actually overrides both FirstConcreteClass::implementation and SecondConcreteClass::implementation (once virtual, always virtual). However, both virtual calls still exist in the interface of MultiplyInheritedClass, which makes the call ambiguous at the call site.
The reason that your example works without virtual inheritance is that there is no conflicting implementation of the common base class. Put another way:
class Base
{
public:
void DoSomething() {
std::cout << "TADA!";
}
}
class One : public Base
{
//...
}
class Two : public Base
{
//...
}
class Mixed : public One, public Two
{
//...
}
int main()
{
Mixed abc;
abc.DoSomething(); //Fails because the compiler doesn't know whether to call
// One::DoSomething or Two::DoSomething, because they both
// have implementations.
//In response to comment:
abc.One::DoSomething(); //Succeeds! You removed the ambiguity.
}
Because your example has all pure virtual functions, there's no multiple implementations which the compiler needs to disambiguate. Therefore, only one implementation exists, and the call is unambiguous.
I tried both of the question codes and they worked fine when instantiating an object of the multi-inherited class. It didn't work only with polymorphism, like this for example:
PureAbstractBase* F;
F = new MultiplyInheritedClass();
And the reason is clear: it doesn't know to which copy of the Abstract base class it should be linked (sorry for bad expressions, I understand the idea but can't express it). And since inherting virtaully makes only one copy exist in the derived class, then it's fine.
Also the code of Billy ONeal is not clear at all, what should we place instead of the comments?
If we place:
public:
void DoSomething()
{ std::cout << "TADA!"; }
it works fine, because of no virtuality.
I work on Visual Studio 2008.
Why not do it like this (suggested in Benjamin Supnik's blog entry):
#include <iostream>
class PureAbstractBase {
public:
virtual void interface() = 0;
};
class FirstConcreteClass : public PureAbstractBase {
public:
virtual void interface() { implementation(); }
private:
void implementation() { std::cout << "Fisrt" << std::endl; }
};
class SecondConcreteClass : public PureAbstractBase {
public:
virtual void interface() { implementation(); }
private:
void implementation() { std::cout << "Second" << std::endl; }
};
class MultiplyInheritedClass : public FirstConcreteClass,
public SecondConcreteClass
{
public:
virtual void interface() { implementation(); }
private:
void implementation() { std::cout << "Multiple" << std::endl; }
};
int main() {
MultiplyInheritedClass mic;
mic.interface();
FirstConcreteClass *fc = &mic; //disambiguate to FirstConcreteClass
PureAbstractBase *pab1 = fc;
pab1->interface();
SecondConcreteClass *sc = &mic; //disambiguate to SecondConcreteClass
PureAbstractBase *pab2 = sc;
pab2->interface();
}
which gives:
Multiple
Multiple
Multiple
This way:
no virtual bases are involved (do you really need them?)
you can call the overriden function via a an instance of the MultiplyInheritedClass
ambiguity is removed by a two-stage conversion

Inherit interfaces which share a method name

There are two base classes have same function name. I want to inherit both of them, and over ride each method differently. How can I do that with separate declaration and definition (instead of defining in the class definition)?
#include <cstdio>
class Interface1{
public:
virtual void Name() = 0;
};
class Interface2
{
public:
virtual void Name() = 0;
};
class RealClass: public Interface1, public Interface2
{
public:
virtual void Interface1::Name()
{
printf("Interface1 OK?\n");
}
virtual void Interface2::Name()
{
printf("Interface2 OK?\n");
}
};
int main()
{
Interface1 *p = new RealClass();
p->Name();
Interface2 *q = reinterpret_cast<RealClass*>(p);
q->Name();
}
I failed to move the definition out in VC8. I found the Microsoft Specific Keyword __interface can do this job successfully, code below:
#include <cstdio>
__interface Interface1{
virtual void Name() = 0;
};
__interface Interface2
{
virtual void Name() = 0;
};
class RealClass: public Interface1,
public Interface2
{
public:
virtual void Interface1::Name();
virtual void Interface2::Name();
};
void RealClass::Interface1::Name()
{
printf("Interface1 OK?\n");
}
void RealClass::Interface2::Name()
{
printf("Interface2 OK?\n");
}
int main()
{
Interface1 *p = new RealClass();
p->Name();
Interface2 *q = reinterpret_cast<RealClass*>(p);
q->Name();
}
but is there another way to do this something more general that will work in other compilers?
This problem doesn't come up very often. The solution I'm familiar with was designed by Doug McIlroy and appears in Bjarne Stroustrup's books (presented in both Design & Evolution of C++ section 12.8 and The C++ Programming Language section 25.6). According to the discussion in Design & Evolution, there was a proposal to handle this specific case elegantly, but it was rejected because "such name clashes were unlikely to become common enough to warrant a separate language feature," and "not likely to become everyday work for novices."
Not only do you need to call Name() through pointers to base classes, you need a way to say which Name() you want when operating on the derived class. The solution adds some indirection:
class Interface1{
public:
virtual void Name() = 0;
};
class Interface2{
public:
virtual void Name() = 0;
};
class Interface1_helper : public Interface1{
public:
virtual void I1_Name() = 0;
void Name() override
{
I1_Name();
}
};
class Interface2_helper : public Interface2{
public:
virtual void I2_Name() = 0;
void Name() override
{
I2_Name();
}
};
class RealClass: public Interface1_helper, public Interface2_helper{
public:
void I1_Name() override
{
printf("Interface1 OK?\n");
}
void I2_Name() override
{
printf("Interface2 OK?\n");
}
};
int main()
{
RealClass rc;
Interface1* i1 = &rc;
Interface2* i2 = &rc;
i1->Name();
i2->Name();
rc.I1_Name();
rc.I2_Name();
}
Not pretty, but the decision was it's not needed often.
You cannot override them separately, you must override both at once:
struct Interface1 {
virtual void Name() = 0;
};
struct Interface2 {
virtual void Name() = 0;
};
struct RealClass : Interface1, Interface2 {
virtual void Name();
};
// and move it out of the class definition just like any other method:
void RealClass::Name() {
printf("Interface1 OK?\n");
printf("Interface2 OK?\n");
}
You can simulate individual overriding with intermediate base classes:
struct RealClass1 : Interface1 {
virtual void Name() {
printf("Interface1 OK?\n");
}
};
struct RealClass2 : Interface2 {
virtual void Name() {
printf("Interface2 OK?\n");
}
};
struct RealClass : RealClass1, RealClass2 {
virtual void Name() {
// you must still decide what to do here, which is likely calling both:
RealClass1::Name();
RealClass2::Name();
// or doing something else entirely
// but note: this is the function which will be called in all cases
// of *virtual dispatch* (for instances of this class), as it is the
// final overrider, the above separate definition is merely
// code-organization convenience
}
};
Additionally, you're using reinterpret_cast incorrectly, you should have:
int main() {
RealClass rc; // no need for dynamic allocation in this example
Interface1& one = rc;
one.Name();
Interface2& two = dynamic_cast<Interface2&>(one);
two.Name();
return 0;
}
And here's a rewrite with CRTP that might be what you want (or not):
template<class Derived>
struct RealClass1 : Interface1 {
#define self (*static_cast<Derived*>(this))
virtual void Name() {
printf("Interface1 for %s\n", self.name.c_str());
}
#undef self
};
template<class Derived>
struct RealClass2 : Interface2 {
#define self (*static_cast<Derived*>(this))
virtual void Name() {
printf("Interface2 for %s\n", self.name.c_str());
}
#undef self
};
struct RealClass : RealClass1<RealClass>, RealClass2<RealClass> {
std::string name;
RealClass() : name("real code would have members you need to access") {}
};
But note that here you cannot call Name on a RealClass now (with virtual dispatch, e.g. rc.Name()), you must first select a base. The self macro is an easy way to clean up CRTP casts (usually member access is much more common in the CRTP base), but it can be improved. There's a brief discussion of virtual dispatch in one of my other answers, but surely a better one around if someone has a link.
I've had to do something like this in the past, though in my case I needed to inherit from one interface twice and be able to differentiate between calls made on each of them, I used a template shim to help me...
Something like this:
template<class id>
class InterfaceHelper : public MyInterface
{
public :
virtual void Name()
{
Name(id);
}
virtual void Name(
const size_t id) = 0;
}
You then derive from InterfaceHelper twice rather than from MyInterface twice and you specify a different id for each base class. You can then hand out two interfaces independently by casting to the correct InterfaceHelper.
You could do something slightly more complex;
class InterfaceHelperBase
{
public :
virtual void Name(
const size_t id) = 0;
}
class InterfaceHelper1 : public MyInterface, protected InterfaceHelperBase
{
public :
using InterfaceHelperBase::Name;
virtual void Name()
{
Name(1);
}
}
class InterfaceHelper2 : public MyInterface, protected InterfaceHelperBase
{
public :
using InterfaceHelperBase::Name;
virtual void Name()
{
Name(2);
}
}
class MyClass : public InterfaceHelper1, public InterfaceHelper2
{
public :
virtual void Name(
const size_t id)
{
if (id == 1)
{
printf("Interface 1 OK?");
}
else if (id == 2)
{
printf("Interface 2 OK?");
}
}
}
Note that the above hasn't seen a compiler...
class BaseX
{
public:
virtual void fun()
{
cout << "BaseX::fun\n";
}
};
class BaseY
{
public:
virtual void fun()
{
cout << "BaseY::fun\n";
}
};
class DerivedX : protected BaseX
{
public:
virtual void funX()
{
BaseX::fun();
}
};
class DerivedY : protected BaseY
{
public:
virtual void funY()
{
BaseY::fun();
}
};
class DerivedXY : public DerivedX, public DerivedY
{
};
There are two other related questions asking nearly (but not completely) identical things:
Picking from inherited shared method names. If you want to have rc.name() call ic1->name() or ic2->name().
Overriding shared method names from (templated) base classes. This has simpler syntax and less code that your accepted solution, but does not allow for access to the functions from the derived class. More or less, unless you need to be able to call name_i1() from an rc, you don't need to use things like InterfaceHelper.