C++ code working as intended on Linux but not on Windows - c++

I do not know why this code breaks ,probably when adding new node, on Windows .Returns "Process returned -1073741819 (0xC0000005)"),it was compiled with GNU GCC.It works perfectly fine on Linux.
Also tested on geeksforgeeks ide , this is the link https://ide.geeksforgeeks.org/feo8SYMsFP.
When debugged, SIGSEGV is returned when adding node but I am not sure why..
For example, input : 1 10 1 11 then it breaks..
#include <iostream>
#include <stdlib.h>
struct Node
{
int key;
Node * left;
Node * right;
};
class binarySearchTree
{
private:
Node *root;
Node *newNode(int key)
{
Node *temp = new Node;
temp->left = temp->right = NULL;
temp->key = key;
return temp;
}
void traverse_inorder(Node *temp)
{
if (temp==NULL)
return;
traverse_inorder(temp->left);
std::cout <<"Current key: "<< temp->key << "\n";
traverse_inorder(temp->right);
}
void find(Node* temp,int key)
{
if (temp==NULL)
return;
find(temp->left,key);
if (temp->key == key)
std::cout <<"Key " << key << " found\n";
find(temp->right,key);
}
Node* minValueNode(Node* n)
{
Node* x = n;
while (x->left != NULL)
x = x->left;
return x;
}
Node* deleteNode(Node* temp, int key)
{
if (temp == NULL)
return temp;
if (key < temp->key)
temp->left = deleteNode(temp->left, key);
else if (key > temp->key)
temp->right = deleteNode(temp->right, key);
else
{
if (temp->left == NULL)
{
Node *x = temp->right;
delete temp;
return x;
}
else if (root->right == NULL)
{
Node *x = temp->left;
delete temp;
return x;
}
Node* x = minValueNode(temp->right);
temp->key = x->key;
temp->right = deleteNode(temp->right, x->key);
}
return temp;
}
void delete_tree(Node *temp)
{
if (temp == NULL)
return;
delete_tree(temp->left);
delete_tree(temp->right);
delete temp;
}
void traverse_postorder(Node* temp)
{
if (temp == NULL)
return;
traverse_postorder(temp->left);
traverse_postorder(temp->right);
std::cout <<"Current key: "<< temp->key << "\n";
}
void traverse_preorder(Node* temp)
{
if (temp == NULL)
return;
std::cout <<"Current key: "<< temp->key << "\n";
traverse_preorder(temp->left);
traverse_preorder(temp->right);
}
void add(int key)
{
if (root == NULL)
root = newNode(key);
else
{
Node *temp = root;
while (true)
{
if (temp->key > key)
{
if (temp->left == NULL)
{
temp->left = newNode(key);
break;
}
else
temp = temp->left;
}
else if (temp->key < key)
{
if (temp->right == NULL)
{
temp->right =newNode(key);
break;
}
else
temp = temp->right;
}
else
{
std::cout << "Key already added!\n";
break;
}
}
}
}
public:
binarySearchTree()
{
root = NULL;
}
~binarySearchTree()
{
delete_tree(root);
}
void _find(int key)
{
find(root,key);
}
void _del(int key)
{
root = deleteNode(root,key);
}
void _traverse_postorder()
{
traverse_postorder(root);
}
void _traverse_preorder()
{
traverse_preorder(root);
}
void _traverse_inorder()
{
traverse_inorder(root);
}
void _add(int key)
{
add(key);
}
};
int main()
{
binarySearchTree bst;
std::cout << "Binary Search Tree Menu (1-add key, 2-search key, 3-remove key, 4-traverse inorder, 5-traverse postorder, 6-traverse preorder, q-exit)\n";
char input;
do
{
std::cout << "Awaiting input ";
std::cin >> input;
int key;
switch(input)
{
case '1':
std::cout << "Enter key.. ";
std::cin >> key;
bst._add(key);
break;
case '2':
std::cout << "Enter key.. ";
std::cin >> key;
bst._find(key);
break;
case '3':
std::cout << "Enter key.. ";
std::cin>>key;
bst._del(key);
break;
case '4':
bst._traverse_inorder();
break;
case '5':
bst._traverse_postorder();
break;
case '6':
bst._traverse_preorder();
break;
}
}
while (input != 'q');
std::cout << "Deleting Binary Search Tree...\n";
return 0;
}

This code:
struct Node
{
int key;
Node * left;
Node * right;
};
Node *newNode(int key)
{
Node *temp = new Node;
temp->key = key;
return temp;
}
means that newNode returns pointer to node with indeterminate values for left and right. Instead these should be null pointers, (e.g. use new Node(); instead of new Node;).
On the original system it probably happened to get zeroed memory from the allocator so the problem didn't show up.

Related

What factors could cause bad_alloc?

I was writing an AVL tree implementation but got an error due to bad_alloc on another platform. However, the code works perfectly for me in CS50 IDE without any warning.
In my code, I used new keyword to declare objects and I did deleted them after using.
My question is that what other factors could result in this bad_alloc error? And how can I solve it?
#include <vector>
using namespace std;
class node {
public:
int value;
int height;
node* left;
node* right;
node();
};
// freeing the dynamically allocated memory
void freeTree(node* root){
if((root->left) != nullptr){
freeTree(root->left);
}
if((root->right) != nullptr){
freeTree(root->right);
}
delete root;
}
node::node(){
height = 1;
}
int get_height(node* n){
if(n == NULL){
return 0;
}
return n->height;
}
int get_balance_factor(node* n){
if(n == NULL){
return 0;
}
if(n->value == 0){
return 0;
}
return (get_height(n->left))-(get_height(n->right));
}
// prints out the AVL tree by inorder traversal
void inorder(node* root){
if((root->left) != nullptr){
inorder(root->left);
}
cout << root->value << ' ';
if((root->right) != nullptr){
inorder(root->right);
}
}
// prints out the AVL tree by preorder traversal
void preorder(node* root){
cout << root->value << ' ';
if((root->left) != nullptr){
preorder(root->left);
}
if((root->right) != nullptr){
preorder(root->right);
}
}
// prints out the AVL tree by postorder traversal
void postorder(node* root){
if((root->left) != nullptr){
postorder(root->left);
}
if((root->right) != nullptr){
postorder(root->right);
}
cout << root->value << ' ';
}
node* left_rotation(node* root){
node* temp = root->right;
root->right = root->right->left;
temp->left = root;
root->height = max(get_height(root->left),get_height(root->right))+1;
temp->height = max(get_height(temp->left),get_height(temp->right))+1;
return temp;
}
node* right_rotation(node* root){
node* temp = root->left;
root->left = root->left->right;
temp->right = root;
root->height = max(get_height(root->left),get_height(root->right))+1;
temp->height = max(get_height(temp->left),get_height(temp->right))+1;
return temp;
}
node* add_node(int k, node* root){
// cout << "inserting " << k << endl;
// BST insertion
if(root == NULL){
node* temp = new node();
temp->value = k;
return temp;
}
if(root->value == 0){
node* temp = new node();
temp->value = k;
return temp;
}
else if(k > (root->value)){
root->right = add_node(k, root->right);
}
else if(k < (root->value)){
root->left = add_node(k, root->left);
}
else{
return root;
}
root->height = max(get_height(root->left),get_height(root->right))+1;
// rebalancing
int bf = get_balance_factor(root);
// right-heavy tree
if(bf < -1){
return left_rotation(root);
}
// left-heave tree
if(bf > 1){
return right_rotation(root);
}
return root;
}
int main(){
// initializing an avl tree
node* root = new node();
// handling input
vector<string> input;
while(true){
string temp;
cin >> temp;
input.push_back(temp);
if(cin.peek() == 32){
cin.ignore();
}
else if(cin.peek() == 10){
break;
}
}
// processing input
for(int i = 0; i < (int)input.size()-1; i++){
string temp = input[i];
char operation = temp[0];
int number = stoi(temp.substr(1, temp.length()-1));
if(operation == 'A'){
root = add_node(number, root);
}
else if(operation == 'D'){
// call delete node function
}
}
// traversal
string traversal = input[input.size()-1];
if(traversal == "PRE"){
preorder(root);
}
else if(traversal == "IN"){
inorder(root);
}
else if(traversal == "POST"){
postorder(root);
}
freeTree(root);
return 0;
}```

Binary search tree algorithm crashing when passing a parameter that isn't in the tree to the search function

i tried building a binary search tree, everything worked fine when i gave it parameters that were in in the tree, but i wanted to see if it would print 0 when it couldn't find the int in the tree instead when i call search it's crashing.
i tried adding a condition after the first if statement but that ruined the recursion
here's the code:
struct node
{
int data;
node* left;
node* right;
node(int d)
{
data = d;
left = right = NULL;
}
};
node* insert(node *root, int n)
{
if(root == NULL)
{
return new node(n);
}
else
{
node* y;
if(n <= root->data)
{
y = insert(root->left, n);
root->left = y;
}
else
{
y = insert(root->right, n);
root->right = y;
}
return root;
}
}
node* search(node *root,int n)
{
if(root == NULL || root->data == n)
{
return root;
}
if(root->data < n)
{
return search(root->right, n);
}
return search(root->left, n);
}
int treemax(node *root)
{
while(root->right != NULL)
{
root = root->right;
}
return root->data;
}
int treemin(node *root)
{
while(root->left != NULL)
{
root = root->left;
}
return root->data;
}
int main()
{
node *R = NULL;
R = insert(R, 33);
insert(R,12);
insert(R, 40);
insert(R, 36);
insert(R, 21);
cout << search(R, 65)->data << endl;
}
Your problem is that you are trying to access null pointer. Pointer returned from search(R,65) is null because аt last step your root->right is null.
If you want to return 0 if no elements is found you can replace your last line with this:
node *result = search(R, 65);
if (result)
cout << result->data << endl;
else
cout << "0" << endl;
Below is a working example. I have added some comments that show what things you can change in the above program to make it safe or better.
#include<iostream>
struct node
{
//always initialize built-in type data members
int data = 0;//initialize any built in type otherwise it will have garbage value
node* left = nullptr;//initialize any built type as stated above
node* right = nullptr;//initialize any built in type as stated above
node(int d)
{
data = d;
left = right = nullptr;
}
};
node* insert(node *root, int n)
{
if(root == nullptr)
{
return new node(n);
}
else
{
node* y;
if(n <= root->data)
{
y = insert(root->left, n);
root->left = y;
}
else
{
y = insert(root->right, n);
root->right = y;
}
return root;
}
}
node* search(node *root,int n)
{
if(root == nullptr || root->data == n)
{
return root;
}
if(root->data < n)
{
return search(root->right, n);
}
return search(root->left, n);
}
int treemax(node *root)
{
while(root->right != nullptr)
{
root = root->right;
}
return root->data;
}
int treemin(node *root)
{
while(root->left != nullptr)
{
root = root->left;
}
return root->data;
}
int main()
{
node *R = nullptr;
R = insert(R, 33);
insert(R,12);
insert(R, 40);
insert(R, 36);
insert(R, 21);
//std::cout << search(R, 65)->data << std::endl;
node *value = search(R, 65);
//check if the pointer is valid
if(value)
{
std::cout<< value->data <<std::endl;
}
else
{
std::cout<<"cannot access nullptr"<<std::endl;
}
}
The error was because search(R, 65); was returning NULL and you were trying to access a NULL pointer's data member value.
When you run
cout << search(R, 65)->data << endl;
search(R, 65) returns NULL. You can't dereference NULL by doing ->data on it. You probably want:
Node* result = search(R, 65);
if (result)
{
cout << result->data << endl;
}
else
{
cout << "Not found" << endl;
}

AVL-tree node misses content of an included structure and I cannot find why

Consider the following AVL-tree implementation. Each node contains a list of numbers.The key is named workload, but consider it as a plain double variable. If a key is equal to the key of an already existing node, the number gets pushed into the list. Every time I pop a number from a list, I perform a check, if the node's list is empty -> remove the node. But, after the element with key=3 gets removed completely, the list of the node with key=4 is suddenly empty. I've been trying to solve it for over 10 hours now, it's actually the first time I ever needed to ask something here. Pardon me if I miss a few things.
#include<iostream>
#include <list>
using namespace std;
class BST
{
struct node
{
double workload;
list<int> numbers;
node* left;
node* right;
int height;
};
node* root;
unsigned long long size;
bool empty;
void makeEmpty(node* t)
{
if(t == NULL)
return;
makeEmpty(t->left);
makeEmpty(t->right);
delete t;
}
node* insert(double workload,int number, node* t)
{
if(t == NULL)
{
t = new node;
t->workload = workload;
t->numbers.push_back(number);
t->height = 0;
t->left = t->right = NULL;
}
else if(t->workload == workload){
t->numbers.push_back(number);
}
else if(workload < t->workload)
{
t->left = insert(workload, number, t->left);
if(height(t->left) - height(t->right) == 2)
{
if(workload < t->left->workload)
t = singleRightRotate(t);
else
t = doubleRightRotate(t);
}
}
else if(workload > t->workload)
{
t->right = insert(workload, number, t->right);
if(height(t->right) - height(t->left) == 2)
{
if(workload > t->right->workload)
t = singleLeftRotate(t);
else
t = doubleLeftRotate(t);
}
}
//if x == t->workload instead of using int workload. its a list and we push into it.
t->height = max(height(t->left), height(t->right))+1;
return t;
}
node* singleRightRotate(node* &t)
{
node* u = t->left;
t->left = u->right;
u->right = t;
t->height = max(height(t->left), height(t->right))+1;
u->height = max(height(u->left), t->height)+1;
return u;
}
node* singleLeftRotate(node* &t)
{
node* u = t->right;
t->right = u->left;
u->left = t;
t->height = max(height(t->left), height(t->right))+1;
u->height = max(height(t->right), t->height)+1 ;
return u;
}
node* doubleLeftRotate(node* &t)
{
t->right = singleRightRotate(t->right);
return singleLeftRotate(t);
}
node* doubleRightRotate(node* &t)
{
t->left = singleLeftRotate(t->left);
return singleRightRotate(t);
}
node* findMin(node* t)
{
if(t == NULL)
return NULL;
else if(t->left == NULL)
return t;
else
return findMin(t->left);
}
node* findMax(node* t)
{
if(t == NULL)
return NULL;
else if(t->right == NULL)
return t;
else
return findMax(t->right);
}
node* find(node* t,double workload){
if (t->workload == workload){
return t;
}
else if(workload < t->workload && t->left!=NULL)
return find(t->left,workload);
else if(workload > t->workload && t->right!=NULL)
return find(t->right,workload);
else{
cout << "Null node encountered" << endl;
return t;
}
}
node* remove(double x, node* t)
{
node* temp;
// Element not found
if(t == NULL)
return NULL;
// Searching for element
if(x < t->workload)
t->left = remove(x, t->left);
else if(x > t->workload)
t->right = remove(x, t->right);
// Element found
// With 2 children
else if(t->left && t->right)
{
temp = findMin(t->right);
t->workload = temp->workload;
t->right = remove(t->workload, t->right);
}
// With one or zero child
else
{
temp = t;
if(t->left == NULL)
t = t->right;
else if(t->right == NULL)
t = t->left;
delete temp;
}
if(t == NULL)
return t;
t->height = max(height(t->left), height(t->right))+1;
// If node is unbalanced
// If left node is deleted, right case
if(height(t->left) - height(t->right) == -2)
{
// right right case
if(height(t->right->right) - height(t->right->left) == 1)
return singleLeftRotate(t);
// right left case
else
return doubleLeftRotate(t);
}
// If right node is deleted, left case
else if(height(t->right) - height(t->left) == 2)
{
// left left case
if(height(t->left->left) - height(t->left->right) == 1){
return singleRightRotate(t);
}
// left right case
else
return doubleRightRotate(t);
}
return t;
}
int height(node* t)
{
return (t == NULL ? -1 : t->height);
}
int getBalance(node* t)
{
if(t == NULL)
return 0;
else
return height(t->left) - height(t->right);
}
void inorder(node* t)
{
if(t == NULL)
return;
inorder(t->left);
cout << t->workload<< " ";
inorder(t->right);
}
//Reverse inorder (Sorted highest to lowest)
void rinorder(node* t)
{
if(t == NULL)
return;
rinorder(t->right);
cout << t->workload << " ";
rinorder(t->left);
}
void preorder(node* t)
{
if (t == NULL)
return;
cout << t->workload << " ";
preorder(t->left);
preorder(t->right);
}
void postorder(node* t)
{
if (t == NULL)
return;
postorder(t->left);
postorder(t->right);
cout << t->workload << " ";
}
public:
BST()
{
root = NULL;
}
void insert(double workload, int number)
{
root = insert(workload, number, root);
}
void remove(double workload)
{
root = remove(workload, root);
}
void displayrin()
{
cout << "Rinorder: ";
rinorder(root);
cout << endl;
}
void displayin()
{
cout << "Inorder: ";
inorder(root);
cout << endl;
}
void displaypost()
{
cout << "Postorder: ";
postorder(root);
cout << endl;
}
void displaypre()
{
cout << "Preorder: ";
preorder(root);
cout << endl;
}
double getMax(){
return findMax(root)->workload;
}
int getMaxNum(){
return find(root,getMax())->numbers.front();
}
int getNum(double workload){
return find(root,workload)->numbers.front();
}
//We pop a Num from a node
void popnumber(double workload){
node *t = find(root,workload);
if(t!=NULL){
if(!t->numbers.empty()){
t->numbers.pop_front();
//If the Num list of the node is empty, remove node
if(t->numbers.empty()){
remove(t->workload);
}
}
}
}
};
int main()
{
BST t;
//key value pairs
t.insert(2,1);
t.insert(3,1);
t.insert(3,2);
t.insert(4,7);
cout << t.getNum(4) << endl;
cout << t.getNum(3)<<endl;
t.popnumber(3);
cout << t.getNum(3)<<endl;
t.popnumber(3);
t.displayin();
t.displaypost();
t.displaypre();
t.displayrin();
cout << t.getNum(4) << endl;
cout << "The max is : " << t.getMax() << endl;
cout << "The top Num of the Max is : " << t.getMaxNum() << endl;
return 0;
}
As mentioned in the comments, the problem is in the "Element found With 2 children" section of remove.
To remove the element, you find the next element in the tree. Your implementation then wants to copy the contents of the found node (temp). You copy the workload value, so that both t and temp have the same workload value (4). You do not copy the numbers list. The t node has a workload of 4 and an empty numbers list, while temp has a workload of 4 and a numbers list consisting of one element, 7. You then delete temp, losing the list.
One fix would be to copy (or move) numbers from temp to t before removing it from the tree. Adding a MoveData method to node that would move the data fields (while not altering the tree specific fields) would make it easier to add new data fields.
Another fix would be to change how you're doing the data update. If you update all pointers (and other tree related fields like height), then you don't have to worry about the data (and any pointers/iterators to the nodes would not be invalidated).

Output of c++ program not coming as expected

I have made a C++ program for a binary tree. But the terminal is not asking the statement for inputting the direction for where the elements are to be placed.
Also when I replace the statement from " node *temp = new node " to "node *temp=NULL" the program stops working .
#include <iostream>
#include <cstring>
using namespace std;
class node {
int data;
node * left;
node * right;
public:
node * level_order(node * first);
node * create_bt(node * first);
void display(node * first);
};
//node *first=NULL;
node * node::create_bt(node * first) {
node * temp = new node;
int ele;
//char dir;
cout << "\n Enter data ";
cin >> ele;
temp->data = ele;
temp->left = NULL;
temp->right = NULL;
if (first == NULL) {
temp = first;
return first;
} else {
char dir[20];
cout << "\n Enter the direction ";
cin >> dir;
node * cur = first;
int j = 0;
while (dir[j] != '\0') {
if (dir[j] == 'l') {
cur = cur->left;
}
if (dir[j] == 'r') {
cur = cur->right;
}
j++;
}
cur = temp;
return first;
}
}
void node::display(node * first) {
if (first == NULL)
return;
cout << "\n " << first->data;
display(first->left);
display(first->right);
}
int main() {
int n;
node s;
node * first = NULL;
cout << "\n No of elements ";
cin >> n;
for (int i = 0; i < n; i++) {
first = s.create_bt(first);
}
s.display(first);
return 0;
}
first=s.create_bt(first); does not changes state, from NULL to 'l' or 'r'. You have to change that.
node*node::create_bt(node *first)
{
node *temp=new node;
int ele;
//char dir;
cout<<"\n Enter data ";
cin>>ele;
temp->data=ele;
temp->left=NULL;
temp->right=NULL;
char dir[20];
cout<<"\n Enter the direction ";
cin>>dir;
if(first==NULL)
{
temp=first;
return first;
}
else
{
node*cur=first;
int j=0;
while(dir[j]!='\0')
{
if(dir[j]=='l')
{
cur=cur->left;
}
if(dir[j]=='r')
{
cur=cur->right;
}
j++;
}
cur=temp;
return first;
}
}
I believe you re looking something like this. This is a basic binary tree, i had to make a basic one in order to understand how it works and how it chooses left and right. I make a class inside a class, in order to have access to my data members (node class, int data, *left , *right) and have them at the same time protected, all-in-one. As you can see "newnode" just creates a node and NULL s the pointers. Thats it. "Find" searches and finds a node with a current key, and returns it when exits. All the rest, i guess, you can understand them, as they are prety much the same with your code. The only thing you have to do is to define, when you want to direct the node you want. REMINDER: You have to find a way to utilize it, so the leafs will not end far-left or far-right.("Enter the direction"). I hope i helped you understand.
#include <iostream>
#include <conio.h>
using namespace std;
class mybTree {
class node {
public:
int data;
node * left;
node *right;
};
node *root;
node *newnode(int num){
node *newnode1;
newnode1 = new (nothrow) node;
newnode1->data = num;
newnode1->left = NULL;
newnode1->right = NULL;
return newnode1;
}
public:
node *find (int key) {
node *current;
current = root;
while (current->data !=key){
if (key<current->data){
current = current->left;
} else {
current = current->right;
}
if (current == NULL){
return NULL;
}
}
return NULL;
}
void display (node *ptr);
void display_tree();
bool insert(int num);
void post_order_delete(node *ptr);
mybTree();
~mybTree();
};
int main(){
char ch = ' ';
int a;
mybTree mybTree1;
while (ch !='0'){
cout << "0->Exit"<<endl<< "1-> add"<<endl<< "2-> find" <<endl<<"3-> Show me the tree\n";
ch = getch();
switch (ch) {
case '0':
break;
case '1':
cout << "number";
cin >> a;
if (!mybTree1.insert(a)){
cout << "Not enough memory" << endl;
}
break;
case '2' :
cout << "Number:" ;
cin >> a;
if (mybTree1.find(a)!=NULL) {
cout << "Found" << endl;
} else {
cout << "Not existed" << endl;
}
break;
case '3':
mybTree1.display_tree();
cout<<endl;
break;
default:
cout << "Wrong Message";
break;
}
}
return 0;
}
void mybTree::display(node *ptr) {
if (ptr == NULL){
return;
}
display(ptr->left);
cout << ptr->data<<endl;
display(ptr->right);
}
void mybTree::display_tree() {
//Displays the Tree
display(root);
}
bool mybTree::insert(int num) {
//It inserts a node. Desides left or right.
node *next,*current,*ptr;
int isleft;
next = current = root;
ptr = newnode(num);
if (ptr == NULL) {
return false;
}
if (root == NULL) {
root = ptr;
return true;
}
while (1){
if (num < current->data){
next = current->left;
isleft = 1;
} else {
next = current->right;
isleft = 0;
}
if (next == NULL){
if (isleft){
current->left = ptr;
} else {
current->right = ptr;
}
return true;
}
current=next;
}
return false;
}
void mybTree::post_order_delete(node *ptr) {
//deletes the node. Usefull for destructor
if (ptr == NULL){
return;
}
post_order_delete(ptr->left);
post_order_delete(ptr->right);
cout << ptr->data;
delete ptr;
}
mybTree::mybTree() {
//Constructor
root = NULL;
}
mybTree::~mybTree() {
//Destructor
post_order_delete(root);
root = NULL;
}

I would like not to use root as global

Hello I am writing an avl tree and I have one issue . I am currently having a root as global since I use it in the class as well as in main , how can I write it without having it global?
struct avl_node {
int data;
struct avl_node *left;
struct avl_node *right;
}*root;
class avlTree {
public:
int height(avl_node *temp)
{
int h = 0;
if (temp != NULL)
{
int l_height = height (temp->left);
int r_height = height (temp->right);
int max_height = max (l_height, r_height);
h = max_height + 1;
}
return h;
}
int diff(avl_node *temp)
{
int l_height = height (temp->left);
int r_height = height (temp->right);
int b_factor= l_height - r_height;
return b_factor;
}
avl_node *rr_rotation(avl_node *parent)
{
avl_node *temp;
temp = parent->right;
parent->right = temp->left;
temp->left = parent;
return temp;
}
avl_node *ll_rotation(avl_node *parent)
{
avl_node *temp;
temp = parent->left;
parent->left = temp->right;
temp->right = parent;
return temp;
}
avl_node *lr_rotation(avl_node *parent)
{
avl_node *temp;
temp = parent->left;
parent->left = rr_rotation (temp);
return ll_rotation (parent);
}
avl_node *rl_rotation(avl_node *parent)
{
avl_node *temp;
temp = parent->right;
parent->right = ll_rotation (temp);
return rr_rotation (parent);
}
avl_node* balance(avl_node *temp)
{
int bal_factor = diff (temp);
if (bal_factor > 1)
{
if (diff (temp->left) > 0)
temp = ll_rotation (temp);
else
temp = lr_rotation (temp);
}
else if (bal_factor < -1)
{
if (diff (temp->right) > 0)
temp = rl_rotation (temp);
else
temp = rr_rotation (temp);
}
return temp;
}
avl_node* insert(avl_node *root, int value)
{
if (root == NULL)
{
root = new avl_node;
root->data = value;
root->left = NULL;
root->right = NULL;
return root;
}
else if (value < root->data)
{
root->left = insert(root->left, value);
root = balance (root);
}
else if (value >= root->data)
{
root->right = insert(root->right, value);
root = balance (root);
}
return root;
}
void display(avl_node *ptr, int level)
{
int i;
if (ptr!=NULL)
{
display(ptr->right, level + 1);
printf("\n");
if (ptr == root)
cout<<"Root -> ";
for (i = 0; i < level && ptr != root; i++)
cout<<" ";
cout<<ptr->data;
display(ptr->left, level + 1);
}
}
void inorder(avl_node *tree)
{
if (tree == NULL)
return;
inorder (tree->left);
cout<<tree->data<<" ";
inorder (tree->right);
}
void preorder(avl_node *tree)
{
if (tree == NULL)
return;
cout<<tree->data<<" ";
preorder (tree->left);
preorder (tree->right);
}
void postorder(avl_node *tree)
{
if (tree == NULL)
return;
postorder ( tree ->left );
postorder ( tree ->right );
cout<<tree->data<<" ";
}
avlTree()
{
root = NULL;
}
};
int main()
{
int choice, item;
avlTree avl;
while (1)
{
cout<<"\n---------------------"<<endl;
cout<<"AVL Tree Implementation"<<endl;
cout<<"\n---------------------"<<endl;
cout<<"1.Insert Element into the tree"<<endl;
cout<<"2.Display Balanced AVL Tree"<<endl;
cout<<"3.InOrder traversal"<<endl;
cout<<"4.PreOrder traversal"<<endl;
cout<<"5.PostOrder traversal"<<endl;
cout<<"6.Exit"<<endl;
cout<<"Enter your Choice: ";
cin>>choice;
switch(choice)
{
case 1:
system("cls");
cout<<"Enter value to be inserted: ";
cin>>item;
root = avl.insert(root, item);
break;
case 2:
system("cls");
if (root == NULL)
{
cout<<"Tree is Empty"<<endl;
continue;
}
cout<<"Balanced AVL Tree:"<<endl;
avl.display(root, 1);
break;
case 3:
system("cls");
cout<<"Inorder Traversal:"<<endl;
avl.inorder(root);
cout<<endl;
break;
case 4:
system("cls");
cout<<"Preorder Traversal:"<<endl;
avl.preorder(root);
cout<<endl;
break;
case 5:
system("cls");
cout<<"Postorder Traversal:"<<endl;
avl.postorder(root);
cout<<endl;
break;
case 6:
exit(1);
break;
default:
system("cls");
cout<<"Wrong Choice"<<endl;
}
}
return 0;
}
You should not explicitly use the tree's root in main(), and generally outside the tree's methods. To achieve this just make the method
avl_node* insert(avl_node *where, int value)
private (or protected, at least) in a class and add a public interface:
void insert(int value)
{
root = insert(root, value);
}
Then in main you add items simply by calling
avlTree tree;
....
tree.insert(item);
EDIT to answer a question asked in a comment.
Functions like display, inorder etc. should be handled in the same way as insert: declare a public, parameterless function to launch the action and a protected method with a parameter to recursively perform it:
public:
void display() { display(root, 0); }
void inorder() { inorder(root); }
.....
protected:
void display(avl_node *node, int level)
{
if (node!=NULL)
{
display(node->right, level + 1);
if (node == root)
cout << "Root -> ";
else
cout << " ";
cout << setw(5*level) << "" << node->data << endl;
display(node->left, level + 1);
}
}
void inorder(avl_node *node)
{
if (node)
{
inorder (node->left);
cout << node->data << " ";
inorder (node->right);
}
}
then use:
tree.display();
tree.inorder();