How to get the current spdlog level? - c++

I need to turn off the spdlog level before some code then return it to the previous value after.
How do I get the current level before turning it off?

To get current level of logger use logger::level().
To set new level use logger::set_level().

Scenario 1: User-constructed logger
If you have a spdlog::logger object you're using (say, my_logger), then:
You can obtain the level with: my_logger.level().
If you just want to know whether a certain-level message would be logged, then use my_logger.should_log(some_level) where some_level could be, for example spdlog::level::debug.
Scenario 2: The global logger
Now suppose you're using the global logger (e.g. you emit log messages using spdlog::info(), spdlog::error() and such).
spdlog version 1.8.0 and later
You can obtain the global log level with a call to spdlog::get_level() (which is a freestanding function, not a method).
spdlog versions before 1.8.0
You need to get your hand on the implicit logger object - by callingspdlog::default_logger_raw() (it gets you a pointer.) Now just proceed as in Scenario 1 above.

There seems now to be a function to get the global logging level:
spdlog::get_level();

Related

How can I get the logging directory of a RollingFileAppender from log4cxx?

I'm using XML to configure log4cxx. The appender is a RollingFileAppender that outputs to a folder like yyyy/MM/dd/HHmm, and I need to know what that folder is at the end of the program.
I can't get the current yyyy/MM/dd/HHmm at runtime because that value will likely be different than it was when the log directory was created. After scanning log4cxx's documentation, I found only one function that was relevant:
log4cxx::FileAppender::getFile()
which returns the file that an appender is logging to.
The problem with that is that calls to log4cxx::Logger::getAppender() yield only AppenderPtrs- I could dynamic_cast this into a FileAppender if I know that's the ultimate type, but this introduces uncertainty into the program. Is there really no way to get the current log directory from log4cxx?
Thanks!
There is currently no(easy) way to get the name of the file that the RollingFileAppender is using.
Using Logger::getAppender() is the best way to get the correct appender that you are looking for. Since the appenders should all have unique names, there shouldn't be any issue with casting to the correct type. If you want to be safe about casting, use log4cxx::cast<FileAppender>( AppenderPtr ) which will return an invalid pointer if the object is unable to be casted to the correct type.

Observing test failure messages

I am using boost test within a home-grown GUI, and want to access test results (e.g. the failure message and location when a test fails)
The unit_test::test_observer class provides the virtual method:
void assertion_result(boost::unit_test::assertion_result)
However, unit_test::assertion_result is just an enum indicating success or failure. From there, I cannot see how to access further information about the test result.
The framework also provides the class test_tools::assertion_result, which encapsulates an error message, but this only appears to be used for evaluating pre-conditions. (I would have expected this type to be the argument to unit_test::test_observer::assertion_result).
The log output classes appear to provide more information on test results. These are implemented as streams, which makes it non-trivial to extract test result data.
Does anyone know how I can access the information on test results - success/failure, the test code, the location, etc?
Adding an observer will not give you the level of details you need.
From this class you can add your own formatter using the add_formatter function. This will contain the details of what is happening and where, depending on the formatter log level.

Running standard optimization passes on a LLVM module

Say I have a valid LLVM module:
std::unique_ptr<llvm::Module> module;
I want to run LLVM traditional optimization passes on it:
llvm::PassBuilder passBuilder;
llvm::ModulePassManager modulePassManager = passBuilder.buildPerModuleDefaultPipeline(llvm::PassBuilder::OptimizationLevel::O3);
llvm::ModuleAnalysisManager moduleAnalysisManager;
passBuilder.registerModuleAnalyses(moduleAnalysisManager);
modulePassManager.run(*module, moduleAnalysisManager);
Unfortunately, the call crashes and debugging shows that the moduleAnalysisManager has only the module passes, but
not the function ones that are wrapped with the proxy class.
How should I setup modulePassManager to handle all (module) passes of a specific level? I don't have individual functions, so I can't run the function passes just on them.
The proper LLVM way is to create all analysisManagers and then link all of them together. Let's start by creating them:
llvm::PassBuilder passBuilder;
llvm::LoopAnalysisManager loopAnalysisManager(true); // true is just to output debug info
llvm::FunctionAnalysisManager functionAnalysisManager(true);
llvm::CGSCCAnalysisManager cGSCCAnalysisManager(true);
llvm::ModuleAnalysisManager moduleAnalysisManager(true);
Then we register each manager individually, and then we cross register them. This means that the number of managers here is fixed by design and if LLVM (7 at this time) changes the number of managers, this will need to be adapted:
passBuilder.registerModuleAnalyses(moduleAnalysisManager);
passBuilder.registerCGSCCAnalyses(cGSCCAnalysisManager);
passBuilder.registerFunctionAnalyses(functionAnalysisManager);
passBuilder.registerLoopAnalyses(loopAnalysisManager);
// This is the important line:
passBuilder.crossRegisterProxies(
loopAnalysisManager, functionAnalysisManager, cGSCCAnalysisManager, moduleAnalysisManager);
Once the passBuilder is created, we can finally make the optimization passes for the module with a call to the moduleAnalysisManager.
llvm::ModulePassManager modulePassManager =
passBuilder.buildPerModuleDefaultPipeline(llvm::PassBuilder::OptimizationLevel::O3);
modulePassManager.run(*module, moduleAnalysisManager);
This will run module level passes as well as all inner passes that LLVM can run on pieces of the module (function level, loop level...).

c++ best way to realise global switches/flags to control program behaviour without tying the classes to a common point

Let me elaborate on the title:
I want to implement a system that would allow me to enable/disable/modify the general behavior of my program. Here are some examples:
I could switch off and on logging
I could change if my graphing program should use floating or pixel coordinates
I could change if my calculations should be based upon some method or some other method
I could enable/disable certain aspects like maybe a extension api
I could enable/disable some basic integrated profiler (if I had one)
These are some made-up examples.
Now I want to know what the most common solution for this sort of thing is.
I could imagine this working with some sort of singelton class that gets instanced globally or in some other globally available object. Another thing that would be possible would be just constexpr or other variables floating around in a namespace, again globally.
However doing something like that, globally, feels like bad practise.
second part of the question
This might sound like I cant decide what I want, but I want a way to modify all these switches/flags or whatever they are actually called in a single location, without tying any of my classes to it. I don't know if this is possible however.
Why don't I want to do that? Well I like to make my classes somewhat reusable and I don't like tying classes together, unless its required by the DRY principle and or inheritance. I basically couldn't get rid of the flags without modifying the possible hundreds of classes that used them.
What I have tried in the past
Having it all as compiler defines. This worked reasonably well, however I didnt like that I couldnt make it so if the flag file was gone there were some sort of default settings that would make the classes themselves still operational and changeable (through these default values)
Having it as a class and instancing it globally (system class). Worked ok, however I didnt like instancing anything globally. Also same problem as above
Instancing the system class locally and passing it to the classes on construction. This was kinda cool, since I could make multiple instruction sets. However at the same time that kinda ruined the point since it would lead to things that needed to have one flag set the same to have them set differently and therefore failing to properly work together. Also passing it on every construction was a pain.
A static class. This one worked ok for the longest time, however there is still the problem when there are missing dependencies.
Summary
Basically I am looking for a way to have a single "place" where I can mess with some values (bools, floats etc.) and that will change the behaviour of all classes using them for whatever, where said values either overwrite default values or get replaced by default values if said "place" isnt defined.
If a Singleton class does not work for you , maybe using a DI container may fit in your third approach? It may help with the construction and make the code more testable.
There are some DI frameworks for c++, like https://github.com/google/fruit/wiki or https://github.com/boost-experimental/di which you can use.
If you decide to use switch/flags, pay attention for "cyclometric complexity".
If you do not change the skeleton of your algorithm but only his behaviour according to the objets in parameter, have a look at "template design pattern". This method allow you to define a generic algorithm and specify particular step for a particular situation.
Here's an approach I found useful; I don't know if it's what you're looking for, but maybe it will give you some ideas.
First, I created a BehaviorFlags.h file that declares the following function:
// Returns true iff the given feature/behavior flag was specified for us to use
bool IsBehaviorFlagEnabled(const char * flagName);
The idea being that any code in any of your classes could call this function to find out if a particular behavior should be enabled or not. For example, you might put this code at the top of your ExtensionsAPI.cpp file:
#include "BehaviorFlags.h"
static const enableExtensionAPI = IsBehaviorFlagEnabled("enable_extensions_api");
[...]
void DoTheExtensionsAPIStuff()
{
if (enableExtensionsAPI == false) return;
[... otherwise do the extensions API stuff ...]
}
Note that the IsBehaviorFlagEnabled() call is only executed once at program startup, for best run-time efficiency; but you also have the option of calling IsBehaviorFlagEnabled() on every call to DoTheExtensionsAPIStuff(), if run-time efficiency is less important that being able to change your program's behavior without having to restart your program.
As far as how the IsBehaviorFlagEnabled() function itself is implemented, it looks something like this (simplified version for demonstration purposes):
bool IsBehaviorFlagEnabled(const char * fileName)
{
// Note: a real implementation would find the user's home directory
// using the proper API and not just rely on ~ to expand to the home-dir path
std::string filePath = "~/MyProgram_Settings/";
filePath += fileName;
FILE * fpIn = fopen(filePath.c_str(), "r"); // i.e. does the file exist?
bool ret = (fpIn != NULL);
fclose(fpIn);
return ret;
}
The idea being that if you want to change your program's behavior, you can do so by creating a file (or folder) in the ~/MyProgram_Settings directory with the appropriate name. E.g. if you want to enable your Extensions API, you could just do a
touch ~/MyProgram_Settings/enable_extensions_api
... and then re-start your program, and now IsBehaviorFlagEnabled("enable_extensions_api") returns true and so your Extensions API is enabled.
The benefits I see of doing it this way (as opposed to parsing a .ini file at startup or something like that) are:
There's no need to modify any "central header file" or "registry file" every time you add a new behavior-flag.
You don't have to put a ParseINIFile() function at the top of main() in order for your flags-functionality to work correctly.
You don't have to use a text editor or memorize a .ini syntax to change the program's behavior
In a pinch (e.g. no shell access) you can create/remove settings simply using the "New Folder" and "Delete" functionality of the desktop's window manager.
The settings are persistent across runs of the program (i.e. no need to specify the same command line arguments every time)
The settings are persistent across reboots of the computer
The flags can be easily modified by a script (via e.g. touch ~/MyProgram_Settings/blah or rm -f ~/MyProgram_Settings/blah) -- much easier than getting a shell script to correctly modify a .ini file
If you have code in multiple different .cpp files that needs to be controlled by the same flag-file, you can just call IsBehaviorFlagEnabled("that_file") from each of them; no need to have every call site refer to the same global boolean variable if you don't want them to.
Extra credit: If you're using a bug-tracker and therefore have bug/feature ticket numbers assigned to various issues, you can creep the elegance a little bit further by also adding a class like this one:
/** This class encapsulates a feature that can be selectively disabled/enabled by putting an
* "enable_behavior_xxxx" or "disable_behavior_xxxx" file into the ~/MyProgram_Settings folder.
*/
class ConditionalBehavior
{
public:
/** Constructor.
* #param bugNumber Bug-Tracker ID number associated with this bug/feature.
* #param defaultState If true, this beheavior will be enabled by default (i.e. if no corresponding
* file exists in ~/MyProgram_Settings). If false, it will be disabled by default.
* #param switchAtVersion If specified, this feature's default-enabled state will be inverted if
* GetMyProgramVersion() returns any version number greater than this.
*/
ConditionalBehavior(int bugNumber, bool defaultState, int switchAtVersion = -1)
{
if ((switchAtVersion >= 0)&&(GetMyProgramVersion() >= switchAtVersion)) _enabled = !_enabled;
std::string fn = defaultState ? "disable" : "enable";
fn += "_behavior_";
fn += to_string(bugNumber);
if ((IsBehaviorFlagEnabled(fn))
||(IsBehaviorFlagEnabled("enable_everything")))
{
_enabled = !_enabled;
printf("Note: %s Behavior #%i\n", _enabled?"Enabling":"Disabling", bugNumber);
}
}
/** Returns true iff this feature should be enabled. */
bool IsEnabled() const {return _enabled;}
private:
bool _enabled;
};
Then, in your ExtensionsAPI.cpp file, you might have something like this:
// Extensions API feature is tracker #4321; disabled by default for now
// but you can try it out via "touch ~/MyProgram_Settings/enable_feature_4321"
static const ConditionalBehavior _feature4321(4321, false);
// Also tracker #4222 is now enabled-by-default, but you can disable
// it manually via "touch ~/MyProgram_Settings/disable_feature_4222"
static const ConditionalBehavior _feature4222(4222, true);
[...]
void DoTheExtensionsAPIStuff()
{
if (_feature4321.IsEnabled() == false) return;
[... otherwise do the extensions API stuff ...]
}
... or if you know that you are planning to make your Extensions API enabled-by-default starting with version 4500 of your program, you can set it so that Extensions API will be enabled-by-default only if GetMyProgramVersion() returns 4500 or greater:
static ConditionalBehavior _feature4321(4321, false, 4500);
[...]
... also, if you wanted to get more elaborate, the API could be extended so that IsBehaviorFlagEnabled() can optionally return a string to the caller containing the contents of the file it found (if any), so that you could do shell commands like:
echo "opengl" > ~/MyProgram_Settings/graphics_renderer
... to tell your program to use OpenGL for its 3D graphics, or etc:
// In Renderer.cpp
std::string rendererType;
if (IsDebugFlagEnabled("graphics_renderer", &rendererType))
{
printf("The user wants me to use [%s] for rendering 3D graphics!\n", rendererType.c_str());
}
else printf("The user didn't specify what renderer to use.\n");

how to Hide the output messages from libfreenect2?

For a project, I am working with libfreenect2 and because I am reading some commands from console I want to hide the messages* that libfreenect2 outputs when the kinect is acquiring data. How could I do that?
*I mean all the messages about skipping data and so on
Google is your friend: https://openkinect.github.io/libfreenect2/group__logging.html
void libfreenect2::setGlobalLogger ( Logger * logger )
Set the logger for all log output in this library.
Parameters
logger Pointer to your logger, or NULL to disable logging. The memory will be freed automatically. You should not free the pointer.
So just use libfreenect2::setGlobalLogger(NULL);
Another way, that also works if you don't have direct access to the API (e.g. when using the OpenNI2 driver), is to set the LIBFREENECT2_LOGGER_LEVEL environment variable.
Possible values are:
None
Error
Warning
Info
Debug