Function definition in Inheritance - c++

When publicly inheriting a class, why can't I define a function of the base class using name of derived class if the public members of base class are inherited by that derived class?
Example:
#include <iostream>
using namespace std;
class one{
int a;
public:
void get(int);
void show();
};
class two:public one
{
int b;
public:
void getb(int);
void dis();
};
void one::get(int x) //if i write void two::get(int x) here it gives error
{
a = x;
}
void one::show() //same goes for this function why can't i define it as `void two::show()`?
{
cout << a << endl;
}
int main()
{
two ob;
int x;
cin >> x;
ob.get( x );
ob.show();
}
So if if all public member functions of class one are inherited by class two, why can't I define functions of class one using name of class two ?

Why ?
In the class definition, you say that two inherits from one. So it will have the following public members:
void get(int); publicly inherited from one
void show(); publicly inherited from one
void getb(int); own member
void dis(); own member
You can define only the own member functions of two, here two::getb(int) and two::dis(). But you can't define two::show() because it was defined in one and you did not tell the compiler that you wanted it.
Is there a way to do have a different version of the inherited functions ?
If you'd define the class as follows:
class two:public one
{
int b;
public:
void getb(int);
void dis();
void show(); //yes you can, but you'll have to define it
};
then you would have the following public members:
void get(int); publicly inherited from one
void one::show(); publicly inherited from one but hidden
void show(); own member
void getb(int); own member
void dis(); own member
you could define the following:
void two::show() //no problem !!
{
cout << "two's version" << endl;
}
You could even choose in main() which one you want to call:
ob.get( x ); // one::get(), because there's no two::get()
ob.show(); // by default two::show(), because ob is a two
ob.one::show(); // yes you can !!
Here an online demo
Want polymorphism ?
In all the code above, the function invoked depend on the type used to access the object:
one *pob = &ob; // a one pointer can point to a two object
pob->show(); // but this will invoke one::show()
If you'd prefer the right function be called depending on the real type of the object, and not the type assumed from the type declaration, you'd need to use virtual functions and override them:
class one{
... (the rest as before) ...
virtual void show();
};
class two:public one
{
... (the rest as before) ...
void show() override;
};
Then, whenever you invoke show(), the correct function will be called (online example), unless you specifically inkove a precisely specified version by using a fully qualified identifier.

Related

Overloaded function in derived class with Polymorphism (C++)

Considering this code example:
#include <iostream>
using namespace std;
class Base
{
private:
int number;
public:
Base():number(10){}
~Base(){}
virtual void print()
{
cout << "Base class" << endl;
}
};
class Derived : public Base
{
public:
Derived():Base(){}
~Derived(){}
void print(int value)
{
//printing number in Base class and paramter value
cout << "Derived with value " << value << " number is" << number << endl;
}
};
I wanted to use polymorphism and call theoverloaded print() function.
So use these classes as follows:
void somewhere_else()
{
Base* polymorphism = new Derived();
polymorphism->print(5); //Error indicating there are too many parameter
//thinking that I am trying to use print in Base class
((Derived*)polymorphism)->print(5)
//This works as I am casting the variable as Derived variable
}
Unfortunately, I can't call print() from the base class pointer (compilation error, see comment above). I can only call it with a cast.
Is there a better way to keep the polymorphism and still calls overloaded function based on derived class?
In your code you have two different member functions, that have different signatures:
a virtual print() that takes no argument. It is declared and defined in Base, and inherited in Derived
a non-virtual print() that takes one int argument. It is declared and defined ONLY for Derived
So the base object doesn't know a print function with an int parameter. This is why you need to cast (which is by the way a symptom that should ring alarm bells if you need it).
How to improve ?
First, if you want to override a virtual function in a derived class, use the keyword override:
class Derived : public Base
{
public:
Derived():Base(){}
~Derived(){}
void print(int value) override
{
...
}
};
This will ensure an error message in case of subtle mismatch in the function signature:
prog.cpp:23:10: error: ‘void Derived::print(int)’ marked ‘override’, but does not override
void print(int value) override
^~~~~
Then make sure that the signatures are aligned in the base class and derived class (i.e. either both take an int argument or non of them.
Note that you can't access a private member of the base class in a derived class. You have to define number as protected to print it in Derived.
Finally, if you have a base class having a virtual member, it is a sound practice to systematically make the destructor virtual. This will avoid subtle bugs for more complex classes:
class Base
{
protected:
int number;
public:
Base():number(10){}
virtual ~Base(){}
virtual void print(int value)
{
...
}
};
Here the online demo
Now that the things are working, here a short article making the difference between overload and override.

Hiding of all overloaded methods in base class

recently i came to know this - if a derived class redefines base class member method(s) then all the base class methods with same name become hidden in derived class.
#include<iostream>
using namespace std;
class Base
{
public:
int fun()
{
cout<<"Base::fun() called";
}
int fun(int i)
{
cout<<"Base::fun(int i) called";
}
};
class Derived: public Base
{
public:
int fun()
{
cout<<"Derived::fun() called";
}
};
int main()
{
Derived d;
d.fun(5); // Compiler Error
return 0;
}
Error :
In function 'int main()':
Line 30: error: no matching function for call to 'Derived::fun(int)'
compilation terminated due to -Wfatal-errors.
but just wanna know the reason behind it? why is it not calling fun(int i) method of Base Class since Derived class is derived from Base
The fundamental reason is to make code more robust.
struct Base {
};
struct Derived : Base {
void f(long);
void g() { f(3); } // calls Derived::f
}
Now suppose Base is defined in a library, and you get an update to that library and the update changes the definition of Base:
struct Base {
void f(int);
};
Now suppose that searches for overloaded functions didn't stop when a name was found. In that case, Derived::g would call Base::f instead of Derived::f, and your derived class would quietly do something completely different from what it did before, and different from what it was designed and documented to do.
You've already discovered that derived-class overloads will shadow (prevent the visibility of) base-class methods by the same name but different parameters. Let's just claim this was done for some historical or perceived safety reason, and look at a fix:
class Derived: public Base
{
public:
using Base::fun; // expose the base-class method
int fun()
{
cout<<"Derived::fun() called";
}
};

overloading in inheritance c++

so I got this problem while trying to overload in c++:
I have those classes:
class Data
{
public:
void virtual f(){cout<<"In data!"<<endl;}
};
class A: public Data
{
public:
void f(int x){cout<<"Class A int is: "<<x<<endl;}
};
then I do:
Data *D=new A();
D->f(4);
I expect the Data's f() function to do to class A's f() function since I did it virtual, but it won't.
Any ways to make it work?
That's not the same function, the one in the derived class takes an int parameter.
That shouldn't even compile, because Data doesn't have a method called f(int).
For polymorphism to work, you need the same signature:
class Data
{
public:
void virtual f(int){cout<<"In data!"<<endl;}
// |
// dummy parameter
};
class A: public Data
{
public:
void f(int x){cout<<"Class A int is: "<<x<<endl;}
};
You need to have the same parameters when overloading. Your compiler sees doStuff(int a), doStuff(String a) and doStuff() as different functions. Be sure they all have the same parameters when you're overloading.
Overloading does not work across class boundaries.
Here is something you can do to be able to call both using an object of class A -
class Data
{
public:
void virtual f(){cout<<"In data!"<<endl;}
// |
// dummy parameter
};
class A: public Data
{
using Data::f;
public:
void f(int x){cout<<"Class A int is: "<<x<<endl;}
};

why I changed parent virtual function arguments in child hides the father function c++?

I made a class with virtual function f() then in the derived class I rewrote it like the following f(int) why can't I access the base class function throw the child instance ?
class B{
public:
B(){cout<<"B const, ";}
virtual void vf2(){cout<<"b.Vf2, ";}
};
class C:public B{
public:
C(){cout<<"C const, ";}
void vf2(int){cout<<"c.Vf2, ";}
};
int main()
{
C c;
c.vf2();//error should be vf2(2)
}
You have to do using B::vf2 so that the function is considered during name lookup. Otherwise as soon as the compiler finds a function name that matches while traversing the inheritance tree from child -> parent -> grand parent etc etc., the traversal stops.
class C:public B{
public:
using B::vf2;
C(){cout<<"C const, ";}
void vf2(int){cout<<"c.Vf2, ";}
};
You are encountering name hiding. Here is an explanation of why it happens ?
In C++, a derived class hides any base class member of the same name. You can still access the base class member by explicitly qualifying it though:
int main()
{
C c;
c.B::vf2();
}
You were caught by name hiding.
Name hiding creeps up everywhere in C++:
int a = 0
int main(int argc, char* argv[]) {
std::string a;
for (int i = 0; i != argc; ++i) {
a += argc[i]; // okay, refers to std::string a; not int a;
a += " ";
}
}
And it also appears with Base and Derived classes.
The idea behind name hiding is robustness in the face of changes. If this didn't exist, in this particular case, then consider what would happen to:
class Base {
};
class Derived: public Base {
public:
void foo(int i) {
std::cout << i << "\n";
}
};
int main() {
Derived d;
d.foo(1.0);
}
If I were to add a foo overload to Base that were a better match (ie, taking a double directly):
void Base::foo(double i) {
sleep(i);
}
Now, instead of printing 1, this program would sleep for 1 second!
This would be crazy right ? It would mean that anytime you wish to extend a base class, you need to look at all the derived classes and make sure you don't accidentally steal some method calls from them!!
To be able to extend a base class without ruining the derived classes, name hiding comes into play.
The using directive allows you to import the methods you truly need in your derived class and the rest are safely ignored. This is a white-listing approach.
When you overload a member function in a base class with a version in the derived class the base class function is hidden. That is, you need to either explicitly qualify calls to the base class function or you need a using declaration to make the base class function visible via objects of the derived class:
struct base {
void foo();
void bar();
};
struct derived: base {
void foo(int);
using base::foo;
void bar(int);
};
int main() {
derived().foo(); // OK: using declaration was used
derived().bar(); // ERROR: the base class version is hidden
derived().base::bar(); // OK: ... but can be accessed if explicitly requested
}
The reason this is done is that it was considered confusing and/or dangerous when a member function is declared by a derived function but a potenially better match is selected from a base class (obviously, this only really applies to member functions with the same number of arguments). There is also a pitfall when the base class used to not have a certain member function: you don't want you program to suddenly call a different member function just because a member function is being added to the base class.
The main annoyance with hiding member functions from bases is when there is a set of public virtual functions and you only want to override one of them in a derived class. Although just adding the override doesn't change the interface using a pointer or a reference to the base class, the derived class can possibly not used in a natural way. The conventional work-around for this to have public, non-virtual overload which dispatch to protected virtual functions. The virtual member function in the various facets in the C++ standard library are an example of this technique.

Question on Virtual and default arguments

I wanted to have confirmation about the following things:
Virtual Mechanism:
I f I have a base class A and it has a Virtual method, then in the derived class generally, we do not include the virtual statement in the function declaration. But what does a virtual mean when included at the dervied class definition.
class A
{
public:
virtual void something();
}
class B:public A
{
public:
virtual void something();
}
Does, that mean that we want to override the method somethign in the classes that derive from the class B?
Also, another question is,
I have a class A, which is derived by three different classes.Now, there is a virtual method anything(), in the base class A.
Now, if I were to add a new default argument to that method in the base class, A::anything(), I need to add it in all the 3 classes too right.
My pick for the answers:
If a method which is virtual in the base class is redefined in the derived class as virtual then we might mean that it shall be overridden in the corresponding derived classes which uses this class as base class.
Yes.If not overriding does not have any meaning.
Pls let me know if what I feel(above 2) are correct.
Thanks,
Pavan Moanr.
The virtual keyword can be omitted on the override in the derived classes. If the overridden function in the base class is virtual, the override is assumed to be virtual as well.
This is well covered in this question: In C++, is a function automatically virtual if it overrides a virtual function?
Your second question is about default values and virtual functions. Basically, each override can have a different default value. However, usually this will not do what you expect it to do, so my advice is: do not mix default values and virtual functions.
Whether the base class function is defaulted or not, is totally independent from whether the derived class function is defaulted.
The basic idea is that the static type will be used to find the default value, if any is defined. For virtual functions, the dynamic type will be used to find the called function.
So when dynamic and static type don't match, unexpected results will follow.
e.g.
#include <iostream>
class A
{
public:
virtual void foo(int n = 1) { std::cout << "A::foo(" << n << ")" << std::endl; }
};
class B : public A
{
public:
virtual void foo(int n = 2) { std::cout << "B::foo(" << n << ")" << std::endl; }
};
int main()
{
A a;
B b;
a.foo(); // prints "A::foo(1)";
b.foo(); // prints "B::foo(2)";
A& ref = b;
ref.foo(); // prints "B::foo(1)";
}
If all your overrides share the same default, another solution is to define an additional function in the base class that does nothing but call the virtual function with the default argument. That is:
class A
{
public:
void defaultFoo() { foo(1); }
virtual void foo(int n) { .... }
};
If your overrides have different defaults, you have two options:
make the defaultFoo() virtual as well, which might result in unexpected results if a derived class overload one but not the other.
do not use defaults, but explicitly state the used value in each call.
I prefer the latter.
It doesn't matter whether you write virtual in derived class or not, it will always be virtual because of the base class, however it is still better to include virtual to explicitly state that it is virtual and then if you accidentally remove that keyword from base class it will give you compiler error (you cannot redefine non-virtual function with a virtual one). EDIT >> sorry, I was wrong. You can redefine non-virtual function with a virtual one however once it's virtual all derived classes' functions with same signature will be virtual too even if you don't write virtual keyword. <<
If you don't redefine virtual function then the definition from base class will be used (as if it were copied verbatim).
If you wish to specify that a virtual function should be redefined in dervied class you should not provide any implementation i.e. virtual void something() = 0;
In this case your class will be an abstract base class (ABC) and no objects can be instantiated from it. If derived class doesn't provide it's own implementetian it will also be an ABC.
I'm not sure what do you mean about default arguments but function signatures should match so all parameters and return values should be the same (it's best to not mix overloading/default arguments with inheritance because you can get very surprising results for example:
class A
{
public:
void f(int x);
};
class B:public A
{
public:
void f(float x);
};
int main() {
B b;
b.f(42); //this will call B::f(float) even though 42 is int
}
Here is a little experiment to test out what you want to know:
class A {
public:
virtual void func( const char* arg = "A's default arg" ) {
cout << "A::func( " << arg << " )" << endl;
}
};
class B : public A {
public:
void func( const char* arg = "B's default arg" ) {
cout << "B::func( " << arg << " )" << endl;
}
};
class C : public B {
public:
void func( const char* arg ) {
cout << "C::func( " << arg << " )" << endl;
}
};
int main(int argc, char* argv[])
{
B* b = new B();
A* b2 = b;
A* c = new C();
b->func();
b2->func();
c->func();
return 0;
}
result:
B::func( B's default arg )
B::func( A's default arg )
C::func( A's default arg )
conclusion:
1- virtual keyword before A's func declaration makes that function virtual in B and C too.
2- The default argument used is the one declared in the class of pointer/reference you are using to access the object.
As someone pointed out, a function in a derived class with the same name and type signature as a virtual function in the base class is automatically always a virtual function.
But your second question about default arguments is interesting. Here is a tool for thinking through the problem...
class A {
public:
virtual void do_stuff_with_defaults(int a = 5, char foo = 'c');
};
is nearly equivalent to this:
class A {
public:
virtual void do_stuff_with_defaults(int a, char foo);
void do_stuff_with_defaults() { // Note lack of virtual keyword
do_stuff_with_defaults(5, 'c'); // Calls virtual function
}
void do_stuff_with_defaults(int a) { // Note lack of virtual keyword
do_stuff_with_defaults(a, 'c'); // Calls virtual functions
}
};
Therefore you are basically having virtual and non-virtual functions with the same name but different type signatures declared in the class if you give your virtual function default arguments.
On way it isn't equivalent has to do with being able to import names from the base class with the using directive. If you declare the default arguments as separate functions, it's possible to import those functions using the using directive. If you simply declare default arguments, it isn't.