Infix to Postfix Stack C++ Output - c++

#include<iostream>
#include<cstring>
#include<string>
#include "linkedStack.h"
#include <fstream>
#include <iomanip>
#include "ArgumentManager.h"
using namespace std;
int getPrecedence(char ch) //this function will decide and return precedence for the operators and operand
{
switch (ch)
{
case '/':return 2;
break;
case '*': return 2;
break;
case '+': return 1;
break;
case '-': return 1;
break;
default: return 0;
}
}
string infixToPostfix(const string& expression) // this function will convert the infix expression to postfix by passing the infix expression string
{
int size = expression.size(); //size of infix string
char infix[expression.size()]; //converting string into array of chars
strncpy(infix, expression.c_str(), sizeof(infix));
infix[sizeof(infix)] = '\0'; //adding 0 for array ending
char postfix[strlen(infix)]; // create a char array with the size of the infix string length
linkedStack s;
int precedence;
int i = 0;
int k = 0;
char ch;
//iterate the infix expression
while (i < size)
{
ch = infix[i];
//push opening parenthesis to stack
if (ch == '(')
{
s.push(ch);
i++;
continue;
}
if (ch == ')')
{
while (!s.empty() && s.top() != '(') // if closing parenthesis is found pop of all the elements and append it to the postfix expression till we encounter an opening parenthesis
{
postfix[k++] = s.top();
s.pop();
}
if (!s.empty())
{
s.pop(); // pop the opening parenthesis
}
i++;
continue;
}
precedence = getPrecedence(ch);
if (precedence == 0)
{
postfix[k++] = ch; // if an operand is found add it to the postfix expression
}
else
{
if (s.empty())
{
s.push(ch); //push operator onto stack if the stack is empty
}
else
{
while (!s.empty() && s.top() != '(' && precedence <= getPrecedence(s.top())) // pop of all the operators from the stack to the postfix expression till we see an operator with a lower precedence than the current operator
{
postfix[k++] = s.top();
s.pop();
}
s.push(ch); // push the current operator to stack
}
}
i++;
}
while (!s.empty()) // pop all of the the remaining operators in the stack and add it to postfix
{
postfix[k++] = s.top();
s.pop();
}
postfix[k] = '\0'; // add null character to end of character array for c string
string postfixStr = postfix; //covert the final postfix char array to a string
return postfixStr; // returns the final postfix expression as a string
}
int main(int argc, char* argv[])
{
ArgumentManager am(argc, argv);
string infilename = am.get("A");
string outfilename = am.get("C");
string expression1;
ifstream infile;
infile.open(infilename);
if (infile.good())
{
getline(infile, expression1); //gets the infix string from file
}
infile.close(); //close the infile stream
string expression2 = "12 + 3 / 4";
string postfix1 = infixToPostfix(expression1);
string postfix2 = infixToPostfix(expression2);
cout << expression1 << endl;
cout << postfix1 << endl;
cout << expression2 << endl;
cout << postfix2 << endl;
return 0;
}
Hi, I'm having trouble with my output with my infix to post fix converter using stack. For instance in the case of "12 + 3 / 4" the output should be "12 3 4 / +" with the characters evenly spaced by one white space. However, it is adding unnecessary white spaces or none at all. For the test case above you can see the problem I'm running into in the attached pic or below. The first line is the infix the second is the post fix output. There are two cases here.Output Example
25 + ( 4 * 5 ) - 12
25 4 5 * + 12-
12 + 3 / 4
12 3 4/+

1) This code :
int size = expression.size(); //size of infix string
char infix[expression.size()]; //converting string into array of chars
strncpy(infix, expression.c_str(), sizeof(infix));
infix[sizeof(infix)] = '\0'; //adding 0 for array ending
could be replaced by :
char * infix = new char [expression.length()+1];
std::strcpy (infix, expression.c_str());
2) This code pop values without repush them into s after.
while (!s.empty() && s.top() != '(' && precedence <= getPrecedence(s.top())) // pop of all the operators from the stack to the postfix expression till we see an operator with a lower precedence than the current operator
{
postfix[k++] = s.top();
s.pop();
}

Thanks for all the advice. In the end I did a few things to achieve the desired output. First, I increased the postfix array. Next, in two certain spots in the loop, whenever it appended to the postfix array I would also add a space.
Here:
while (!s.empty() && s.top() != '(' && precedence <= getPrecedence(s.top())) // pop of all the operators from the stack to the postfix expression till we see an operator with a lower precedence than the current operator
{
postfix[k++] = s.top();
postfix[k++] = ' ';
s.pop();
}
And here:
while (!s.empty()) // pop all of the the remaining operators in the stack and add it to postfix
{
postfix[k++] = s.top();
postfix[k++] = ' ';
s.pop();
}
Lastly, I used a separate function to trim any extra spaces in the final string.
A little messy but gets the job done.

Related

Stack calculator c++ [duplicate]

My lecturer gave me an assignment to create a program to convert and infix expression to postfix using Stacks. I've made the stack classes and some functions to read the infix expression.
But this one function, called convertToPostfix(char * const inFix, char * const postFix) which is responsible to convert the inFix expression in the array inFix to the post fix expression in the array postFix using stacks, is not doing what it suppose to do. Can you guys help me out and tell me what I'm doing wrong?
The following is code where the functions to convert from inFix to postFix is and convertToPostfix(char * const inFix, char * const postFix) is what I need help fixing:
void ArithmeticExpression::inputAndConvertToPostfix()
{
char inputChar; //declaring inputChar
int i = 0; //inizalize i to 0
cout << "Enter the Arithmetic Expression(No Spaces): ";
while( ( inputChar = static_cast<char>( cin.get() ) ) != '\n' )
{
if (i >= MAXSIZE) break; //exits program if i is greater than or equal to 100
if(isdigit(inputChar) || isOperator(inputChar))
{
inFix[i] = inputChar; //copies each char to inFix array
cout << inFix[i] << endl;
}
else
cout << "You entered an invalid Arithmetic Expression\n\n" ;
}
// increment i;
i++;
convertToPostfix(inFix, postFix);
}
bool ArithmeticExpression::isOperator(char currentChar)
{
if(currentChar == '+')
return true;
else if(currentChar == '-')
return true;
else if(currentChar == '*')
return true;
else if(currentChar == '/')
return true;
else if(currentChar == '^')
return true;
else if(currentChar == '%')
return true;
else
return false;
}
bool ArithmeticExpression::precedence(char operator1, char operator2)
{
if ( operator1 == '^' )
return true;
else if ( operator2 == '^' )
return false;
else if ( operator1 == '*' || operator1 == '/' )
return true;
else if ( operator1 == '+' || operator1 == '-' )
if ( operator2 == '*' || operator2 == '/' )
return false;
else
return true;
return false;
}
void ArithmeticExpression::convertToPostfix(char * const inFix, char * const postFix)
{
Stack2<char> stack;
const char lp = '(';
stack.push(lp); //Push a left parenthesis ‘(‘ onto the stack.
strcat(inFix,")");//Appends a right parenthesis ‘)’ to the end of infix.
// int i = 0;
int j = 0;
if(!stack.isEmpty())
{
for(int i = 0;i < 100;){
if(isdigit(inFix[i]))
{
postFix[j] = inFix[i];
cout << "This is Post Fix for the first If: " << postFix[j] << endl;
i++;
j++;
}
if(inFix[i] == '(')
{
stack.push(inFix[i]);
cout << "The InFix was a (" << endl;
i++;
//j++;
}
if(isOperator(inFix[i]))
{
char operator1 = inFix[i];
cout << "CUrrent inFix is a operator" << endl;
if(isOperator(stack.getTopPtr()->getData()))
{
cout << "The stack top ptr is a operator1" << endl;
char operator2 = stack.getTopPtr()->getData();
if(precedence(operator1,operator2))
{
//if(isOperator(stack.getTopPtr()->getData())){
cout << "The stack top ptr is a operato2" << endl;
postFix[j] = stack.pop();
cout << "this is post fix " << postFix[j] << endl;
i++;
j++;
// }
}
}
else
stack.push(inFix[i]);
// cout << "Top Ptr is a: "<< stack.getTopPtr()->getData() << endl;
}
for(int r = 0;r != '\0';r++)
cout << postFix[r] << " ";
if(inFix[i] == ')')
{
while(stack.stackTop()!= '(')
{
postFix[j] = stack.pop();
i++;
j++;
}
stack.pop();
}
}
}
}
Note the function convertToPostfix was made using this algorithm:
Push a left parenthesis ‘(‘ onto the stack.
Append a right parenthesis ‘)’ to the end of infix.
While the stack is not empty, read infix from left to right and do the following:
If the current character in infix is a digit, copy it to the next element of postfix.
If the current character in infix is a left parenthesis, push it onto the stack.
If the current character in infix is an operator,
Pop operator(s) (if there are any) at the top of the stack while they have equal or higher precedence than the current operator, and insert the popped operators in postfix.
Push the current character in infix onto the stack.
If the current character in infix is a right parenthesis
Pop operators from the top of the stack and insert them in postfix until a left parenthesis is at the top of the stack.
Pop (and discard) the left parenthesis from the stack.
This is basically a comment to the answer from Yuushi.
The outer while(!stack.empty()) loop is wrong. just remove it. (keep the loop body ofc). At the end of the function, check that the stack is empty, else the expression had syntax errors.
As Yuushi already said the precedence function looks bogus. First you should give the parameters better names: one is the operator to the left, and the other to the right. (Right now you call it precedence(rightOp, leftOp)). Then you should document what the result means - right now you return true if a rOp b lOp c == (a rOp b) lOp c (yes, the operator order doesn't match what you call - "+" and "-" are not the same in both orders for example).
If you find a new operator you need to loop over the old operators on the stack, for example after reading a - b * c your output is a b c and the stack is [- *]. now you read a +, and you need to pop both operators, resulting in a b c * -. I.e., the input a - b * c + d should result in a b c * - d +
Update: appended complete solution (based on Yuushi's answer):
bool isOperator(char currentChar)
{
switch (currentChar) {
case '+':
case '-':
case '*':
case '/':
case '^':
case '%':
return true;
default:
return false;
}
}
// returns whether a `lOp` b `rOp` c == (a `lOp` b) `rOp` c
bool precedence(char leftOperator, char rightOperator)
{
if ( leftOperator == '^' ) {
return true;
} else if ( rightOperator == '^' ) {
return false;
} else if ( leftOperator == '*' || leftOperator == '/' || leftOperator == '%' ) {
return true;
} else if ( rightOperator == '*' || rightOperator == '/' || rightOperator == '%' ) {
return false;
}
return true;
}
#include <stdexcept>
#include <cctype>
#include <sstream>
#include <stack>
std::string convertToPostfix(const std::string& infix)
{
std::stringstream postfix; // Our return string
std::stack<char> stack;
stack.push('('); // Push a left parenthesis ‘(‘ onto the stack.
for(std::size_t i = 0, l = infix.size(); i < l; ++i) {
const char current = infix[i];
if (isspace(current)) {
// ignore
}
// If it's a digit or '.' or a letter ("variables"), add it to the output
else if(isalnum(current) || '.' == current) {
postfix << current;
}
else if('(' == current) {
stack.push(current);
}
else if(isOperator(current)) {
char rightOperator = current;
while(!stack.empty() && isOperator(stack.top()) && precedence(stack.top(), rightOperator)) {
postfix << ' ' << stack.top();
stack.pop();
}
postfix << ' ';
stack.push(rightOperator);
}
// We've hit a right parens
else if(')' == current) {
// While top of stack is not a left parens
while(!stack.empty() && '(' != stack.top()) {
postfix << ' ' << stack.top();
stack.pop();
}
if (stack.empty()) {
throw std::runtime_error("missing left paren");
}
// Discard the left paren
stack.pop();
postfix << ' ';
} else {
throw std::runtime_error("invalid input character");
}
}
// Started with a left paren, now close it:
// While top of stack is not a left paren
while(!stack.empty() && '(' != stack.top()) {
postfix << ' ' << stack.top();
stack.pop();
}
if (stack.empty()) {
throw std::runtime_error("missing left paren");
}
// Discard the left paren
stack.pop();
// all open parens should be closed now -> empty stack
if (!stack.empty()) {
throw std::runtime_error("missing right paren");
}
return postfix.str();
}
#include <iostream>
#include <string>
int main()
{
for (;;) {
if (!std::cout.good()) break;
std::cout << "Enter the Arithmetic Expression: ";
std::string infix;
std::getline(std::cin, infix);
if (infix.empty()) break;
std::cout << "Postfix: '" << convertToPostfix(infix) << "'\n";
}
return 0;
}
So there are a number of problems with your code. I'll post what (should be) a corrected solution, which has copious comments to explain what's happening and where you've made mistakes. A few things up front:
I'll use std::string instead of char * because it makes things much cleaner, and honestly, you should be using it in C++ unless you have a very good reason not to (such as interoperability with a C library). This version also returns a string instead of taking a char * as a parameter.
I'm using the stack from the standard library, <stack>, which is slightly different to your home-rolled one. top() shows you the next element without removing it from the stack, and pop() returns void, but removes the top element from the stack.
It's a free function, not part of a class, but that should be easy to modify - it's simply easier for me to test this way.
I'm not convinced your operator precedence tables are correct, however, I'll let you double check that.
#include <stack>
#include <cctype>
#include <iostream>
std::string convertToPostfix(std::string& infix)
{
std::string postfix; //Our return string
std::stack<char> stack;
stack.push('('); //Push a left parenthesis ‘(‘ onto the stack.
infix.push_back(')');
//We know we need to process every element in the string,
//so let's do that instead of having to worry about
//hardcoded numbers and i, j indecies
for(std::size_t i = 0; i < infix.size(); ++i) {
//If it's a digit, add it to the output
//Also, if it's a space, add it to the output
//this makes it look a bit nicer
if(isdigit(infix[i]) || isspace(infix[i])) {
postfix.push_back(infix[i]);
}
//Already iterating over i, so
//don't need to worry about i++
//Also, these options are all mutually exclusive,
//so they should be else if instead of if.
//(Mutually exclusive in that if something is a digit,
//it can't be a parens or an operator or anything else).
else if(infix[i] == '(') {
stack.push(infix[i]);
}
//This is farily similar to your code, but cleaned up.
//With strings we can simply push_back instead of having
//to worry about incrementing some counter.
else if(isOperator(infix[i]))
{
char operator1 = infix[i];
if(isOperator(stack.top())) {
while(!stack.empty() && precedence(operator1,stack.top())) {
postfix.push_back(stack.top());
stack.pop();
}
}
//This shouldn't be in an else - we always want to push the
//operator onto the stack
stack.push(operator1);
}
//We've hit a right parens - Why you had a for loop
//here originally I don't know
else if(infix[i] == ')') {
//While top of stack is not a right parens
while(stack.top() != '(') {
//Insert into postfix and pop the stack
postfix.push_back(stack.top());
stack.pop();
}
// Discard the left parens - you'd forgotten to do this
stack.pop();
}
}
//Remove any remaining operators from the stack
while(!stack.empty()) {
postfix.push_back(stack.top());
stack.pop();
}
}
Here's mine using C with multiple digits evaluation.
#include <stdio.h>
#include <math.h>
#define MAX 50
void push(char[],char);
void in_push(double[], double);
int pop();
int prec(char);
double eval(char[],int,double[]);
int top = 0;
void main() {
double eval_stack[MAX];
int op_count=0;
char stack[MAX], exps[MAX], symbols[MAX];
int i=0,j=0,len,check;
while((symbols[i]=getchar())!='\n') {
if(symbols[i]!=' ' || symbols[i]!='\t') {
if(symbols[i]=='+' || symbols[i]=='-' || symbols[i]=='/' || symbols[i]=='*' || symbols[i]=='^')
op_count++;
i++;
}
}
symbols[i]='#';
symbols[++i]='\0';
len = strlen(symbols);
stack[top] = '#';
for(i=0; i<=len; i++) {
if(symbols[i]>='a' && symbols[i]<='z') {
exps[j]=symbols[i];
j++;
}
switch(symbols[i]) {
case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9':
//if(symbols[i]>='a' && symbols[i]<='z') {
exps[j]=symbols[i];
j++;
break;
case '+': case '-': case '*': case '/': case '^':
exps[j++] = ' ';
while(prec(symbols[i]) <= prec(stack[top])) {
exps[j] = stack[top];
pop();
//printf("\n\t\t%d\t\t%d\n", top,j);
j++;
}
if(prec(symbols[i]) > prec(stack[top])) {
push(stack,symbols[i]);
}
break;
case '(':
push(stack,symbols[i]);
break;
case ')':
while(stack[top]!='(') {
exps[j] = stack[top];
pop();
j++;
}
pop();
break;
case '#':
exps[j++] = ' ';
while(stack[top]!='#') {
exps[j] = stack[top];
pop();
j++;
}
pop();
break;
}
}
exps[j]='\0';
printf("Postfix: %s", exps);
for(i=0; i<j; i++)
if(exps[i]=='a')
check = 1;
if(check!=1)
printf("\nSolution: %.1f", eval(exps,j,eval_stack));
}
double eval(char exps[],int exps_len,double eval_stack[]) {
int i; int len=exps_len,temp;
double in_temp[MAX],t;
int count,power,j,in_count;
count=power=j=t=in_count=0;
double result;
for(i=0; i<len; i++) {
switch(exps[i]) {
case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9':
in_temp[i] = exps[i]-'0';
j=i+1;
while(exps[j]>='0' && exps[j]<='9') {
in_temp[j] = exps[j]-'0';
j++; // 2
}
count = i; // 3
while(in_temp[count]<='0' && in_temp[count]<='9') {
power = (j-count)-1;
t = t + in_temp[count]*(pow(10,power));
power--;
count++;
}
in_push(eval_stack,t);
i=j-1;
t=0;
break;
case '+':
temp = pop();
pop();
result = eval_stack[temp] + eval_stack[temp+1];
in_push(eval_stack,result);
break;
case '-':
temp = pop();
pop();
result = eval_stack[temp] - eval_stack[temp+1];
in_push(eval_stack,result);
break;
case '*':
temp = pop();
pop();
result = eval_stack[temp] * eval_stack[temp+1];
in_push(eval_stack,result);
break;
case '/':
temp = pop();
pop();
result = eval_stack[temp] / eval_stack[temp+1];
in_push(eval_stack,result);
break;
case '^':
temp = pop();
pop();
result = pow(eval_stack[temp],eval_stack[temp+1]);
in_push(eval_stack,result);
break;
}
}
return eval_stack[top];
}
int prec(char a) {
if(a=='^')
return 3;
else if(a=='*' || a=='/' || a=='%')
return 2;
else if(a=='+' || a=='-')
return 1;
else if(a=='(')
return 0;
else
return -1;
}
void push(char stack[], char ele) {
if(top>=MAX) {
printf("\nStack Overflow");
exit(1);
}
stack[++top] = ele;
}
void in_push(double stack[], double ele) {
if(top>=MAX) {
printf("\nStack Overflow");
exit(1);
}
stack[++top] = ele;
}
int pop() {
if(top<0) {
printf("\nStack Underflow");
exit(1);
}
top = top - 1;
return top;
}
This is my implementation of converting infix to postfix expression
//Infix to Postfix conversion
#include <bits/stdc++.h>
using namespace std;
bool isoperator(char c) // function to check if the character is an operator
{
if(c=='+'||c=='-'||c=='*'||c=='/'||c=='^')
return true;
else
return false;
}
int precedence(char c) // function to given the precedence of the operators
{
if(c == '^')
return 3;
else if(c == '*' || c == '/')
return 2;
else if(c == '+' || c == '-')
return 1;
else
return -1;
}
void infixToPostfix(string s) // funtion to convert infix to postfix
{
stack<char>st;
string postfix;
for(int i=0;i<s.length();i++)
{
if((s[i]>='a'&&s[i]<='z')||(s[i]>='A'&&s[i]<='Z')) // if the given character is alphabet add it to the postfix string
postfix+=s[i];
else if(s[i]=='(') // if the given character is "(" add it to the postfix string
st.push('(');
else if(s[i]==')') // if we find a closing bracket we pop everything from stack till opening bracket and add it to postfix string
{
while(st.top()=='(' && !st.empty())
{
postfix+=st.top();
st.pop();
}
if(st.top()=='(') // popping the opening bracket
st.pop();
}
else if(isoperator(s[i])) // if we find a operator
{
if(st.empty()) // if stack is empty add it to the stack
st.push(s[i]);
else
{
if(precedence(s[i])>precedence(st.top())) // if operator precedence is grater push it in stack
st.push(s[i]);
else if((precedence(s[i])==precedence(st.top()))&&(s[i]=='^')) // unique case for ^ operator
st.push(s[i]);
else
{
while((!st.empty())&&(precedence(s[i])<=precedence(st.top()))) // if precedence of st.top() is greater than s[i] adding it the postfix string
{
postfix+=st.top();
st.pop();
}
st.push(s[i]); // pushing s[i] in the stack
}
}
}
}
while(!st.empty()) // popping the remaining items from the stack and adding it to the postfix string
{
postfix+=st.top();
st.pop();
}
cout<<postfix<<endl; // printing the postfix string
}
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
string s;
cin>>s;
infixToPostfix(s);
return 0;
}
Example:
Input: a+b*(c^d-e)^(f+g*h)-i
Output: abcd^efgh*+i-(^-(*+
ps: If you find any mistakes, comment below :)
C++ implementation is given below:
void infix2postfix(string s)
{
stack<char>st;
for(int i=0; i<s.length(); i++)
{
if(isdigit(s[i]) || isalpha(s[i])) cout<<s[i];
else if( s[i]==')' )
{
while(st.top()!='(')
{
cout<<st.top();
st.pop();
}
st.pop();
}
else st.push(s[i]);
}
}
Operator Precedence is the problem in this case. The correct operator precedence in descending order is:
mul, div, mod << *, /, % >>
add, sub << +, - >>
XOR << ^ >>
In the question above consider the precedence function
bool ArithmeticExpression::precedence(char operator1, char operator2)
{
if ( operator1 == '^' )
return true;
else if ( operator2 == '^' )
return false;
else if ( operator1 == '*' || operator1 == '/' )
return true;
else if ( operator1 == '+' || operator1 == '-' )
if ( operator2 == '*' || operator2 == '/' )
return false;
else
return true;
return false;
}
for each value in operator1 corresponding value of operator2 should be checked for precedence, according to OPERATOR PRECEDENCE TABLE mentioned above. Do not return any value without proper comparison.

Infix to postfix conversion (using stack)

I wrote a program to convert infix to postfix operation using stack in c++. But on running this I am getting Segmantation fault.
Please help me know my mistake. I am not able to know.
I have used the algorithm as below:
1. Scan the infix expression from left to right.
2. If the scanned character is an operand, output it.
3. Else,
…..3.1 If the precedence of the scanned operator is greater than the precedence of the operator in the stack(or the stack is empty), push it.
…..3.2 Else, Pop the operator from the stack until the precedence of the scanned operator is less-equal to the precedence of the operator residing on the top of the stack. Push the scanned operator to the stack.
4. If the scanned character is an ‘(‘, push it to the stack.
5. If the scanned character is an ‘)’, pop and output from the stack until an ‘(‘ is encountered.
6. Repeat steps 2-6 until infix expression is scanned.
7. Pop and output from the stack until it is not empty.
The code is :
#include<iostream>
#include<stack>
using namespace std;
int preceedence(char x) {
switch(x) {
case '+':
case '-':
return 1;
break;
case '*':
case '/':
return 2;
break;
case '^':
return 3;
break;
return -1;
}
}
// A utility function to check if the given character is operand
bool isOperand(char ch)
{
return (ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z');
}
int infixToPostfix(string str) {
stack<char> operators;
string output;
for(string::iterator it = str.begin(); it != str.end(); ++it) {
if(isOperand(*it)) {
output += *it;
cout << *it;
} else if(*it == '('){
operators.push(*it);
} else if(*it == ')') {
while(!operators.empty() && operators.top() != '(') {
output += operators.top();
operators.pop();
}
if(!operators.empty() && operators.top() != '(') {
cout << "Invalid Expression";
return -1;
} else {
operators.pop();
}
} else { // An operator is encountered.
while(!operators.empty()) {
if(preceedence(*it) <= preceedence(operators.top())) {
output += operators.top();
operators.pop();
} else {
break;
}
}
operators.push(*it);
}
}
while(!operators.empty()) {
output += operators.top();
operators.pop();
}
cout << output<< endl;
return 0;
}
int main() {
string str;
//getline(std::cin, str);
str = "(1+2)*5";
cout << "The postfix conversion of the infix stream is : "<< endl;
infixToPostfix(str);
return 0;
}

Closing Parenthesis Recognition and Precedence of Operators In Infix to Postfix Stack Program C++

I have an assignment in my Data Structures course where the C++ program calls a function named infixToPostfix, which reads an infix expression from standard input and writes the equivalent postfix expression to standard output.
However, I'm having difficulties with two logic errors at the moment:
My closing parenthesis isn't getting recognized in my program. When I attempt to pop the ')' out of the stack, it causes a segmentation error, crashing the program.
The precedence of operators during the conversion isn't in proper order. I'm guessing it's because my program is recognizing the operators to where each operator pops the previous one out of the stack, no matter what their precedence is.
My current code:
#include <iostream>
#include <stack> // Library used to store a stack of characters
#include <string>
using namespace std;
bool isOperator(char ch) // Checks if character is operator
{
if(ch == '^' || ch == '*' || ch == '/' || ch == '+' || ch == '-')
{
return true;
}
else
{
return false;
}
}
bool isOperand(char ch) // Checks if character is operand
{
// If not an operator or a parenthesis, then assume operand
if(!isOperator(ch) && ch != '(' && ch != ')')
{
return true;
}
else
{
return false;
}
}
// Retrieves weight of operators as per precedence
// Higher weight = higher precedence in operators
// Returns 0 for non-operators
int getWeight(char ch)
{
switch(ch) {
case '^': // exponents
return 3;
case '/':
case '*':
return 2;
case '+':
case '-':
return 1;
default :
return 0;
}
}
string infixToPostfix(string expression)
{
// Declare stack
stack<char> op_stack;
// Initialize postfix as empty string
string postfix = "";
for(int i = 0; i < expression.length(); i++)
{
// Scanning each character from left.
// If character is a delimiter, move on.
if(expression[i] == ' ' || expression[i] == ',')
{
continue;
}
// If character is operator, pop two elements from stack,
// perform operation, and push result back.
else if(isOperator(expression[i]))
{
while(!op_stack.empty() && op_stack.top() != \
getWeight(op_stack.top()) <= getWeight(expression[i]))
{
postfix += op_stack.top();
op_stack.pop();
}
op_stack.push(expression[i]);
}
// Else if character is operand
else if(isOperand(expression[i]))
{
postfix += expression[i];
}
// Parenthesis
else if(expression[i] == '(')
{
// Push operator onto stack if empty
op_stack.push(expression[i]);
}
else if(expression[i] == ')')
{
while(!op_stack.empty() && op_stack.top() != '(')
{
postfix += op_stack.top();
op_stack.pop();
}
//op_stack.pop();
}
}
while(!op_stack.empty())
{
postfix += op_stack.top();
op_stack.pop();
}
return postfix;
}
int main() {
string expression;
cout << "Enter Infix Expression: \n";
getline(cin, expression);
// Displays inputted infix string and calculated
// Postfix string
cout << "Infix Expression: " << expression << '\n';
cout << "Postfix Expression: " << infixToPostfix(expression) << '\n';
return 0;
}
Sample output:
Enter Infix Expression:
(6+2)*5^8/4
Infix Expression: (6+2)*5^8/4
Postfix Expression: 6(2+5*8^4/
Where the correct postfix should be 62+58^*4/
Any help would be greatly appreciated.

infix to postfix with logical operators - code error

i m trying to Write a function string InfixToPostfix(string infixExpr) that takes as input an expression string in infix notation, and returns a string containing the postfix notation for that expression. The infix notation can have
parenthesis. The program needs to handle these operators ∗,/, %, +, − , <, <=, >=, >, ==, ! =,&&,|| (binary operators only)
Here is the code i am trying.. its running perfect with parenthsis but gives slight wrong output without parenthesis. e.g if input is A+B/C the output should be ABC/+, but instead it gives AB+C/ . please help me spot the error. Thanks
#include<iostream>
#include<stack>
#include<string>
using namespace std;
// Function to convert Infix expression to postfix
string InfixToPostfix(string expression);
// Function to verify whether an operator has higher precedence over other
int HasHigherPrecedence(string operator1, string operator2);
// Function to verify whether a character is operator symbol or not.
bool IsOperator(string C);
// Function to verify whether a character is alphanumeric character (letter) or not.
bool IsOperand(string C);
int GetOperatorWeight(string opt);
bool IsDoubleOperator(char c1, char c2);
int main()
{
string expression;
cout<<"Enter Infix Expression \n";
getline(cin,expression);
string postfix = InfixToPostfix(expression);
cout<<"Output = "<<postfix<<"\n";
return 0;
}
// Function to evaluate Postfix expression and return output
string InfixToPostfix(string expression)
{
// Declaring a Stack from Standard template library in C++.
stack<string> S;
string postfix = ""; // Initialize postfix as empty string.
for(int i = 0;i< expression.length();i++) {
string ex="";
ex+=expression[i];
// Scanning each character from left.
// If character is a delimitter, move on.
if(ex == " " || ex == ",") continue;
// If character is operator, pop two elements from stack, perform operation and push the result back.
else if(IsOperator(ex))
{
while(!S.empty() && S.top() != "(" && HasHigherPrecedence(S.top(),ex))
{
postfix+= S.top();
S.pop();
}
S.push(ex);
}
// Else if character is an operand
else if(IsOperand(ex))
{
postfix +=ex;
}
else if (ex == "(")
{
S.push(ex);
}
else if(ex == ")")
{
while(!S.empty() && S.top() != "(") {
postfix += S.top();
S.pop();
}
S.pop();
}
else if (IsDoubleOperator(expression[i], expression[i+1]))
{
string db="";
string f="";
db=+expression[i];
f=+expression[i+1];
db=db+f;
while(!S.empty() && S.top() != "(" && HasHigherPrecedence(S.top(),db))
{
postfix+= S.top();
S.pop();
}
S.push(db);
i++;
}
}
while(!S.empty()) {
postfix += S.top();
S.pop();
}
return postfix;
}
// Function to verify whether a character is english letter or numeric digit.
// We are assuming in this solution that operand will be a single character
bool IsOperand(string C)
{
if(C >= "A" && C <= "Z") return true;
return false;
}
// Function to verify whether a character is operator symbol or not.
bool IsOperator(string C)
{
if(C == "+" || C == "-" || C == "*" || C == "/" || C== "%")
return true;
return false;
}
// Function to get weight of an operator. An operator with higher weight will have higher precedence.
int GetOperatorWeight(string op)
{
int weight = -1;
if(op=="&&"|| op=="||")
weight = 1;
if(op=="=="|| op=="!=")
weight = 2;
if(op=="<"|| op==">"|| op=="<="|| op==">=")
weight = 3;
if(op=="+"|| op=="-")
weight = 4;
if(op=="/"|| op=="%"|| op=="/")
weight = 5;
return weight;
}
// Function to perform an operation and return output.
int HasHigherPrecedence(string op1, string op2)
{
int op1Weight = GetOperatorWeight(op1);
int op2Weight = GetOperatorWeight(op2);
// If operators have equal precedence, return true if they are left associative.
// return false, if right associative.
// if operator is left-associative, left one should be given priority.
if (op1Weight > op2Weight)
return op1Weight;
else
return op2Weight;
}
bool IsDoubleOperator( char c1, char c2)
{
string db="";
string f="";
db=+c1;
f=+c2;
db=db+f;
if (db=="&&" ||db=="||" || db==">=" || db=="<=" || db=="!=" ||db=="==")
{
//cout<<db;
return true;
}
return false;
}
HasHigherPrecedence(op1, op2) is expected to return non-zero when op1 has a higher precedence (A.K.A. weight) than op2 and zero otherwise. However it returns the maximum of the two ops' weights, which is usually nonzero. You just need to change the function so it returns:
return op1Weight > op2Weight;
Which will be 1 when true and zero when false. This should fix your operator shunting.

Convert from an infix expression to postfix (C++) using Stacks

My lecturer gave me an assignment to create a program to convert and infix expression to postfix using Stacks. I've made the stack classes and some functions to read the infix expression.
But this one function, called convertToPostfix(char * const inFix, char * const postFix) which is responsible to convert the inFix expression in the array inFix to the post fix expression in the array postFix using stacks, is not doing what it suppose to do. Can you guys help me out and tell me what I'm doing wrong?
The following is code where the functions to convert from inFix to postFix is and convertToPostfix(char * const inFix, char * const postFix) is what I need help fixing:
void ArithmeticExpression::inputAndConvertToPostfix()
{
char inputChar; //declaring inputChar
int i = 0; //inizalize i to 0
cout << "Enter the Arithmetic Expression(No Spaces): ";
while( ( inputChar = static_cast<char>( cin.get() ) ) != '\n' )
{
if (i >= MAXSIZE) break; //exits program if i is greater than or equal to 100
if(isdigit(inputChar) || isOperator(inputChar))
{
inFix[i] = inputChar; //copies each char to inFix array
cout << inFix[i] << endl;
}
else
cout << "You entered an invalid Arithmetic Expression\n\n" ;
}
// increment i;
i++;
convertToPostfix(inFix, postFix);
}
bool ArithmeticExpression::isOperator(char currentChar)
{
if(currentChar == '+')
return true;
else if(currentChar == '-')
return true;
else if(currentChar == '*')
return true;
else if(currentChar == '/')
return true;
else if(currentChar == '^')
return true;
else if(currentChar == '%')
return true;
else
return false;
}
bool ArithmeticExpression::precedence(char operator1, char operator2)
{
if ( operator1 == '^' )
return true;
else if ( operator2 == '^' )
return false;
else if ( operator1 == '*' || operator1 == '/' )
return true;
else if ( operator1 == '+' || operator1 == '-' )
if ( operator2 == '*' || operator2 == '/' )
return false;
else
return true;
return false;
}
void ArithmeticExpression::convertToPostfix(char * const inFix, char * const postFix)
{
Stack2<char> stack;
const char lp = '(';
stack.push(lp); //Push a left parenthesis ‘(‘ onto the stack.
strcat(inFix,")");//Appends a right parenthesis ‘)’ to the end of infix.
// int i = 0;
int j = 0;
if(!stack.isEmpty())
{
for(int i = 0;i < 100;){
if(isdigit(inFix[i]))
{
postFix[j] = inFix[i];
cout << "This is Post Fix for the first If: " << postFix[j] << endl;
i++;
j++;
}
if(inFix[i] == '(')
{
stack.push(inFix[i]);
cout << "The InFix was a (" << endl;
i++;
//j++;
}
if(isOperator(inFix[i]))
{
char operator1 = inFix[i];
cout << "CUrrent inFix is a operator" << endl;
if(isOperator(stack.getTopPtr()->getData()))
{
cout << "The stack top ptr is a operator1" << endl;
char operator2 = stack.getTopPtr()->getData();
if(precedence(operator1,operator2))
{
//if(isOperator(stack.getTopPtr()->getData())){
cout << "The stack top ptr is a operato2" << endl;
postFix[j] = stack.pop();
cout << "this is post fix " << postFix[j] << endl;
i++;
j++;
// }
}
}
else
stack.push(inFix[i]);
// cout << "Top Ptr is a: "<< stack.getTopPtr()->getData() << endl;
}
for(int r = 0;r != '\0';r++)
cout << postFix[r] << " ";
if(inFix[i] == ')')
{
while(stack.stackTop()!= '(')
{
postFix[j] = stack.pop();
i++;
j++;
}
stack.pop();
}
}
}
}
Note the function convertToPostfix was made using this algorithm:
Push a left parenthesis ‘(‘ onto the stack.
Append a right parenthesis ‘)’ to the end of infix.
While the stack is not empty, read infix from left to right and do the following:
If the current character in infix is a digit, copy it to the next element of postfix.
If the current character in infix is a left parenthesis, push it onto the stack.
If the current character in infix is an operator,
Pop operator(s) (if there are any) at the top of the stack while they have equal or higher precedence than the current operator, and insert the popped operators in postfix.
Push the current character in infix onto the stack.
If the current character in infix is a right parenthesis
Pop operators from the top of the stack and insert them in postfix until a left parenthesis is at the top of the stack.
Pop (and discard) the left parenthesis from the stack.
This is basically a comment to the answer from Yuushi.
The outer while(!stack.empty()) loop is wrong. just remove it. (keep the loop body ofc). At the end of the function, check that the stack is empty, else the expression had syntax errors.
As Yuushi already said the precedence function looks bogus. First you should give the parameters better names: one is the operator to the left, and the other to the right. (Right now you call it precedence(rightOp, leftOp)). Then you should document what the result means - right now you return true if a rOp b lOp c == (a rOp b) lOp c (yes, the operator order doesn't match what you call - "+" and "-" are not the same in both orders for example).
If you find a new operator you need to loop over the old operators on the stack, for example after reading a - b * c your output is a b c and the stack is [- *]. now you read a +, and you need to pop both operators, resulting in a b c * -. I.e., the input a - b * c + d should result in a b c * - d +
Update: appended complete solution (based on Yuushi's answer):
bool isOperator(char currentChar)
{
switch (currentChar) {
case '+':
case '-':
case '*':
case '/':
case '^':
case '%':
return true;
default:
return false;
}
}
// returns whether a `lOp` b `rOp` c == (a `lOp` b) `rOp` c
bool precedence(char leftOperator, char rightOperator)
{
if ( leftOperator == '^' ) {
return true;
} else if ( rightOperator == '^' ) {
return false;
} else if ( leftOperator == '*' || leftOperator == '/' || leftOperator == '%' ) {
return true;
} else if ( rightOperator == '*' || rightOperator == '/' || rightOperator == '%' ) {
return false;
}
return true;
}
#include <stdexcept>
#include <cctype>
#include <sstream>
#include <stack>
std::string convertToPostfix(const std::string& infix)
{
std::stringstream postfix; // Our return string
std::stack<char> stack;
stack.push('('); // Push a left parenthesis ‘(‘ onto the stack.
for(std::size_t i = 0, l = infix.size(); i < l; ++i) {
const char current = infix[i];
if (isspace(current)) {
// ignore
}
// If it's a digit or '.' or a letter ("variables"), add it to the output
else if(isalnum(current) || '.' == current) {
postfix << current;
}
else if('(' == current) {
stack.push(current);
}
else if(isOperator(current)) {
char rightOperator = current;
while(!stack.empty() && isOperator(stack.top()) && precedence(stack.top(), rightOperator)) {
postfix << ' ' << stack.top();
stack.pop();
}
postfix << ' ';
stack.push(rightOperator);
}
// We've hit a right parens
else if(')' == current) {
// While top of stack is not a left parens
while(!stack.empty() && '(' != stack.top()) {
postfix << ' ' << stack.top();
stack.pop();
}
if (stack.empty()) {
throw std::runtime_error("missing left paren");
}
// Discard the left paren
stack.pop();
postfix << ' ';
} else {
throw std::runtime_error("invalid input character");
}
}
// Started with a left paren, now close it:
// While top of stack is not a left paren
while(!stack.empty() && '(' != stack.top()) {
postfix << ' ' << stack.top();
stack.pop();
}
if (stack.empty()) {
throw std::runtime_error("missing left paren");
}
// Discard the left paren
stack.pop();
// all open parens should be closed now -> empty stack
if (!stack.empty()) {
throw std::runtime_error("missing right paren");
}
return postfix.str();
}
#include <iostream>
#include <string>
int main()
{
for (;;) {
if (!std::cout.good()) break;
std::cout << "Enter the Arithmetic Expression: ";
std::string infix;
std::getline(std::cin, infix);
if (infix.empty()) break;
std::cout << "Postfix: '" << convertToPostfix(infix) << "'\n";
}
return 0;
}
So there are a number of problems with your code. I'll post what (should be) a corrected solution, which has copious comments to explain what's happening and where you've made mistakes. A few things up front:
I'll use std::string instead of char * because it makes things much cleaner, and honestly, you should be using it in C++ unless you have a very good reason not to (such as interoperability with a C library). This version also returns a string instead of taking a char * as a parameter.
I'm using the stack from the standard library, <stack>, which is slightly different to your home-rolled one. top() shows you the next element without removing it from the stack, and pop() returns void, but removes the top element from the stack.
It's a free function, not part of a class, but that should be easy to modify - it's simply easier for me to test this way.
I'm not convinced your operator precedence tables are correct, however, I'll let you double check that.
#include <stack>
#include <cctype>
#include <iostream>
std::string convertToPostfix(std::string& infix)
{
std::string postfix; //Our return string
std::stack<char> stack;
stack.push('('); //Push a left parenthesis ‘(‘ onto the stack.
infix.push_back(')');
//We know we need to process every element in the string,
//so let's do that instead of having to worry about
//hardcoded numbers and i, j indecies
for(std::size_t i = 0; i < infix.size(); ++i) {
//If it's a digit, add it to the output
//Also, if it's a space, add it to the output
//this makes it look a bit nicer
if(isdigit(infix[i]) || isspace(infix[i])) {
postfix.push_back(infix[i]);
}
//Already iterating over i, so
//don't need to worry about i++
//Also, these options are all mutually exclusive,
//so they should be else if instead of if.
//(Mutually exclusive in that if something is a digit,
//it can't be a parens or an operator or anything else).
else if(infix[i] == '(') {
stack.push(infix[i]);
}
//This is farily similar to your code, but cleaned up.
//With strings we can simply push_back instead of having
//to worry about incrementing some counter.
else if(isOperator(infix[i]))
{
char operator1 = infix[i];
if(isOperator(stack.top())) {
while(!stack.empty() && precedence(operator1,stack.top())) {
postfix.push_back(stack.top());
stack.pop();
}
}
//This shouldn't be in an else - we always want to push the
//operator onto the stack
stack.push(operator1);
}
//We've hit a right parens - Why you had a for loop
//here originally I don't know
else if(infix[i] == ')') {
//While top of stack is not a right parens
while(stack.top() != '(') {
//Insert into postfix and pop the stack
postfix.push_back(stack.top());
stack.pop();
}
// Discard the left parens - you'd forgotten to do this
stack.pop();
}
}
//Remove any remaining operators from the stack
while(!stack.empty()) {
postfix.push_back(stack.top());
stack.pop();
}
}
Here's mine using C with multiple digits evaluation.
#include <stdio.h>
#include <math.h>
#define MAX 50
void push(char[],char);
void in_push(double[], double);
int pop();
int prec(char);
double eval(char[],int,double[]);
int top = 0;
void main() {
double eval_stack[MAX];
int op_count=0;
char stack[MAX], exps[MAX], symbols[MAX];
int i=0,j=0,len,check;
while((symbols[i]=getchar())!='\n') {
if(symbols[i]!=' ' || symbols[i]!='\t') {
if(symbols[i]=='+' || symbols[i]=='-' || symbols[i]=='/' || symbols[i]=='*' || symbols[i]=='^')
op_count++;
i++;
}
}
symbols[i]='#';
symbols[++i]='\0';
len = strlen(symbols);
stack[top] = '#';
for(i=0; i<=len; i++) {
if(symbols[i]>='a' && symbols[i]<='z') {
exps[j]=symbols[i];
j++;
}
switch(symbols[i]) {
case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9':
//if(symbols[i]>='a' && symbols[i]<='z') {
exps[j]=symbols[i];
j++;
break;
case '+': case '-': case '*': case '/': case '^':
exps[j++] = ' ';
while(prec(symbols[i]) <= prec(stack[top])) {
exps[j] = stack[top];
pop();
//printf("\n\t\t%d\t\t%d\n", top,j);
j++;
}
if(prec(symbols[i]) > prec(stack[top])) {
push(stack,symbols[i]);
}
break;
case '(':
push(stack,symbols[i]);
break;
case ')':
while(stack[top]!='(') {
exps[j] = stack[top];
pop();
j++;
}
pop();
break;
case '#':
exps[j++] = ' ';
while(stack[top]!='#') {
exps[j] = stack[top];
pop();
j++;
}
pop();
break;
}
}
exps[j]='\0';
printf("Postfix: %s", exps);
for(i=0; i<j; i++)
if(exps[i]=='a')
check = 1;
if(check!=1)
printf("\nSolution: %.1f", eval(exps,j,eval_stack));
}
double eval(char exps[],int exps_len,double eval_stack[]) {
int i; int len=exps_len,temp;
double in_temp[MAX],t;
int count,power,j,in_count;
count=power=j=t=in_count=0;
double result;
for(i=0; i<len; i++) {
switch(exps[i]) {
case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9':
in_temp[i] = exps[i]-'0';
j=i+1;
while(exps[j]>='0' && exps[j]<='9') {
in_temp[j] = exps[j]-'0';
j++; // 2
}
count = i; // 3
while(in_temp[count]<='0' && in_temp[count]<='9') {
power = (j-count)-1;
t = t + in_temp[count]*(pow(10,power));
power--;
count++;
}
in_push(eval_stack,t);
i=j-1;
t=0;
break;
case '+':
temp = pop();
pop();
result = eval_stack[temp] + eval_stack[temp+1];
in_push(eval_stack,result);
break;
case '-':
temp = pop();
pop();
result = eval_stack[temp] - eval_stack[temp+1];
in_push(eval_stack,result);
break;
case '*':
temp = pop();
pop();
result = eval_stack[temp] * eval_stack[temp+1];
in_push(eval_stack,result);
break;
case '/':
temp = pop();
pop();
result = eval_stack[temp] / eval_stack[temp+1];
in_push(eval_stack,result);
break;
case '^':
temp = pop();
pop();
result = pow(eval_stack[temp],eval_stack[temp+1]);
in_push(eval_stack,result);
break;
}
}
return eval_stack[top];
}
int prec(char a) {
if(a=='^')
return 3;
else if(a=='*' || a=='/' || a=='%')
return 2;
else if(a=='+' || a=='-')
return 1;
else if(a=='(')
return 0;
else
return -1;
}
void push(char stack[], char ele) {
if(top>=MAX) {
printf("\nStack Overflow");
exit(1);
}
stack[++top] = ele;
}
void in_push(double stack[], double ele) {
if(top>=MAX) {
printf("\nStack Overflow");
exit(1);
}
stack[++top] = ele;
}
int pop() {
if(top<0) {
printf("\nStack Underflow");
exit(1);
}
top = top - 1;
return top;
}
This is my implementation of converting infix to postfix expression
//Infix to Postfix conversion
#include <bits/stdc++.h>
using namespace std;
bool isoperator(char c) // function to check if the character is an operator
{
if(c=='+'||c=='-'||c=='*'||c=='/'||c=='^')
return true;
else
return false;
}
int precedence(char c) // function to given the precedence of the operators
{
if(c == '^')
return 3;
else if(c == '*' || c == '/')
return 2;
else if(c == '+' || c == '-')
return 1;
else
return -1;
}
void infixToPostfix(string s) // funtion to convert infix to postfix
{
stack<char>st;
string postfix;
for(int i=0;i<s.length();i++)
{
if((s[i]>='a'&&s[i]<='z')||(s[i]>='A'&&s[i]<='Z')) // if the given character is alphabet add it to the postfix string
postfix+=s[i];
else if(s[i]=='(') // if the given character is "(" add it to the postfix string
st.push('(');
else if(s[i]==')') // if we find a closing bracket we pop everything from stack till opening bracket and add it to postfix string
{
while(st.top()=='(' && !st.empty())
{
postfix+=st.top();
st.pop();
}
if(st.top()=='(') // popping the opening bracket
st.pop();
}
else if(isoperator(s[i])) // if we find a operator
{
if(st.empty()) // if stack is empty add it to the stack
st.push(s[i]);
else
{
if(precedence(s[i])>precedence(st.top())) // if operator precedence is grater push it in stack
st.push(s[i]);
else if((precedence(s[i])==precedence(st.top()))&&(s[i]=='^')) // unique case for ^ operator
st.push(s[i]);
else
{
while((!st.empty())&&(precedence(s[i])<=precedence(st.top()))) // if precedence of st.top() is greater than s[i] adding it the postfix string
{
postfix+=st.top();
st.pop();
}
st.push(s[i]); // pushing s[i] in the stack
}
}
}
}
while(!st.empty()) // popping the remaining items from the stack and adding it to the postfix string
{
postfix+=st.top();
st.pop();
}
cout<<postfix<<endl; // printing the postfix string
}
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
string s;
cin>>s;
infixToPostfix(s);
return 0;
}
Example:
Input: a+b*(c^d-e)^(f+g*h)-i
Output: abcd^efgh*+i-(^-(*+
ps: If you find any mistakes, comment below :)
C++ implementation is given below:
void infix2postfix(string s)
{
stack<char>st;
for(int i=0; i<s.length(); i++)
{
if(isdigit(s[i]) || isalpha(s[i])) cout<<s[i];
else if( s[i]==')' )
{
while(st.top()!='(')
{
cout<<st.top();
st.pop();
}
st.pop();
}
else st.push(s[i]);
}
}
Operator Precedence is the problem in this case. The correct operator precedence in descending order is:
mul, div, mod << *, /, % >>
add, sub << +, - >>
XOR << ^ >>
In the question above consider the precedence function
bool ArithmeticExpression::precedence(char operator1, char operator2)
{
if ( operator1 == '^' )
return true;
else if ( operator2 == '^' )
return false;
else if ( operator1 == '*' || operator1 == '/' )
return true;
else if ( operator1 == '+' || operator1 == '-' )
if ( operator2 == '*' || operator2 == '/' )
return false;
else
return true;
return false;
}
for each value in operator1 corresponding value of operator2 should be checked for precedence, according to OPERATOR PRECEDENCE TABLE mentioned above. Do not return any value without proper comparison.