Related
My confusion mainly lies around understanding singleton variables.
I want to implement the predicate noDupl/2 in Prolog. This predicate can be used to identify numbers in a list that appear exactly once, i. e., numbers which are no duplicates. The first argument of noDupl is the list to analyze. The
second argument is the list of numbers which are no duplicates, as described below.
As an example, for the list [2, 0, 3, 2, 1] the result [0, 3, 1] is computed (because 2 is a duplicate).
In my implementation I used the predefined member predicate and used an auxiliary predicate called helper.
I'll explain my logic in pseudocode, so you can help me spot where I went wrong.
First off, If the first element is not a member of the rest of the list, add the first element to the new result List (as it's head).
If the first element is a member of T, call the helper method on the rest of the list, the first element H and the new list.
Helper method, if H is found in the tail, return list without H, i. e., Tail.
noDupl([],[]).
noDupl([H|T],L) :-
\+ member(H,T),
noDupl(T,[H|T]).
noDupl([H|T],L) :-
member(H,T),
helper(T,H,L).
helper([],N,[]).
helper([H|T],H,T). %found place of duplicate & return list without it
helper([H|T],N,L) :-
helper(T,N,[H|T1]).%still couldn't locate the place, so add H to the new List as it's not a duplicate
While I'm writing my code, I'm always having trouble with deciding to choose a new variable or use the one defined in the predicate arguments when it comes to free variables specifically.
Thanks.
Warnings about singleton variables are not the actual problem.
Singleton variables are logical variables that occur once in some Prolog clause (fact or rule). Prolog warns you about these variables if they are named like non-singleton variables, i. e., if their name does not start with a _.
This convention helps avoid typos of the nasty kind—typos which do not cause syntax errors but do change the meaning.
Let's build a canonical solution to your problem.
First, forget about CamelCase and pick a proper predicate name that reflects the relational nature of the problem at hand: how about list_uniques/2?
Then, document cases in which you expect the predicate to give one answer, multiple answers or no answer at all. How?
Not as mere text, but as queries.
Start with the most general query:
?- list_uniques(Xs, Ys).
Add some ground queries:
?- list_uniques([], []).
?- list_uniques([1,2,2,1,3,4], [3,4]).
?- list_uniques([a,b,b,a], []).
And add queries containing variables:
?- list_uniques([n,i,x,o,n], Xs).
?- list_uniques([i,s,p,y,i,s,p,y], Xs).
?- list_uniques([A,B], [X,Y]).
?- list_uniques([A,B,C], [D,E]).
?- list_uniques([A,B,C,D], [X]).
Now let's write some code! Based on library(reif) write:
:- use_module(library(reif)).
list_uniques(Xs, Ys) :-
list_past_uniques(Xs, [], Ys).
list_past_uniques([], _, []). % auxiliary predicate
list_past_uniques([X|Xs], Xs0, Ys) :-
if_((memberd_t(X,Xs) ; memberd_t(X,Xs0)),
Ys = Ys0,
Ys = [X|Ys0]),
list_past_uniques(Xs, [X|Xs0], Ys0).
What's going on?
list_uniques/2 is built upon the helper predicate list_past_uniques/3
At any point, list_past_uniques/3 keeps track of:
all items ahead (Xs) and
all items "behind" (Xs0) some item of the original list X.
If X is a member of either list, then Ys skips X—it's not unique!
Otherwise, X is unique and it occurs in Ys (as its list head).
Let's run some of the above queries using SWI-Prolog 8.0.0:
?- list_uniques(Xs, Ys).
Xs = [], Ys = []
; Xs = [_A], Ys = [_A]
; Xs = [_A,_A], Ys = []
; Xs = [_A,_A,_A], Ys = []
...
?- list_uniques([], []).
true.
?- list_uniques([1,2,2,1,3,4], [3,4]).
true.
?- list_uniques([a,b,b,a], []).
true.
?- list_uniques([1,2,2,1,3,4], Xs).
Xs = [3,4].
?- list_uniques([n,i,x,o,n], Xs).
Xs = [i,x,o].
?- list_uniques([i,s,p,y,i,s,p,y], Xs).
Xs = [].
?- list_uniques([A,B], [X,Y]).
A = X, B = Y, dif(Y,X).
?- list_uniques([A,B,C], [D,E]).
false.
?- list_uniques([A,B,C,D], [X]).
A = B, B = C, D = X, dif(X,C)
; A = B, B = D, C = X, dif(X,D)
; A = C, C = D, B = X, dif(D,X)
; A = X, B = C, C = D, dif(D,X)
; false.
Just like my previous answer, the following answer is based on library(reif)—and uses it in a somewhat more idiomatic way.
:- use_module(library(reif)).
list_uniques([], []).
list_uniques([V|Vs], Xs) :-
tpartition(=(V), Vs, Equals, Difs),
if_(Equals = [], Xs = [V|Xs0], Xs = Xs0),
list_uniques(Difs, Xs0).
While this code does not improve upon my previous one regarding efficiency / complexity, it is arguably more readable (fewer arguments in the recursion).
In this solution a slightly modified version of tpartition is used to have more control over what happens when an item passes the condition (or not):
tpartition_p(P_2, OnTrue_5, OnFalse_5, OnEnd_4, InitialTrue, InitialFalse, Xs, RTrue, RFalse) :-
i_tpartition_p(Xs, P_2, OnTrue_5, OnFalse_5, OnEnd_4, InitialTrue, InitialFalse, RTrue, RFalse).
i_tpartition_p([], _P_2, _OnTrue_5, _OnFalse_5, OnEnd_4, CurrentTrue, CurrentFalse, RTrue, RFalse):-
call(OnEnd_4, CurrentTrue, CurrentFalse, RTrue, RFalse).
i_tpartition_p([X|Xs], P_2, OnTrue_5, OnFalse_5, OnEnd_4, CurrentTrue, CurrentFalse, RTrue, RFalse):-
if_( call(P_2, X)
, call(OnTrue_5, X, CurrentTrue, CurrentFalse, NCurrentTrue, NCurrentFalse)
, call(OnFalse_5, X, CurrentTrue, CurrentFalse, NCurrentTrue, NCurrentFalse) ),
i_tpartition_p(Xs, P_2, OnTrue_5, OnFalse_5, OnEnd_4, NCurrentTrue, NCurrentFalse, RTrue, RFalse).
InitialTrue/InitialFalse and RTrue/RFalse contains the desired initial and final state, procedures OnTrue_5 and OnFalse_5 manage state transition after testing the condition P_2 on each item and OnEnd_4 manages the last transition.
With the following code for list_uniques/2:
list_uniques([], []).
list_uniques([V|Vs], Xs) :-
tpartition_p(=(V), on_true, on_false, on_end, false, Difs, Vs, HasDuplicates, []),
if_(=(HasDuplicates), Xs=Xs0, Xs = [V|Xs0]),
list_uniques(Difs, Xs0).
on_true(_, _, Difs, true, Difs).
on_false(X, HasDuplicates, [X|Xs], HasDuplicates, Xs).
on_end(HasDuplicates, Difs, HasDuplicates, Difs).
When the item passes the filter (its a duplicate) we just mark that the list has duplicates and skip the item, otherwise the item is kept for further processing.
This answer goes similar ways as this previous answer by #gusbro.
However, it does not propose a somewhat baroque version of tpartition/4, but instead an augmented, but hopefully leaner, version of tfilter/3 called tfilter_t/4 which can be defined like so:
tfilter_t(C_2, Es, Fs, T) :-
i_tfilter_t(Es, C_2, Fs, T).
i_tfilter_t([], _, [], true).
i_tfilter_t([E|Es], C_2, Fs0, T) :-
if_(call(C_2,E),
( Fs0 = [E|Fs], i_tfilter_t(Es,C_2,Fs,T) ),
( Fs0 = Fs, T = false, tfilter(C_2,Es,Fs) )).
Adapting list_uniques/2 is straightforward:
list_uniques([], []).
list_uniques([V|Vs], Xs) :-
if_(tfilter_t(dif(V),Vs,Difs), Xs = [V|Xs0], Xs = Xs0),
list_uniques(Difs, Xs0).
Save scrollbars. Stay lean! Use filter_t/4.
You have problems already in the first predicate, noDupl/2.
The first clause, noDupl([], []). looks fine.
The second clause is wrong.
noDupl([H|T],L):-
\+member(H,T),
noDupl(T,[H|T]).
What does that really mean I leave as an exercise to you. If you want, however, to add H to the result, you would write it like this:
noDupl([H|T], [H|L]) :-
\+ member(H, T),
noDupl(T, L).
Please look carefully at this and try to understand. The H is added to the result by unifying the result (the second argument in the head) to a list with H as the head and the variable L as the tail. The singleton variable L in your definition is a singleton because there is a mistake in your definition, namely, you do nothing at all with it.
The last clause has a different kind of problem. You try to clean the rest of the list from this one element, but you never return to the original task of getting rid of all duplicates. It could be fixed like this:
noDupl([H|T], L) :-
member(H, T),
helper(T, H, T0),
noDupl(T0, L).
Your helper/3 cleans the rest of the original list from the duplicate, unifying the result with T0, then uses this clean list to continue removing duplicates.
Now on to your helper. The first clause seems fine but has a singleton variable. This is a valid case where you don't want to do anything with this argument, so you "declare" it unused for example like this:
helper([], _, []).
The second clause is problematic because it removes a single occurrence. What should happen if you call:
?- helper([1,2,3,2], 2, L).
The last clause also has a problem. Just because you use different names for two variables, this doesn't make them different. To fix these two clauses, you can for example do:
helper([H|T], H, L) :-
helper(T, H, L).
helper([H|T], X, [H|L]) :-
dif(H, X),
helper(T, X, L).
These are the minimal corrections that will give you an answer when the first argument of noDupl/2 is ground. You could do this check this by renaming noDupl/2 to noDupl_ground/2 and defining noDupl/2 as:
noDupl(L, R) :-
must_be(ground, L),
noDupl_ground(L, R).
Try to see what you get for different queries with the current naive implementation and ask if you have further questions. It is still full of problems, but it really depends on how you will use it and what you want out of the answer.
I am trying to use the printlist/1 predicate to sum up all the numbers in a list but kind of got stuck.... tried to come up with the code for this but I keep getting false.
Here is what I've come up with:
printlist([]).
printlist([H|T], Totalsum) :-
print (H+Totalsum),
nl,
printlist(T, Totalsum).
I know it's wrong and it's probably the last part. Any help is appreciated!
I query it this way:
?- printlist([1,2,3]).
false.
As Paulo already said, you are defining two predicates here, which is incorrect.
Here is the solution:
printlist([], 0).
printlist([H|T], Sum) :-
printlist(T, Subsum),
Sum is Subsum + H.
Sample query:
?- printlist([1,2,3,5], L).
L = 11.
# Paulo requested), a tail recursive version:
printlist(L, Sum) :-
sumac(L, 0, Sum).
sumac([], Acc, Acc).
sumac([H|T], Acc, Sum) :-
Nacc is Acc + H,
sumac(T, Nacc, Sum).
You're defining not one but two predicates: printlist/1 and printlist/2. Likely a typo. The printlist/2 predicate is a recursive rule but there isn't a base case. Change the printlist/1 clause to:
printlist([], _).
But there are other errors in your code. Hint: Prolog is not a functional language.
As a Prolog newbie, I try to define a predicate filter_min/2 which takes two lists to determine if the second list is the same as the first, but with all occurrences of the minimum number removed.
Sample queries with expected results:
?- filter_min([3,2,7,8], N).
N = [3,7,8].
?- filter_min([3,2,7,8], [3,7,8]).
true.
I tried but I always get the same result: false. I don't know what the problem is. I need help!
Here is my code:
filter_min(X,Y) :-
X == [],
write("ERROR: List parameter is empty!"),
!;
min_list(X,Z),
filter(X,Y,Z).
filter([],[],0).
filter([H1|T1],[H2|T2],Z) :-
\+ number(H1),
write("ERROR: List parameter contains a non-number element"),
!;
H1 \= Z -> H2 is H1, filter(T1,T2,Z);
filter(T1,T2,Z).
There are a couple of problems with your code:
filter([],[],0). will not unify when working with any list that does not have 0 as its minimum value, which is not what you want. You want it to unify regardless of the minimum value to end your recursion.
The way you wrote filter([H1|T1],[H2|T2],Z) and its body will make it so that the two lists always have the same number of elements, when in fact the second one should have at least one less.
A correct implementation of filter/3 would be the following:
filter([],[],_).
filter([H1|T1],L2,Z):-
\+ number(H1),
write("ERROR: List parameter contains a non-number element"),
!;
H1 \= Z -> filter(T1,T2,Z), L2 = [H1|T2];
filter(T1,L2,Z).
A bounty was offered...
... for a pure solution that terminates for (certain) cases where neither the length of the first nor of the second argument is known.
Here's a candidate implementation handling integer values, built on clpfd:
:- use_module(library(clpfd)).
filter_min(Xs,Ys) :-
filter_min_picked_gt(Xs,_,false,Ys).
filter_min_picked_gt([] ,_,true ,[]).
filter_min_picked_gt([Z|Xs],M,Picked,[Z|Zs]) :-
Z #> M,
filter_min_picked_gt(Xs,M,Picked,Zs).
filter_min_picked_gt([M|Xs],M,_,Zs) :-
filter_min_picked_gt(Xs,M,true,Zs).
Some sample queries:
?- filter_min([3,2,7,8],[3,7,8]).
true ; false. % correct, but leaves choicepoint
?- filter_min([3,2,7,8],Zs).
Zs = [3,7,8] ; false. % correct, but leaves choicepoint
Now, some queries terminate even though both list lengths are unknown:
?- filter_min([2,1|_],[1|_]).
false. % terminates
?- filter_min([1,2|_],[3,2|_]).
false. % terminates
Note that the implementation doesn't always finitely fail (terminate) in cases that are logically false:
?- filter_min([1,2|_],[2,1|_]). % does _not_ terminate
For a Prolog newbie, better start with the basics. The following works when first argument is fully instantiated, and the second is an uninstantiated variable, computing the result in one pass over the input list.
% remmin( +From, -Result).
% remmin([],[]). % no min elem to remove from empty list
remmin([A|B], R):-
remmin(B, A, [A], [], R). % remove A from B to get R, keeping [A]
% in case a smaller elem will be found
remmin([C|B], A, Rev, Rem, R):-
C > A -> remmin(B, A, [C|Rev], [C|Rem], R) ;
C==A -> remmin(B, A, [C|Rev], Rem, R) ;
C < A -> remmin(B, C, [C|Rev], Rev, R).
remmin([], _, _, Rem, R) :- reverse(Rem, R).
First, we can get the minimum number using the predicate list_minnum/2:
?- list_minnum([3,2,7,8],M).
M = 2.
We can define list_minnum/2 like this:
list_minnum([E|Es],M) :-
V is E,
list_minnum0_minnum(Es,V,M).
list_minnum0_minnum([],M,M).
list_minnum0_minnum([E|Es],M0,M) :-
M1 is min(E,M0),
list_minnum0_minnum(Es,M1,M).
For the sake of completeness, here's the super-similar list_maxnum/2:
list_maxnum([E|Es],M) :-
V is E,
list_maxnum0_maxnum(Es,V,M).
list_maxnum0_maxnum([],M,M).
list_maxnum0_maxnum([E|Es],M0,M) :-
M1 is max(E,M0),
list_maxnum0_maxnum(Es,M1,M).
Next, we use meta-predicate tfilter/3 in tandem with dif/3 to exclude all occurrences of M:
?- M=2, tfilter(dif(M),[2,3,2,7,2,8,2],Xs).
Xs = [3,7,8].
Put the two steps together and define min_excluded/2:
min_excluded(Xs,Ys) :-
list_minnum(Xs,M),
tfilter(dif(M),Xs,Ys).
Let's run some queries!
?- min_excluded([3,2,7,8],Xs).
Xs = [3,7,8].
?- min_excluded([3,2,7,8,2],Xs).
Xs = [3,7,8].
I have a strange problem that I do not know how to solve.
I have written a predicate that compresses lists by removing repeating items.
So if the input is [a,a,a,a,b,c,c,a,a], output should be [a,b,c,a]. My first code worked, but the item order was wrong. So I add a append/3 goal and it stopped working altogether.
Can't figure out why. I tried to trace and debug but don't know what is wrong.
Here is my code which works but gets the item order wrong:
p08([Z], X, [Z|X]).
p08([H1,H2|T], O, X) :-
H1 \= H2,
p08([H2|T], [H1|O], X).
p08([H1,H1|T], O, X) :-
p08([H1|T], O, X).
Here's the newer version, but it does not work at all:
p08([Z], X, [Z|X]).
p08([H1,H2|T], O, X) :-
H1 \= H2,
append(H1, O, N),
p08([H2|T], N, X).
p08([H1,H1|T], O, X) :-
p08([H1|T], O, X).
H1 is not a list, that's why append(H1, O, N) fails.
And if you change H1 to [H1] you actually get a solution identical to your first one. In order to really reverse the list in the accumulator you should change the order of the first two arguments: append(O, [H1], N). Also, you should change the first rule with one that matches the empty list p08([], X, X) (without it, the goal p08([], [], Out) fails).
Now, to solve your problem, here is the simplest solution (which is already tail recursive, as #false stated in the comments to this answer, so there is no need for an accumulator)
p([], []). % Rule for empty list
p([Head, Head|Rest], Out):- % Ignore the Head if it unifies with the 2nd element
!,
p([Head|Rest], Out).
p([Head|Tail], [Head|Out]):- % otherwise, Head must be part of the second list
p(Tail, Out).
and if you want one similar to yours (using an accumulator):
p08(List, Out):-p08(List, [], Out).
p08([], Acc, Acc).
p08([Head, Head|Rest], Acc, Out):-
!,
p08([Head|Rest], Acc, Out).
p08([Head|Tail], Acc, Out):-
append(Acc, [Head], Acc2),
p08(Tail, Acc2, Out).
Pure and simple:
list_withoutAdjacentDuplicates([],[]).
list_withoutAdjacentDuplicates([X],[X]).
list_withoutAdjacentDuplicates([X,X|Xs],Ys) :-
list_withoutAdjacentDuplicates([X|Xs],Ys).
list_withoutAdjacentDuplicates([X1,X2|Xs],[X1|Ys]) :-
dif(X1,X2),
list_withoutAdjacentDuplicates([X2|Xs],Ys).
Sample query:
?- list_withoutAdjacentDuplicates([a,a,a,a,b,c,c,a,a],Xs).
Xs = [a,b,c,a] ; % succeeds, but leaves useless choicepoint(s) behind
false
Edit 2015-06-03
The following code is based on if_/3 and reified term equality (=)/3 by #false, which---in combination with first argument indexing---helps us avoid above creation of useless choicepoints.
list_without_adjacent_duplicates([],[]).
list_without_adjacent_duplicates([X|Xs],Ys) :-
list_prev_wo_adj_dups(Xs,X,Ys).
list_prev_wo_adj_dups([],X,[X]).
list_prev_wo_adj_dups([X1|Xs],X0,Ys1) :-
if_(X0 = X1, Ys1 = Ys0, Ys1 = [X0|Ys0]),
list_prev_wo_adj_dups(Xs,X1,Ys0).
Let's see it in action!
?- list_without_adjacent_duplicates([a,a,a,a,b,c,c,a,a],Xs).
Xs = [a,b,c,a]. % succeeds deterministically
In this answer we use meta-predicate foldl/4 and
Prolog lambdas.
:- use_module(library(apply)).
:- use_module(library(lambda)).
We define the logically pure predicatelist_adj_dif/2 based on if_/3 and (=)/3:
list_adj_dif([],[]).
list_adj_dif([X|Xs],Ys) :-
foldl(\E^(E0-Es0)^(E-Es)^if_(E=E0,Es0=Es,Es0=[E0|Es]),Xs,X-Ys,E1-[E1]).
Let's run the query given by the OP!
?- list_adj_dif([a,a,a,a,b,c,c,a,a],Xs).
Xs = [a,b,c,a]. % succeeds deterministically
How about a more general query? Do we get all solutions we expect?
?- list_adj_dif([A,B,C],Xs).
A=B , B=C , Xs = [C]
; A=B , dif(B,C), Xs = [B,C]
; dif(A,B), B=C , Xs = [A,C]
; dif(A,B), dif(B,C), Xs = [A,B,C].
Yes, we do! So... the bottom line is?
Like many times before, the monotone if-then-else construct if_/3 enables us to ...
..., preserve logical-purity, ...
..., prevent the creation of useless choicepoints (in many cases), ...
..., and remain monotone—lest we lose solutions in the name of efficiency.
More easily:
compress([X],[X]).
compress([X,Y|Zs],Ls):-
X = Y,
compress([Y|Zs],Ls).
compress([X,Y|Zs],[X|Ls]):-
X \= Y,
compress([Y|Zs],Ls).
The code works recursevely and it goes deep to the base case, where the list include only one element, and then it comes up, if the found element is equal to the one on his right , such element is not added to the 'Ls' list (list of no duplicates ), otherwise it is.
compr([X1,X1|L1],[X1|L2]) :-
compr([X1|L1],[X1|L2]),
!.
compr([X1|L1],[X1|L2]) :-
compr(L1,L2).
compr([],[]).
I am given 2 lists for example K=[a,b,c,d,e,f,g] and L=[a,b,1,d,e,2,g]. When these 2 lists have 2 different elements, then they are friendly.
This is what I've tried:
friendly(K,L):-
append(L1,[Z],A1),
append(A1,L2,A2),
append(A2,[Q],A3),
append(A3,L3,K),
append(L1,[Y],B1),
append(B1,L2,B2),
append(B2,[W],B3),
append(B3,L3,L),
Z\=Y,
Q\=W.
Thank you all so much, at last I found the correct code:
friend(L1,L2):-
append(A,Y,L1),
append([Z|T],[F|TT],Y),
append(A,Q,L2),
append([R|T],[O|TT],Q),
Z\=R,
F\=O.
You can use append/3 in this way to locate the first different elements.
first_different(L1,L2, R1,R2) :-
append(H, [E1|R1], L1),
append(H, [E2|R2], L2),
E1 \= E2.
H is the common part, R1,R2 are the 'remainders'. This code is more in line with your second comment above.
Now you must apply two times this helper predicate, and the second time also 'remainders' must be equal, or one of them must be empty. That is
friendly(L1,L2) :-
first_different(L1,L2,R1,R2),
first_different(R1,R2,T1,T2),
once((T1=T2;T1=[];T2=[])).
Alternatively, using some builtin can be rewarding. This should work
friendly(L1,L2) :- findall(_,(nth1(I,L1,E1),nth1(I,L2,E2),E1\=E2),[_,_]).
Wouldn't it be better to do something like the following?
diff([], [], []).
diff([], K, K).
diff(L, [], L).
diff([H | TL], [H | TK], D) :- diff(TL, TK, D),!.
diff([HL | TL], [HK | TK], [HL, HK | D]) :- diff(TL, TK, D),!.
friendly(K, L) :- diff(K, L, D), length(D, Length), Length < 3.
But your problem really is underspecified. For example my program really cares about order so [a,x,b] and [a,b] are not friendly by my definition.
I'm still a little uncertain about the total definition of "friendly" list, but I think this might answer it:
friendly(A, B) :-
friendly(A, B, 2).
friendly([H|TA], [H|TB], C) :-
C > 0,
friendly(TA, TB, C).
friendly([HA|TA], [HB|TB], C) :-
HA \= HB,
C > 0,
C1 is C-1,
friendly(TA, TB, C1).
friendly(A, [], C) :-
length(A, L),
L =< C.
friendly([], B, C) :-
length(B, L),
L =< C.
friendly(A, A, 0).
I'm assuming that the definition of friendly means the lists are in "lock step" outside of the maximum of two differences.
Does order matter? Are the lists sets (each element is unique) or bags (duplicates allowed)?
Assuming that
Order doesn't matter ([1,2,3] and [1,3,2]) are treated as identical), and
Duplicates don't matter ([1,2,3,1] and [1,2,3]) are treated as identical
Something like this might be along the lines of what you're looking for:
friendly(Xs,Ys) :-
set_of(
E ,
(
( member(E,Xs) ,
not( member(E,Ys) )
)
;
(
member(E,Ys) ,
not( member(E,Xs) )
) ,
Zs
) ,
length( Zs , L ) ,
L =< 2
.
Find the set of all elements of each list that aren't in the other and succeed if the resulting list is of length 0, 1 or 2.
I came up with something similar to others.. I just keep a list of '_' items (final param of diff_list) - one for each difference, be that a value difference at the same index, or a difference in the length, then finally in friendly/2, check that has 2 items.
% recursion base
diff_list([], [], []).
% the head of both lists are the same, don't add to diff list
diff_list([HK|TK], [HK|TL], Diff) :-
diff_list(TK, TL, Diff).
% the above rule failed, so must be a difference, add a '_'
diff_list([_|TK], [_|TL], [_|Diff]) :-
diff_list(TK, TL, Diff).
% 1st list is empty, but the 2nd isn't. That's a diff again.
diff_list([], [_|TL], [_|Diff]) :-
diff_list([], TL, Diff).
% 2nd list is empty, but the 1st isn't. Another diff.
diff_list([_|TK], [], [_|Diff]) :-
diff_list(TK, [], Diff).
% friendly is true if the diff list length unifies with 2 item length list [_,_]
friendly(K, L) :-
diff_list(K, L, [_,_]).