Fairly strange thing that, I build a search tree and search it. In the search function, if I dynamically allocate memory and delete, memory limit will exceed(I am solving problem in an OJ). But if I just declare an ordinary variable, there is no out of memory issue. Code looks like this:(I recursively search a tree(similar to a 2DTree))
void Search(int x1, int x2, int y1, int y2, node* n, int* st, long long* tem) {
int nx, ny, nx1, nx2, ny1, ny2;
nx = n->x; ny = n->y;
nx1 = n->x1; nx2 = n->x2;
ny1 = n->y1; ny2 = n->y2;
node* l = n->lc;
node* r = n->rc;
if (x1 > nx2 || x2<nx1 || y1>ny2 || y2 < ny1) {
*st = 0;
*tem = 0;
return;
}
else if (x1 <= nx1 && x2 >= nx2 && y1 <= ny1 && y2 >= ny2) {
*st = n->childNum;
*tem = n->tSum;
return;
}
else {
//part with memory issue
long long* tl = new long long;
int* sl = new int;
*tl = 0; *sl = 0;
if (l) Search(x1, x2, y1, y2, l, sl, tl);
*st += (*sl );
*tem += (*tl);
delete tl, sl;
long long* tr = new long long;
int* sr = new int;
if (r) Search(x1, x2, y1, y2, r, sr, tr);
*st += (*sr);
*tem += (*tr);
delete tr, sr;
if (nx >= x1 && nx <= x2 && ny >= y1 && ny <= y2) {
*st += 1;
*tem += n->t;
}
//this goes OK
long long tl = 0;
int sl = 0;
if (l) Search(x1, x2, y1, y2, l, &sl, &tl);
*st += (sl);
*tem += (tl);
long long tr = 0;
int sr = 0;
if (r) Search(x1, x2, y1, y2, r, &sr, &tr);
*st += (sr);
*tem += (tr);
if (nx >= x1 && nx <= x2 && ny >= y1 && ny <= y2) {
*st += 1;
*tem += n->t;
}
}
return;
}
Thanks to #nwp, I realize that this is a trivial problem.
The reason that the original code didn't work is that delete has higher precedence than comma, so delete a, b, c; is the same as (delete a), b, c, so,
delete a,b,c; only deletes a.
Likewise, cin >> a,b; is the same as cin >> a;
check this
Related
I'm currently following Andre Lamothe's book Tricks of the Windows Game Programming Gurus and trying to write my own software renderer with Win32 GDI. However, I got stuck at the triangle rasterization part of the book where the author is using Bresenham's line algorithm. I managed to get the rasterization to work on DirectX, but not on Win32 GDI despite identical rendering code. Both renders a triangle but the DirectX one renders it correctly while the Win32 almost renders it correctly
Link to my code: https://pastebin.com/VwySmQXS
It could be worth mention that the DirectX version is written in c++, while my own is written in C. I wasn't able to get a good screenshot of the two triangles so here is a picture painted in paint of how they both look.
Left is DirectX (how I want it to look), right is Win32 GDI:
Am I missing something here? Both draw_triangle_2d are called with the same arguments.
static void draw_top_tri(struct render_buffer *buffer,
int x1, int y1,
int x2, int y2,
int x3, int y3,
float r, float g, float b, float a)
{
unsigned int color = vec4_to_uint(vec4_mul(Vec4(r, g, b, a), 255.0f));
// this function draws a triangle that has a flat top
float dx_right, // the dx/dy ratio of the right edge of line
dx_left, // the dx/dy ratio of the left edge of line
xs, xe, // the starting and ending points of the edges
height; // the height of the triangle
int temp_x, // used during sorting as temps
temp_y,
right, // used by clipping
left;
// destination address of next scanline
unsigned int *dest_addr = NULL;
// test order of x1 and x2
if(x2 < x1)
{
temp_x = x2;
x2 = x1;
x1 = temp_x;
} // end if swap
// compute delta's
height = (float)(y3 - y1);
dx_left = (x3 - x1) / height;
dx_right = (x3 - x2) / height;
// set starting points
xs = (float)x1;
xe = (float)x2 + (float)0.5;
// perform y clipping
if(y1 < MIN_CLIP_Y)
{
// compute new xs and ys
xs = xs + dx_left * (float)(-y1 + MIN_CLIP_Y);
xe = xe + dx_right * (float)(-y1 + MIN_CLIP_Y);
// reset y1
y1 = MIN_CLIP_Y;
} // end if top is off screen
if(y3 > MAX_CLIP_X)
y3 = MAX_CLIP_X;
// compute starting address in video memory
dest_addr = (unsigned int *)buffer->memory + y1 * buffer->width;
// test if x clipping is needed
if(x1 >= MIN_CLIP_X && x1 <= MAX_CLIP_X &&
x2 >= MIN_CLIP_X && x2 <= MAX_CLIP_X &&
x3 >= MIN_CLIP_X && x3 <= MAX_CLIP_X)
{
// draw the triangle
for(temp_y = y1; temp_y <= y3; temp_y++, dest_addr += buffer->width)
{
memset((unsigned int *)dest_addr + (unsigned int)xs,
color, (unsigned int)(xe - xs + 1) * 4);
// adjust starting point and ending point
xs += dx_left;
xe += dx_right;
} // end for
} // end if no x clipping needed
else
{
// clip x axis with slower version
// draw the triangle
for(temp_y = y1; temp_y <= y3; temp_y++, dest_addr += buffer->width)
{
// do x clip
left = (int)xs;
right = (int)xe;
// adjust starting point and ending point
xs += dx_left;
xe += dx_right;
// clip line
if(left < MIN_CLIP_X)
{
left = MIN_CLIP_X;
if(right < MIN_CLIP_X)
continue;
}
if(right > MAX_CLIP_X)
{
right = MAX_CLIP_X;
if(left > MAX_CLIP_X)
continue;
}
memset((unsigned int *)dest_addr + (unsigned int)left,
color, (unsigned int)(right - left + 1) * 4);
} // end for
} // end else x clipping needed
} // end Draw_Top_Tri
static void
draw_bottom_tri(struct render_buffer *buffer,
int x1, int y1,
int x2, int y2,
int x3, int y3,
float r, float g, float b, float a)
{
unsigned int color = vec4_to_uint(vec4_mul(Vec4(r, g, b, a), 255.0f));
// this function draws a triangle that has a flat bottom
float dx_right, // the dx/dy ratio of the right edge of line
dx_left, // the dx/dy ratio of the left edge of line
xs, xe, // the starting and ending points of the edges
height; // the height of the triangle
int temp_x, // used during sorting as temps
temp_y,
right, // used by clipping
left;
// destination address of next scanline
unsigned int *dest_addr;
// test order of x1 and x2
if(x3 < x2)
{
temp_x = x2;
x2 = x3;
x3 = temp_x;
} // end if swap
// compute delta's
height = (float)(y3 - y1);
dx_left = (x2 - x1) / height;
dx_right = (x3 - x1) / height;
// set starting points
xs = (float)x1;
xe = (float)x1; // +(float)0.5;
// perform y clipping
if(y1 < MIN_CLIP_Y)
{
// compute new xs and ys
xs = xs + dx_left * (float)(-y1 + MIN_CLIP_Y);
xe = xe + dx_right * (float)(-y1 + MIN_CLIP_Y);
// reset y1
y1 = MIN_CLIP_Y;
} // end if top is off screen
if(y3 > MAX_CLIP_X)
y3 = MAX_CLIP_X;
// compute starting address in video memory
dest_addr = (unsigned int *)buffer->memory + y1 * buffer->width;
// test if x clipping is needed
if(x1 >= MIN_CLIP_X && x1 <= MAX_CLIP_X &&
x2 >= MIN_CLIP_X && x2 <= MAX_CLIP_X &&
x3 >= MIN_CLIP_X && x3 <= MAX_CLIP_X)
{
// draw the triangle
for(temp_y = y1; temp_y <= y3; temp_y++, dest_addr += buffer->width)
{
memset((unsigned int *)dest_addr + (unsigned int)xs,
color, (unsigned int)(xe - xs + 1) * 4);
// adjust starting point and ending point
xs += dx_left;
xe += dx_right;
} // end for
} // end if no x clipping needed
else
{
// clip x axis with slower version
// draw the triangle
for(temp_y = y1; temp_y <= y3; temp_y++, dest_addr += buffer->width)
{
// do x clip
left = (int)xs;
right = (int)xe;
// adjust starting point and ending point
xs += dx_left;
xe += dx_right;
// clip line
if(left < MIN_CLIP_X)
{
left = MIN_CLIP_X;
if(right < MIN_CLIP_X)
continue;
}
if(right > MAX_CLIP_X)
{
right = MAX_CLIP_X;
if(left > MAX_CLIP_X)
continue;
}
memset((unsigned int *)dest_addr + (unsigned int)left,
color, (unsigned int)(right - left + 1) * 4);
} // end for
} // end else x clipping needed
} // end Draw_Bottom_Tri}
ENGINE_CORE_EXPORT void
draw_triangle_2d(struct render_buffer *buffer,
int x1, int y1,
int x2, int y2,
int x3, int y3,
float r, float g, float b, float a)
{
// this function draws a triangle on the destination buffer
// it decomposes all triangles into a pair of flat top, flat bottom
int temp_x, // used for sorting
temp_y,
new_x;
// test for h lines and v lines
if((x1 == x2 && x2 == x3) || (y1 == y2 && y2 == y3))
return;
// sort p1,p2,p3 in ascending y order
if(y2 < y1)
{
temp_x = x2;
temp_y = y2;
x2 = x1;
y2 = y1;
x1 = temp_x;
y1 = temp_y;
} // end if
// now we know that p1 and p2 are in order
if(y3 < y1)
{
temp_x = x3;
temp_y = y3;
x3 = x1;
y3 = y1;
x1 = temp_x;
y1 = temp_y;
} // end if
// finally test y3 against y2
if(y3 < y2)
{
temp_x = x3;
temp_y = y3;
x3 = x2;
y3 = y2;
x2 = temp_x;
y2 = temp_y;
} // end if
// do trivial rejection tests for clipping
if(y3 < MIN_CLIP_Y || y1 > MAX_CLIP_X ||
(x1 < MIN_CLIP_X && x2 < MIN_CLIP_X && x3 < MIN_CLIP_X) ||
(x1 > MAX_CLIP_X && x2 > MAX_CLIP_X && x3 > MAX_CLIP_X))
return;
// test if top of triangle is flat
if(y1 == y2)
{
draw_top_tri(buffer, x1, y1, x2, y2, x3, y3, r, g, b, a);
} // end if
else
if(y2 == y3)
{
draw_bottom_tri(buffer, x1, y1, x2, y2, x3, y3, r, g, b, a);
} // end if bottom is flat
else
{
// general triangle that's needs to be broken up along long edge
new_x = x1 + (int)(0.5 + (float)(y2 - y1) * (float)(x3 - x1) / (float)(y3 - y1));
// draw each sub-triangle
draw_bottom_tri(buffer, x1, y1, new_x, y2, x2, y2, r, g, b, a);
draw_top_tri(buffer, x2, y2, new_x, y2, x3, y3, r, g, b, a);
} // end else
} // end Draw_Triangle_2D
I am writing code to determine if a polyline is self-intersecting or not.
If at least two links of a polyline intersect (at their internal points), it is called self-intersecting.
To begin with, I write a function to determine the intersection of two intersect segments. There I use the school straight line formula y = kx + b.
And then the function f, where I check every 2 points of 2 segments for intersection. In principle, everything works, but the code breaks when some part of the polyline does not exactly intersect, but simply "touches" some other segment of this polyline. For example, as in the test:
Test:
4
0 0
2 2
2 1
1 1
Code:
#include <iostream>
#include <fstream>
using namespace std;
ifstream fin("input.txt");
ofstream fout("output.txt");
class peresec{
public:
double x,y;
};
int intersect(double x1, double y1, double x2, double y2, double x3, double y3, double x4, double y4)
{
double k1, k2, b1, b2, x, y, tmp;
if(x1>=x2) {tmp=x1; x1=x2; x2=tmp; tmp=y1; y1=y2; y2=tmp;}
if(x3>=x4) {tmp=x3; x3=x4; x4=tmp; tmp=y3; y3=y4; y4=tmp;}
if(y1==y2) k1=0; else k1 = ( y2 - y1 ) / ( x2 - x1 );
if(y3==y4) k2=0; else k2 = ( y4 - y3 ) / ( x4 - x3 );
if(k1 == k2) return 0;
b1=y1-k1*x1;
b2=y3-k2*x3;
x = (b2-b1)/(k1-k2);
y = k1*x + b1;
if(x1<=x && x3<=x && x2>=x && x4>=x && !((x==x1 && y==y1) || (x==x2 && y==y2) || (x==x3 && y==y3) || (x==x4 && y==y4)))
{return 1;}
else
return 0;
}
void f(peresec *a, int n)
{
int flag;
for (int i=0; i<n; i++)
for (int j=0; j<n; j++)
{
flag=intersect(a[i].x, a[i].y, a[(i + 1) % n].x, a[(i + 1) % n].y, a[j].x, a[j].y, a[(j + 1) % n].x, a[(j + 1) % n].y);
if(flag==1) {fout << 1; return;}
}
if(flag == 0){fout << 0; return;}
}
int main()
{
long long count;
peresec *a;
if( !(fin >> count)){fout<<0; return 0;}
fin.seekg(0);
fin >> count;
if(count == 0) {fout<<0; return 0;}
a = new peresec[count];
for(int i = 0; i < count; i++){ fin >> a[i].x; fin >> a[i].y;}
f(a,count);
return 0;
}
Then, having experienced a failure on this code, I decided to change the logic of the intersect function and did something like:
bool intersect(double x1, double y1, double x2, double y2, double x3, double y3, double x4, double y4)
{
double v1, v2, v3, v4;
v1=(x4-x3)*(y1-y3)-(y4-y3)*(x1-x3);
v2=(x4-x3)*(y2-y3)-(y4-y3)*(x2-x3);
v3=(x2-x1)*(y3-y1)-(y2-y1)*(x3-x1);
v4=(x2-x1)*(y4-y1)-(y2-y1)*(x4-x1);
if((v1*v2<0) && (v3*v4<0)) return true;
else return false;
}
But even here the code breaks on this test. Should output 1 if there is a self-intersection, otherwise 0.
Most likely the problem is in the for loop in the function f. I've already tried everything.
I also tried this:
for (int i = 0; i < n - 1; i ++)
for (int j = i + 2; i < n; j ++)
Unfortunately, it did not help.
Can you explain why the code breaks???
I am afraid that you cannot always test this locally. In the example below, it is impossible to tell if there is a crossing or not without knowing the order of the links.
Another nasty case is when an endpoint falls "on" a link, and due to numerical inaccuracies, there could be zero or two intersections detected, or, even worse, only one. And adding tolerances does not help !
In order to resolve these difficult cases, you must first question the exact reason why you want to detect those self-intersections. Because the correct decisions are application-dependent.
As the title suggests I'm having an issue with my windows console application in c++. So far I've created a class, Console, to represent all of the functions I repeatedly use to construct a windows console.
I implemented a line drawing algorithm and had up to 500 fps when filling the screen with magenta characters and drawing a line in white.
However, I implemented a triangle drawing algorithm next (just three line drawing calls consecutively) and was surprised to find out that the frame rate dropped to about 20. I removed this code again but the bad frame rate persisted. I really don't know why this has happend because I've essentially ended up not changing anything.
For reference, here is the Console code (without header):
Console::Console(int width, int height):
m_handle(GetStdHandle(STD_OUTPUT_HANDLE)),
m_width(width),
m_height(height),
m_screen({ 0, 0, 1, 1 }),
m_title(L"Demo"),
m_buffer(new CHAR_INFO[(size_t)m_width * (size_t)m_height])
{
memset(m_buffer, 0, sizeof(CHAR_INFO) * m_width * m_height);
}
Console::~Console()
{
if (m_buffer)
delete[] m_buffer;
}
int Console::Construct(int char_w, int char_h)
{
if (m_handle == INVALID_HANDLE_VALUE)
return BAD_HANDLE;
if (!SetConsoleWindowInfo(m_handle, true, &m_screen))
return WINDOW_INFO_ERROR;
COORD screen_coord = { (short)m_width, (short)m_height };
if (!SetConsoleScreenBufferSize(m_handle, screen_coord))
return SCREEN_BUFFER_SIZE_ERROR;
CONSOLE_FONT_INFOEX cinfo;
cinfo.cbSize = sizeof(cinfo);
cinfo.dwFontSize.X = (short)char_w;
cinfo.dwFontSize.Y = (short)char_h;
cinfo.FontFamily = FF_DONTCARE;
cinfo.FontWeight = FW_NORMAL;
cinfo.nFont = 0;
wcscpy_s(cinfo.FaceName, L"Consolas");
if (!SetCurrentConsoleFontEx(m_handle, false, &cinfo))
return CONSOLE_FONT_ERROR;
CONSOLE_SCREEN_BUFFER_INFO cbuffinfo;
if (!GetConsoleScreenBufferInfo(m_handle, &cbuffinfo))
return GET_BUFFER_INFO_ERROR;
if (cbuffinfo.dwMaximumWindowSize.X < m_width)
return HORIZONTAL_SIZE_TOO_LARGE_ERROR;
if (cbuffinfo.dwMaximumWindowSize.Y < m_height)
return VERTICAL_SIZE_TOO_LARGE_ERROR;
m_screen = { 0, 0, (short)m_width - 1, (short)m_height - 1 };
if (!SetConsoleWindowInfo(m_handle, true, &m_screen))
return WINDOW_INFO_ERROR;
if (!SetConsoleCtrlHandler((PHANDLER_ROUTINE)HandleClose, true))
return CLOSE_HANDLER_ERROR;
return OK;
}
void Console::Start()
{
active = true;
std::thread t(&Console::DoLoop, this);
t.join();
}
void Console::DoLoop()
{
if (!OnCreate())
active = false;
std::chrono::high_resolution_clock::time_point t1, t2;
t1 = std::chrono::high_resolution_clock::now();
t2 = t1;
while (active)
{
t2 = std::chrono::high_resolution_clock::now();
std::chrono::duration<float> diff = t2 - t1;
t1 = t2;
float dt = diff.count();
if (!OnUpdate(dt))
active = false;
wchar_t title_buff[256];
swprintf_s(title_buff, L"Console Application - %s - FPS: %3.2f", m_title.c_str(), 1.0f / dt);
SetConsoleTitle(title_buff);
WriteConsoleOutput(m_handle, m_buffer, { (short)m_width, (short)m_height }, { 0, 0 }, &m_screen);
}
finished.notify_one();
}
void Console::Fill(int x, int y, short glyph, short color)
{
if (x < 0 || y < 0 || x >= m_width || y >= m_height) return;
CHAR_INFO& ci = m_buffer[y * m_width + x];
ci.Char.UnicodeChar = glyph;
ci.Attributes = color;
}
void Console::Fill(int x1, int y1, int x2, int y2, short glyph, short color)
{
if (x1 < 0) x1 = 0;
if (y1 < 0) y1 = 0;
if (x1 >= m_width) return;
if (y1 >= m_height) return;
if (x2 >= m_width) x2 = m_width - 1;
if (y2 >= m_height) y2 = m_height - 1;
if (x2 < 0) return;
if (y2 < 0) return;
for (int x = x1; x <= x2; x++)
{
for (int y = y1; y <= y2; y++)
{
CHAR_INFO& ci = m_buffer[y * m_width + x];
ci.Char.UnicodeChar = glyph;
ci.Attributes = color;
}
}
}
void Console::Clear(short glyph, short color)
{
for (int x = 0; x < m_width; x++)
{
for (int y = 0; y < m_height; y++)
{
CHAR_INFO& ci = m_buffer[y * m_width + x];
ci.Char.UnicodeChar = glyph;
ci.Attributes = color;
}
}
}
void Console::Line(int x1, int y1, int x2, int y2, short glyph, short color)
{
int dx = x2 - x1;
int dy = y2 - y1;
int adx = dx > 0 ? dx : -dx;
int ady = dy > 0 ? dy : -dy;
int dy2 = dy + dy;
int dx2 = dx + dx;
int adx2 = dx2 > 0 ? dx2 : -dx2;
int ady2 = dy2 > 0 ? dy2 : -dy2;
if (adx > ady)
{
if (x1 > x2)
{
int x = x1;
x1 = x2;
x2 = x;
dx = -dx;
dx2 = -dx2;
int y = y1;
y1 = y2;
y2 = y;
dy = -dy;
dy2 = -dy2;
}
int sy = dy > 0 ? 1 : dy < 0 ? -1 : 0;
int err = ady;
for (int x = x1, y = y1; x <= x2; x++)
{
Fill(x, y, glyph, color);
err += ady2;
if (err > adx2)
{
err -= adx2;
y += sy;
}
}
}
else
{
if (y1 > y2)
{
int x = x1;
x1 = x2;
x2 = x;
dx = -dx;
dx2 = -dx2;
int y = y1;
y1 = y2;
y2 = y;
dy = -dy;
dy2 = -dy2;
}
int sx = dx > 0 ? 1 : dx < 0 ? -1 : 0;
int err = adx;
for (int x = x1, y = y1; y <= y2; y++)
{
Fill(x, y, glyph, color);
err += adx2;
if (err > ady2)
{
err -= ady2;
x += sx;
}
}
}
}
void Console::Triangle(int x1, int y1, int x2, int y2, int x3, int y3, short glyph, short color)
{
Line(x1, y1, x2, y2, glyph, color);
Line(x2, y2, x3, y3, glyph, color);
Line(x3, y3, x1, y1, glyph, color);
}
BOOL Console::HandleClose(DWORD evt)
{
if (evt == CTRL_CLOSE_EVENT)
{
active = false;
std::unique_lock<std::mutex> ul(lock);
finished.wait(ul);
}
return true;
}
Here is the very short main code:
class Game : public Console
{
public:
Game(int width, int height):
Console(width, height)
{
}
bool OnCreate() override
{
return true;
}
bool OnUpdate(float dt) override
{
Clear(GLYPH_SOLID, FG_BLACK);
//Triangle(20, 20, 300, 40, 150, 200);
return true;
}
};
int main()
{
Game game(400, 300);
int err = game.Construct(2, 2);
if (err == Console::OK)
game.Start();
}
The error constants are just defined integer codes in the header file.
If any additional code is needed please let me know. Thanks in advance!
EDIT:
First question, I have tried to calculate the expression, di+1=di+2*Δy−2*Δx(yi+1−yi) for the four quadrants. Irrespective of the quadrant, the expression was found to be the same, including signs.
Am I right, or, there has been some mistakes in my calculations (hence, I am wrong)?
Second question, if this expression is only applicable for the first octet, how can I apply this to other octets? To me, there is no way to determine which octet I am working on. Coz, the value of m always represent two opposite octets. For example, if 0<m<1, it represents 1st and 5th octet. Right?
Thirdly, how can we determine the initial/starting value of di?
#include <iostream>
#include "utils.h"
void BresenhamLine(double x1, double y1, double x2, double y2, int color)
{
if(x1>x2 || y1>y2)
{
Swap(x1, x2);
Swap(y1, y2);
}
double x = x1;
double y = y1;
double dx = x2 - x1;
double dy = y2 - y1;
double dt = 2 * (dy - dx);
double ds = 2 * dy;
double d = 2*dy - dx;
PlotPixel(x, y, color);
if(dx>=dy)
{
while(x<=x2)
{
x++;
if(d<0)
{
d = d + ds;
}
else
{
y++;
d = d + dt;
}
PlotPixel(x, y, color);
}
}
else
{
while(y<=y2)
{
y++;
if(d<0)
{
x++;
d = d + dt;
}
else
{
d = d + ds;
}
PlotPixel(x, y, color);
}
}
}
int main()
{
int gm = DETECT;
int gd = DETECT;
initgraph(&gm, &gd, "");
double x1 = 0;
double y1 = 0;
double r = 50;
double x2 = 0;
double y2 = 0;
double signx = 0;
double signy = 0;
for(int theta=0 ; theta<=360 ; theta++)
{
x2 = r * cos(DegreeToRad((double) theta));
y2 = r * sin(DegreeToRad((double) theta));
x1 = 5 * cos(DegreeToRad((double) theta));
y1 = 5 * sin(DegreeToRad((double) theta));
BresenhamLine(x1, y1, x2, y2, YELLOW);
}
getch();
closegraph();
return 0;
}
The lines that go through 2nd and 4th quadrant are not showing up.
How to fix that with some minor changes in my code?
With this input: x1: 100 y1: -100 x2: -100 y2: 100
this logic:
if(x1>x2 || y1>y2)
{
Swap(x1, x2);
Swap(y1, y2);
}
fails.
This page is a good place to start. It shows code as well for 1 of the octants:
http://www.cs.helsinki.fi/group/goa/mallinnus/lines/bresenh.html
I think you need to swap the x if x1 > x2 and swap the y if y1 > y2 but not swap both if only 1 of those is true.
The external links section of the Wikipedia page contains several links to ready-made implementations that you can study.
Try this:
void BresenhamLine( double x1, double y1, double x2, double y2, int color )
{
const bool steep = (std::abs(y2 - y1) > std::abs(x2 - x1));
if(steep)
{
std::swap(x1, y1);
std::swap(x2, y2);
}
if(x1 > x2)
{
std::swap(x1, x2);
std::swap(y1, y2);
}
double dx = x2 - x1;
double dy = std::abs(y2 - y1);
double error = dx / 2;
int ystep = (y1 < y2) ? 1 : -1;
int y = (int)y1;
int maxX = (int)x2;
for(int x=(int)x1; x<maxX; x++)
{
if(steep)
{
PlotPixel(y, x, color);
}
else
{
PlotPixel(x, y, color);
}
error -= dy;
if(error < 0)
{
y += ystep;
error += dx;
}
}
}
I got this by slightly modifying the code here:http://rosettacode.org/wiki/Bitmap/Bresenham's_line_algorithm#C.2B.2B
I've made simple method to draw line with fixed thickness.
Here's my function:
void ColoringScene::drawThickLine(int x1, int y1, int x2, int y2, int r, int g, int b, int a, float wd, bool began, unsigned char* data, unsigned char* areasData){
if(began){
//if just began draw "dot" with filled circle
drawFilledCircle(x1, y1, 1, wd, r, g, b, a, data, areasData);
return;
}
//otherwise calculate angle between two points
int angle = (int)(atan2(-y2 + y1, x2 - x1) * 180 / M_PI);
int a1 = angle - 90;
int a2 = angle + 90;
//calculate a distance between two points
float diff = sqrtf(powf(x1 - x2, 2) + powf(y1 - y2, 2));
if(diff > wd) diff = wd;
//find all points in arc from angle - 90 to angle + 90
for(float _r = a1; _r < a2; _r+=1.0f){
float _x1 = cos(CC_DEGREES_TO_RADIANS(_r)) * wd + x1;
float _y1 = -sin(CC_DEGREES_TO_RADIANS(_r)) * wd + y1;
float _x2 = cos(CC_DEGREES_TO_RADIANS(_r)) * wd + x2;
float _y2 = -sin(CC_DEGREES_TO_RADIANS(_r)) * wd + y2;
//connect point from 2 arcs with line
drawLine(floor(_x1), floor(_y1), floor(_x2), floor(_y2), r, g, b, a, data, areasData);
}
}
it should draw line from (x1, y1) to (x2, y2) with color (r, g, b, a) and thickness wd. I use this method on drawing while moving finger on screen so I've also added extra parameter "began", which says if it's touch began or touch move. data is an array of pixels. areasData does not matter.
But it's not working as expected, here's an example result:
There could be a bit of compression, but you can see 2 dots, which were drawn fine and a curve build from many "thick" lines with holes.
If "wd" is not big enough the problem is not present. I'm almost sure it's some sort of problem with precision.
I tried:
- changing for loop from 0 to 360 (not angle-90, angle+90).
- using round instead of floor
- using sin instead of -sin (y is inverted anyway in my case)
- using _r lower than 1.0 like: 0.05.
And by given fixed thickness (in this example's 60 pixels) there's no way to set parameters like _r increment or angles to not draw without holes.
I decided to write my own function to do this, because other methods I found on web just didn't work as expected (especially with anti-aliasing, which will be perfect solution for me).
Here's drawLine function taken from website: http://willperone.net/Code/codeline.php
void ColoringScene::drawLine(int x1, int y1, int x2, int y2, int r, int g, int b, int a, unsigned char* data, unsigned char* areasData){
int dy = y2 - y1;
int dx = x2 - x1;
int stepx, stepy;
if (dy < 0) { dy = -dy; stepy = -1; } else { stepy = 1; }
if (dx < 0) { dx = -dx; stepx = -1; } else { stepx = 1; }
dy <<= 1; // dy is now 2*dy
dx <<= 1; // dx is now 2*dx
setPixelWithCheckingArea(x1, y1, r, g, b, a, data, areasData);
if (dx > dy)
{
int fraction = dy - (dx >> 1); // same as 2*dy - dx
while (x1 != x2)
{
if (fraction >= 0)
{
y1 += stepy;
fraction -= dx; // same as fraction -= 2*dx
}
x1 += stepx;
fraction += dy; // same as fraction -= 2*dy
setPixelWithCheckingArea(x1, y1, r, g, b, a, data, areasData);
}
} else {
int fraction = dx - (dy >> 1);
while (y1 != y2) {
if (fraction >= 0) {
x1 += stepx;
fraction -= dy;
}
y1 += stepy;
fraction += dx;
setPixelWithCheckingArea(x1, y1, r, g, b, a, data, areasData);
}
}
}