How to convert ffmpeg video frame to YUV444? - c++

I have been following a tutorial on how to use ffmpeg and SDL to make a simple video player with no audio (yet). While looking through the tutorial I realized it was out of date and many of the functions it used, for both ffmpeg and SDL, were deprecated. So I searched for an up-to-date solution and found a stackoverflow question answer that completed what the tutorial was missing.
However, it uses YUV420 which is of low quality. I want to implement YUV444 and after studying chroma-subsampling for a bit and looking at the different formats for YUV am confused as to how to implement it. From what I understand YUV420 is a quarter of the quality YUV444 is. YUV444 means every pixel has its own chroma sample and as such is more detailed while YUV420 means pixels are grouped together and have the same chroma sample and therefore is less detailed.
And from what I understand the different formats of YUV(420, 422, 444) are different in the way they order y, u, and v. All of this is a bit overwhelming because I haven't done much with codecs, conversions, etc. Any help would be much appreciated and if additional info is needed please let me know before downvoting.
Here is the code from the answer I mentioned concerning the conversion to YUV420:
texture = SDL_CreateTexture(
renderer,
SDL_PIXELFORMAT_YV12,
SDL_TEXTUREACCESS_STREAMING,
pCodecCtx->width,
pCodecCtx->height
);
if (!texture) {
fprintf(stderr, "SDL: could not create texture - exiting\n");
exit(1);
}
// initialize SWS context for software scaling
sws_ctx = sws_getContext(pCodecCtx->width, pCodecCtx->height,
pCodecCtx->pix_fmt, pCodecCtx->width, pCodecCtx->height,
AV_PIX_FMT_YUV420P,
SWS_BILINEAR,
NULL,
NULL,
NULL);
// set up YV12 pixel array (12 bits per pixel)
yPlaneSz = pCodecCtx->width * pCodecCtx->height;
uvPlaneSz = pCodecCtx->width * pCodecCtx->height / 4;
yPlane = (Uint8*)malloc(yPlaneSz);
uPlane = (Uint8*)malloc(uvPlaneSz);
vPlane = (Uint8*)malloc(uvPlaneSz);
if (!yPlane || !uPlane || !vPlane) {
fprintf(stderr, "Could not allocate pixel buffers - exiting\n");
exit(1);
}
uvPitch = pCodecCtx->width / 2;
while (av_read_frame(pFormatCtx, &packet) >= 0) {
// Is this a packet from the video stream?
if (packet.stream_index == videoStream) {
// Decode video frame
avcodec_decode_video2(pCodecCtx, pFrame, &frameFinished, &packet);
// Did we get a video frame?
if (frameFinished) {
AVPicture pict;
pict.data[0] = yPlane;
pict.data[1] = uPlane;
pict.data[2] = vPlane;
pict.linesize[0] = pCodecCtx->width;
pict.linesize[1] = uvPitch;
pict.linesize[2] = uvPitch;
// Convert the image into YUV format that SDL uses
sws_scale(sws_ctx, (uint8_t const * const *)pFrame->data,
pFrame->linesize, 0, pCodecCtx->height, pict.data,
pict.linesize);
SDL_UpdateYUVTexture(
texture,
NULL,
yPlane,
pCodecCtx->width,
uPlane,
uvPitch,
vPlane,
uvPitch
);
SDL_RenderClear(renderer);
SDL_RenderCopy(renderer, texture, NULL, NULL);
SDL_RenderPresent(renderer);
}
}
// Free the packet that was allocated by av_read_frame
av_free_packet(&packet);
SDL_PollEvent(&event);
switch (event.type) {
case SDL_QUIT:
SDL_DestroyTexture(texture);
SDL_DestroyRenderer(renderer);
SDL_DestroyWindow(screen);
SDL_Quit();
exit(0);
break;
default:
break;
}
}
// Free the YUV frame
av_frame_free(&pFrame);
free(yPlane);
free(uPlane);
free(vPlane);
// Close the codec
avcodec_close(pCodecCtx);
avcodec_close(pCodecCtxOrig);
// Close the video file
avformat_close_input(&pFormatCtx);
EDIT:
After more research I learned that in YUV420 is stored with all Y's first then a combination of U and V bytes one after another as illustrated by this image:
(source: wikimedia.org)
However I also learned that YUV444 is stored in the order U, Y, V and repeats like this picture shows:
I tried changing some things around in code:
// I changed SDL_PIXELFORMAT_YV12 to SDL_PIXELFORMAT_UYVY
// as to reflect the order of YUV444
texture = SDL_CreateTexture(
renderer,
SDL_PIXELFORMAT_UYVY,
SDL_TEXTUREACCESS_STREAMING,
pCodecCtx->width,
pCodecCtx->height
);
if (!texture) {
fprintf(stderr, "SDL: could not create texture - exiting\n");
exit(1);
}
// Changed AV_PIX_FMT_YUV420P to AV_PIX_FMT_YUV444P
// for rather obvious reasons
sws_ctx = sws_getContext(pCodecCtx->width, pCodecCtx->height,
pCodecCtx->pix_fmt, pCodecCtx->width, pCodecCtx->height,
AV_PIX_FMT_YUV444P,
SWS_BILINEAR,
NULL,
NULL,
NULL);
// There are as many Y, U and V bytes as pixels I just
// made yPlaneSz and uvPlaneSz equal to the number of pixels
yPlaneSz = pCodecCtx->width * pCodecCtx->height;
uvPlaneSz = pCodecCtx->width * pCodecCtx->height;
yPlane = (Uint8*)malloc(yPlaneSz);
uPlane = (Uint8*)malloc(uvPlaneSz);
vPlane = (Uint8*)malloc(uvPlaneSz);
if (!yPlane || !uPlane || !vPlane) {
fprintf(stderr, "Could not allocate pixel buffers - exiting\n");
exit(1);
}
uvPitch = pCodecCtx->width * 2;
while (av_read_frame(pFormatCtx, &packet) >= 0) {
// Is this a packet from the video stream?
if (packet.stream_index == videoStream) {
// Decode video frame
avcodec_decode_video2(pCodecCtx, pFrame, &frameFinished, &packet);
// Rearranged the order of the planes to reflect UYV order
// then set linesize to the number of Y, U and V bytes
// per row
if (frameFinished) {
AVPicture pict;
pict.data[0] = uPlane;
pict.data[1] = yPlane;
pict.data[2] = vPlane;
pict.linesize[0] = pCodecCtx->width;
pict.linesize[1] = pCodecCtx->width;
pict.linesize[2] = pCodecCtx->width;
// Convert the image into YUV format that SDL uses
sws_scale(sws_ctx, (uint8_t const * const *)pFrame->data,
pFrame->linesize, 0, pCodecCtx->height, pict.data,
pict.linesize);
SDL_UpdateYUVTexture(
texture,
NULL,
yPlane,
1,
uPlane,
uvPitch,
vPlane,
uvPitch
);
//.................................................
But now I get an access violation at the call to SDL_UpdateYUVTexture... I'm honestly not sure what's wrong. I think it may have to do with setting AVPicture pic's member data and linesize improperly but I'm not positive.

After many hours of scouring the web for possible answers I stumbled upon this post in which someone was asking about YUV444 support for packed or planar mode. The only current format I've found is AYUV which is packed.
The answer they got was a list of all the currently supported formats which did not include AYUV. Therefore SDL does not support YUV444.
The only solution is to use a different library that supports AYUV / YUV444.

Related

C/C++ ffmpeg output is low quality and blurry

I've made a program that takes a video file as input, edits it using opengl/glfw, then encodes that edited video. The program works just fine, I get the desired output. However the video quality is really low and I don't know how to adjust it. The editing seems fine, since the display on the glfw window is high resolution. I don'T think its about scaling since it just reads the pixels on the glfw window and passes it to the encoder, and the glfw window is high res.
Here is what the glfw window looks like when the program is running:
I'm encoding in YUV420P formatting, but the information I'm getting from the glfw window is in RGBA format. I'm getting the data using:
glReadPixels(0, 0,
gl_width, gl_height,
GL_RGBA, GL_UNSIGNED_BYTE,
(GLvoid*) state.glBuffer
);
I simply got the muxing.c example from ffmpeg's docs and edited it slightly so it looks something like this:
AVFrame* video_encoder::get_video_frame(OutputStream *ost)
{
AVCodecContext *c = ost->enc;
/* check if we want to generate more frames */
if (av_compare_ts(ost->next_pts, c->time_base,
(float) STREAM_DURATION / 1000, (AVRational){ 1, 1 }) > 0)
return NULL;
/* when we pass a frame to the encoder, it may keep a reference to it
* internally; make sure we do not overwrite it here */
if (av_frame_make_writable(ost->frame) < 0)
exit(1);
if (c->pix_fmt != AV_PIX_FMT_YUV420P) {
/* as we only generate a YUV420P picture, we must convert it
* to the codec pixel format if needed */
if (!ost->sws_ctx) {
ost->sws_ctx = sws_getContext(c->width, c->height,
AV_PIX_FMT_YUV420P,
c->width, c->height,
c->pix_fmt,
SCALE_FLAGS, NULL, NULL, NULL);
if (!ost->sws_ctx) {
fprintf(stderr,
"Could not initialize the conversion context\n");
exit(1);
}
}
#if __AUDIO_ONLY
image_for_audio_only(ost->tmp_frame, ost->next_pts, c->width, c->height);
#endif
sws_scale(ost->sws_ctx, (const uint8_t * const *) ost->tmp_frame->data,
ost->tmp_frame->linesize, 0, c->height, ost->frame->data,
ost->frame->linesize);
} else {
//This is where I set the information I got from the glfw window.
set_frame_yuv_from_rgb(ost->frame, ost->sws_ctx);
}
ost->frame->pts = ost->next_pts++;
return ost->frame;
}
void video_encoder::set_frame_yuv_from_rgb(AVFrame *frame, struct SwsContext *sws_context) {
const int in_linesize[1] = { 4 * width };
//uint8_t* dest[4] = { rgb_data, NULL, NULL, NULL };
sws_context = sws_getContext(
width, height, AV_PIX_FMT_RGBA,
width, height, AV_PIX_FMT_YUV420P,
SWS_BICUBIC, 0, 0, 0);
sws_scale(sws_context, (const uint8_t * const *)&rgb_data, in_linesize, 0,
height, frame->data, frame->linesize);
}
rgb_data is the buffer I got from the glfw window. It's simply an uint8_t*.
And at the end of all this, here is what the encoded output looks like when ran through mplayer:
It's much lower quality compare to the glfw window. How can I improve the quality of the video?
Here are encoding settings from youtube for a better quality:
https://support.google.com/youtube/answer/1722171
Make sure to have high bitrate and gop size. E.g. 5Mbps and 60 correspondingly.

sws_scale, YUV to RGB conversion

I need convert YUV to RGB. I also need the RGB values to be in the limited range (16-235).
I try to use sws_scale function for this task.
My code you can see below. But after conversion I got the black pixel is (0, 0, 0) instead of (16, 16, 16).
Maybe there are some options to tell sws_scale function to calculate the limited range.
AVFrame* frameRGB = avFrameConvertPixelFormat(_decodedBuffer[i].pAVFrame, AV_PIX_FMT_RGB24);
AVFrame* Decoder::avFrameConvertPixelFormat(const AVFrame* src, AVPixelFormat dstFormat) {
int width = src->width;
int height = src->height;
AVFrame* dst = allocPicture(dstFormat, width, height);
SwsContext* conversion = sws_getContext(width,
height,
(AVPixelFormat)src->format,
width,
height,
dstFormat,
SWS_FAST_BILINEAR,
NULL,
NULL,
NULL);
sws_scale(conversion, src->data, src->linesize, 0, height, dst->data, dst->linesize);
sws_freeContext(conversion);
dst->format = dstFormat;
dst->width = src->width;
dst->height = src->height;
return dst;
}
Also I tried convert YUV pixel to RGB pixel manualy with formula and I got correct result. From YUV (16, 128, 128) I got (16, 16, 16) in RGB.
cmpR = y + 1.402 * (v - 128);
cmpG = y - 0.3441 * (u - 128) - 0.7141 * (v - 128);
cmpB = y + 1.772 * (u - 128);
You may the source format to "full scale" YUVJ.
As far as I know, sws_scale has no option for selecting Studio RGB as output format.
Changing the input format is the best solution I can think of.
The color conversion formula of "JPEG: YUV -> RGB" is the same as the formula in your post.
Examples for setting the source format:
If src->format is PIX_FMT_YUV420P, set the format to PIX_FMT_YUVJ420P.
If src->format is PIX_FMT_YUV422P, set the format to PIX_FMT_YUVJ422P.
If src->format is PIX_FMT_YUV444P, set the format to PIX_FMT_YUVJ444P.
If PIX_FMT_YUV440P, use PIX_FMT_YUVJ440P.
I know the solution is not covering all the possibilists, and there might be some output pixels exceeding the range of [16, 235], so it's not the most general solution...
yuv to rgb conversion using FFMPEG I see lot of information given already for this above. However for code completeness I am re-sharing the code with missing allocPicture() function, header & library to include, it works for me like a charm. Thanks to #Валентин Никин & #Rotem for most of the info & code.
Headers:
#include <libswscale/swscale.h>
Link FFMPEG Library:
libswscale
static AVFrame* allocPicture(enum AVPixelFormat pix_fmt, int width, int height)
{
// Allocate a frame
AVFrame* frame = av_frame_alloc();
if (frame == NULL)
{
fprintf(stderr, "avcodec_alloc_frame failed");
}
if (av_image_alloc(frame->data, frame->linesize, width, height, pix_fmt, 1) < 0)
{
fprintf(stderr, "av_image_alloc failed");
}
frame->width = width;
frame->height = height;
frame->format = pix_fmt;
return frame;
}
static AVFrame* avFrameConvertPixelFormat(const AVFrame* src, enum AVPixelFormat dstFormat)
{
int width = src->width;
int height = src->height;
AVFrame* dst = allocPicture(dstFormat, width, height);
struct SwsContext* conversion = sws_getContext(width,
height,
(enum AVPixelFormat)src->format,
width,
height,
dstFormat,
SWS_FAST_BILINEAR | SWS_FULL_CHR_H_INT | SWS_ACCURATE_RND,
NULL,
NULL,
NULL);
sws_scale(conversion, src->data, src->linesize, 0, height, dst->data, dst->linesize);
sws_freeContext(conversion);
dst->format = dstFormat;
dst->width = src->width;
dst->height = src->height;
return dst;
}
// convert yuv420p10le to rgb24 (or any other RGB formats)
AVFrame* frame = avFrameConvertPixelFormat(frame, AV_PIX_FMT_RGB24);

BGRA to YUV420 FFmpeg giving bad output

My purpose is a screen recorder. I am using the Windows DXGI API to receive screenshots and I'm encoding the screenshots into a video using libx264. Feeding BGRA images directly to libx264 is producing weird colors in the output video. So, to get correct colors, I am trying to convert the BGRA to YUV420p. To speed up encoding, I am also trying to downscale the BGRA image.
So I am getting an 1920x1080 BGRA image and I want to convert it to 1280x720 YUV420p. For this, I am using FFmpeg swscale library to do both the format conversion and downscaling.
The problem is that the output video is coming like 3 images in the same frame. Please see this video. https://imgur.com/a/EYimjrJ
I tried just BGRA to YUV conversion without any downscaling and it is working fine. But BGRA to YUV with downscaling is giving this problem.
What is the cause for this problem? How do I fix it?
Here is my code snippet:
uint8_t* Image;
x264_picture_t picIn, picOut;
x264_picture_alloc(&picIn, X264_CSP_I420, 1280, 720);
SwsContext* sws = sws_getContext(1920, 1080, AV_PIX_FMT_BGRA, 1280, 720, AV_PIX_FMT_YUV420P, SWS_BILINEAR, NULL, NULL, NULL);
while (true)
{
take_screenshot(&Image);
AVFrame BGRA;
BGRA.linesize[0] = 1280 * 4;
BGRA.data[0] = Image;
sws_scale(sws, BGRA.data, BGRA.linesize, 0, 1080, picIn.img.plane, picIn.img.i_stride);
nal_size = x264_encoder_encode(h, &nals, &nal_count, &picIn, &picOut);
save_to_flv(nals, nal_size, nal_count);
}
Here are my libx264 parameters:
x264_param_default_preset(&param, preset, 0);
param.i_csp = X264_CSP_I420;
param.i_width = 1280;
param.i_height = 720;
param.i_fps_num = 30;
param.i_fps_den = 1;
param.rc.i_bitrate = 2500;
param.i_bframe = 0;
param.b_repeat_headers = 0;
param.b_annexb = 1;
x264_param_apply_profile(&param, 0);
h = x264_encoder_open(&param);
Change BGRA.linesize[0] to be 1920*4. You see this 3 images pattern because
1240*3 == 1920*2

What is AVHWAccel, and how can I use it?

I want to make use of hardware acceleration for decoding an h264 encoded MP4 file.
My computing environment:
Hardware: MacPro (2015 model)
Software: FFmpeg (installed by brew)
Here is the output of FFmpeg command:
$ffmpeg -hwaccels
Hardware acceleration methods:
vda
videotoolbox
According to this document, there are two options for my environment, that is, VDA and VideoToolBox. I tried VDA in C++:
Codec = avcodec_find_decoder_by_name("h264_vda");
It kind of worked, but the output of the pixel format is UYVY422 which I have trouble to deal with (any suggestion on how to render UYVY422 in C++? The ideal format is yuv420p)
So I want to try VideotoolBox, but there is no such simple thing like (it may work in the case of encoding though)
Codec = avcodec_find_decoder_by_name("h264_videotoolbox");
It seems I should use AVHWAccel, but what is AVHWAccel and how to use it?
Part of My C++ code:
for( unsigned int i = 0; i < pFormatCtx->nb_streams; i++ ){
if(pFormatCtx->streams[i]->codec->codec_type == AVMEDIA_TYPE_VIDEO){
pCodecCtx = pFormatCtx->streams[i]->codec;
video_stream = pFormatCtx->streams[i];
if( pCodecCtx->codec_id == AV_CODEC_ID_H264 ){
//pCodec = avcodec_find_decoder(pCodecCtx->codec_id);
pCodec = avcodec_find_decoder_by_name("h264_vda");
break;
}
}
}
// open codec
if( pCodec ){
if((ret=avcodec_open2(pCodecCtx, pCodec, NULL)) < 0) {
....
It's nothing to do with the decoder for which pix format to choose.
Your video pix format is UYVY422, so you got this format after you decode the frame.
Like the answer #halfelf mentioned, you can perform a swscale after you decode a frame, to convert the pix format to your ideal format yuv420p, then render it.
Meanwhile, if you are sure it's the format UYVY422, SDL2 can handle the render directly for you.
In the example below, my format is yuv420p, and I use swscale to convert to UYVY422 to render to SDL2
// prepare swscale context, AV_PIX_FMT_UYVY422 is my destination pix format
SwsContext *swsCtx = sws_getContext(codecCtx->width, codecCtx->height, codecCtx->pix_fmt,
codecCtx->width, codecCtx->height, AV_PIX_FMT_UYVY422,
SWS_FAST_BILINEAR, NULL, NULL, NULL);
SDL_Init(SDL_INIT_EVERYTHING);
SDL_Window *window;
SDL_Renderer *render;
SDL_Texture *texture;
SDL_CreateWindowAndRenderer(codecCtx->width,
codecCtx->height, SDL_WINDOW_OPENGL, &window, &render);
texture = SDL_CreateTexture(render, SDL_PIXELFORMAT_UYVY, SDL_TEXTUREACCESS_STREAMING,
codecCtx->width, codecCtx->height);
// ......
// decode the frame
// ......
AVFrame *frameUYVY = av_frame_alloc();
av_image_alloc(frameUYVY->data, frameUYVY->linesize, codecCtx->width, codecCtx->height, AV_PIX_FMT_UYVY422, 32);
SDL_LockTexture(texture, NULL, (void **)frameUYVY->data, frameUYVY->linesize);
// convert the decoded frame to destination frameUYVY (yuv420p -> uyvy422)
sws_scale(swsCtx, frame->data, frame->linesize, 0, frame->height,
frameUYVY->data, frameUYVY->linesize);
SDL_UnlockTexture(texture);
// performa render
SDL_RenderClear(render);
SDL_RenderCopy(render, texture, NULL, NULL);
SDL_RenderPresent(render);
In your example, if your pix format is uyvy422, you can skip the swscale part, and perform the render directly after decode from ffmpeg.
Decoders won't choose which pixel format the output is, it is determined by the video itself. swscale lib is used to convert one pixel format to another.
auto sws_ctx = sws_getContext(src_width, src_height, AV_PIX_FMT_UYUV422, dst_width, dst_height, AV_PIX_FMT_YUV420P, 0,0,0,0);
av_image_alloc(new_data, new_linesize, dst_width, dst_height, AV_PIX_FMT_BGR24, FRAME_ALIGN);
sws_scale(sws_ctx, frame->data, frame->linesize, 0, src_height, new_data, new_linesize);
And there is no h264_videotoolbox decoder, only encoder. To list decoders/encoders available:
ffmpeg -encoders
ffmpeg -decoders
The decoder/encoder names is written in the source, for example, at the end of libavcodec/vda_h264_dec.c and libavcodec/videotoolboxenc.c.

FFMPEG and DirectX Capture in C++

I have a system that allows me to capture a window and save it as a mp4, using ffmpeg. I use gdigrab to capture the frame, but it is fairly slow (60ms per av_read_frame calls)
I know I can capture a game using the DirectX API, but I don't know how to convert the resulting BMP to an AVFrame.
The following code is the DirectX code I use to capture the frame
extern void* pBits;
extern IDirect3DDevice9* g_pd3dDevice;
IDirect3DSurface9* pSurface;
g_pd3dDevice->CreateOffscreenPlainSurface(ScreenWidth, ScreenHeight,
D3DFMT_A8R8G8B8, D3DPOOL_SCRATCH,
&pSurface, NULL);
g_pd3dDevice->GetFrontBufferData(0, pSurface);
D3DLOCKED_RECT lockedRect;
pSurface->LockRect(&lockedRect,NULL,
D3DLOCK_NO_DIRTY_UPDATE|
D3DLOCK_NOSYSLOCK|D3DLOCK_READONLY)));
for( int i=0 ; i < ScreenHeight ; i++)
{
memcpy( (BYTE*) pBits + i * ScreenWidth * BITSPERPIXEL / 8 ,
(BYTE*) lockedRect.pBits + i* lockedRect.Pitch ,
ScreenWidth * BITSPERPIXEL / 8);
}
g_pSurface->UnlockRect();
pSurface->Release();
And here is my read loop :
{
while (1) {
if (av_read_frame(pFormatCtx, &packet) < 0 || exit)
break;
if (packet.stream_index == videoindex) {
// Decode video frame
av_packet_rescale_ts(&packet, { 1, std::stoi(pParser->GetVal("video-fps")) }, pCodecCtx->time_base);
avcodec_decode_video2(pCodecCtx, pFrame, &frameFinished, &packet);
if (frameFinished) {
pFrame->pts = i;
i++;
sws_scale(sws_ctx, (uint8_t const * const *)pFrame->data, pFrame->linesize, 0, pCodecCtx->height, pFrameRGB->data, pFrameRGB->linesize);
pFrameRGB->pts = pFrame->pts;
enc.encodeFrame(pFrameRGB);
}
// Free the packet that was allocated by av_read_frame
av_free_packet(&packet);
}
How can I create an AVFrame using the bmp I have, without using the av_read_frame ?