Related
I'm playing around with Haskell, mostly trying to learn some new techniques to solve problems. Without any real application in mind I came to think about an interesting thing I can't find a satisfying solution to. Maybe someone has any better ideas?
The problem:
Let's say we want to generate a list of Ints using a starting value and a list of Ints, representing the pattern of numbers to be added in the specified order. So the first value is given, then second value should be the starting value plus the first value in the list, the third that value plus the second value of the pattern, and so on. When the pattern ends, it should start over.
For example: Say we have a starting value v and a pattern [x,y], we'd like the list [v,v+x,v+x+y,v+2x+y,v+2x+2y, ...]. In other words, with a two-valued pattern, next value is created by alternatingly adding x and y to the number last calculated.
If the pattern is short enough (2-3 values?), one could generate separate lists:
[v,v,v,...]
[0,x,x,2x,2x,3x, ...]
[0,0,y,y,2y,2y,...]
and then zip them together with addition. However, as soon as the pattern is longer this gets pretty tedious. My best attempt at a solution would be something like this:
generateLstByPattern :: Int -> [Int] -> [Int]
generateLstByPattern v pattern = v : (recGen v pattern)
where
recGen :: Int -> [Int] -> [Int]
recGen lastN (x:[]) = (lastN + x) : (recGen (lastN + x) pattern)
recGen lastN (x:xs) = (lastN + x) : (recGen (lastN + x) xs)
It works as intended - but I have a feeling there is a bit more elegant Haskell solution somewhere (there almost always is!). What do you think? Maybe a cool list-comprehension? A higher-order function I've forgotten about?
Separate the concerns. First look a just a list to process once. Get that working, test it. Hint: “going through the list elements with some accumulator” is in general a good fit for a fold.
Then all that's left to is to repeat the list of inputs and feed it into the pass-once function. Conveniently, there's a standard function for that purpose. Just make sure your once-processor is lazy enough to handle the infinite list input.
What you describe is
foo :: Num a => a -> [a] -> [a]
foo v pattern = scanl (+) v (cycle pattern)
which would normally be written even as just
foo :: Num a => a -> [a] -> [a]
foo v = scanl (+) v . cycle
scanl (+) v xs is the standard way to calculate the partial sums of (v:xs), and cycle is the standard way to repeat a given list cyclically. This is what you describe.
This works for a pattern list of any positive length, as you wanted.
Your way of generating it is inventive, but it's almost too clever for its own good (i.e. it seems overly complicated). It can be expressed with some list comprehensions, as
foo v pat =
let -- the lists, as you describe them:
lists = repeat v :
[ replicate i 0 ++
[ y | x <- [p, p+p ..]
, y <- map (const x) pat ]
| (p,i) <- zip pat [1..] ]
in
-- OK, so what do we do with that? How do we zipWith
-- over an arbitrary amount of lists?
-- with a fold!
foldr (zipWith (+)) (repeat 0) lists
map (const x) pat is a "clever" way of writing replicate (length pat) x. It can be further shortened to x <$ pat since (<$) x xs == map (const x) xs by definition. It might seem obfuscated, until you've become accustomed to it, and then it seems clear and obvious. :)
Surprised noone's mentioned the silly way yet.
mylist x xs = x : zipWith (+) (mylist x xs) (cycle xs)
(If you squint a bit you can see the connection to scanl answer).
When it is about generating series my first approach would be iterate or unfoldr. iterate is for simple series and unfoldr is for those who carry kind of state but without using any State monad.
In this particular case I think unfoldr is ideal.
series :: Int -> [Int] -> [Int]
series s [x,y] = unfoldr (\(f,s) -> Just (f*x + s*y, (s+1,f))) (s,0)
λ> take 10 $ series 1 [1,1]
[1,2,3,4,5,6,7,8,9,10]
λ> take 10 $ series 3 [1,1]
[3,4,5,6,7,8,9,10,11,12]
λ> take 10 $ series 0 [1,2]
[0,1,3,4,6,7,9,10,12,13]
It is probably better to implement the lists separately, for example the list with x can be implement with:
xseq :: (Enum a, Num a) => a -> [a]
xseq x = 0 : ([x, x+x ..] >>= replicate 2)
Whereas the sequence for y can be implemented as:
yseq :: (Enum a, Num a) => a -> [a]
yseq y = [0,y ..] >>= replicate 2
Then you can use zipWith :: (a -> b -> c) -> [a] -> [b] -> [c] to add the two lists together and add v to it:
mylist :: (Enum a, Num a) => a -> a -> a -> [a]
mylist v x y = zipWith ((+) . (v +)) (xseq x) (yseq y)
So for v = 1, x = 2, and y = 3, we obtain:
Prelude> take 10 (mylist 1 2 3)
[1,3,6,8,11,13,16,18,21,23]
An alternative is to see as pattern that we each time first add x and then y. We thus can make an infinite list [(x+), (y+)], and use scanl :: (b -> a -> b) -> b -> [a] -> [b] to each time apply one of the functions and yield the intermediate result:
mylist :: Num a => a -> a -> a -> [a]
mylist v x y = scanl (flip ($)) v (cycle [(x+), (y+)])
this yields the same result:
Prelude> take 10 $ mylist 1 2 3
[1,3,6,8,11,13,16,18,21,23]
Now the only thing left to do is to generalize this to a list. So for example if the list of additions is given, then you can impelement this as:
mylist :: Num a => [a] -> [a]
mylist v xs = scanl (flip ($)) v (cycle (map (+) xs))
or for a list of functions:
mylist :: Num a => [a -> a] -> [a]
mylist v xs = scanl (flip ($)) v (cycle (xs))
I'm a Haskell beginner trying to learn more about the language by solving some online quizzes/problem sets.
The problem/question is quite lengthy but a part of it requires code that can find the number which divides a given list into two (nearly) equal (by sum) sub-lists.
Given [1..10]
Answer should be 7 since 1+2+..7 = 28 & 8+9+10 = 27
This is the way I implemented it
-- partitions list by y
partishner :: (Floating a) => Int -> [a] -> [[[a]]]
partishner 0 xs = [[xs],[]]
partishner y xs = [take y xs : [drop y xs]] ++ partishner (y - 1) xs
-- finds the equal sum
findTheEquilizer :: (Ord a, Floating a) => [a] -> [[a]]
findTheEquilizer xs = fst $ minimumBy (comparing snd) zipParty
where party = (tail . init) (partishner (length xs) xs) -- removes [xs,[]] types
afterParty = (map (\[x, y] -> (x - y) ** 2) . init . map (map sum)) party
zipParty = zip party afterParty -- zips partitions and squared diff betn their sums
Given (last . head) (findTheEquilizer [1..10])
output : 7
For numbers near 50k it works fine
λ> (last . head) (findTheEquilizer [1..10000])
7071.0
The trouble starts when I put in lists with any more than 70k elements in it. It takes forever to compute.
So what do I have to change in the code to make it run better or do I have to change my whole approach? I'm guessing it's the later, but I'm not sure how to go about do that.
It looks to me that the implementation is quite chaotic. For example partishner seems to construct a list of lists of lists of a, where, given I understood it correctly, the outer list contains lists with each two elements: the list of elements on "the left", and the list of elements at the "right". As a result, this will take O(n2) to construct the lists.
By using lists over 2-tuples, this is also quite "unsafe", since a list can - although here probably impossible - contain no elements, one element, or more than two elements. If you make a mistake in one of the functions, it will be hard to find out that mistake.
It looks to me that it might be easier to implement a "sweep algorithm": we first calculate the sum of all the elements in the list. This is the value on the "right" in case we decide to split at that specific point, next we start moving from left to right, each time subtracting the element from the sum on the right, and adding it to the sum on the left. We can each time evaluate the difference in score, like:
import Data.List(unfoldr)
sweep :: Num a => [a] -> [(Int, a, [a])]
sweep lst = x0 : unfoldr f x0
where x0 = (0, sum lst, lst)
f (_, _, []) = Nothing
f (i, r, (x: xs)) = Just (l, l)
where l = (i+1, r-2*x, xs)
For example:
Prelude Data.List> sweep [1,4,2,5]
[(0,12,[1,4,2,5]),(1,10,[4,2,5]),(2,2,[2,5]),(3,-2,[5]),(4,-12,[])]
So if we select to split at the first split point (before the first element), the sum on the right is 12 higher than the sum on the left, if we split after the first element, the sum on the right (11) is 10 higher than the sum on the left (1).
We can then obtain the minimum of these splits with minimumBy :: (a -> a -> Ordering) -> [a] -> a:
import Data.List(minimumBy)
import Data.Ord(comparing)
findTheEquilizer :: (Ord a, Num a) => [a] -> ([a], [a])
findTheEquilizer lst = (take idx lst, tl)
where (idx, _, tl) = minimumBy (comparing (abs . \(_, x, _) -> x)) (sweep lst)
We then obtain the correct value for [1..10]:
Prelude Data.List Data.Ord Data.List> findTheEquilizer [1..10]
([1,2,3,4,5,6,7],[8,9,10])
or for 70'000:
Prelude Data.List Data.Ord Data.List> head (snd (findTheEquilizer [1..70000]))
49498
The above is not ideal, it can be implemented more elegantly, but I leave this as an exercise.
Okay, firstly, let analyse why it run forever (...actually not forever, just slow), take a look of partishner function:
partishner y xs = [take y xs : [drop y xs]] ++ partishner (y - 1) xs
where take y xs and drop y xs are run linear time, i.e. O(N), and so as
[take y xs : [drop y xs]]
is O(N) too.
However, it is run again and again in recursive way over each element of given list. Now suppose the length of given list is M, each call of partishner function take O(N) times, to finish computation need:
O(1+2+...M) = (M(1+M)/2) ~ O(M^2)
Now, the list has 70k elements, it at least need 70k ^ 2 step. So why it hang.
Instead of using partishner function, you can sum the list in linear way as:
sumList::(Floating a)=>[a]->[a]
sumList xs = sum 0 xs
where sum _ [] = []
sum s (y:ys) = let s' = s + y in s' : sum s' ys
and findEqilizer just sum the given list from left to right (leftSum) and from right to left (rightSum) and take the result just as your original program, but the whole process just take linear time.
findEquilizer::(Ord a, Floating a) => [a] -> a
findEquilizer [] = 0
findEquilizer xs =
let leftSum = reverse $ 0:(sumList $ init xs)
rightSum = sumList $ reverse $ xs
afterParty = zipWith (\x y->(x-y) ** 2) leftSum rightSum
in fst $ minimumBy (comparing snd) (zip (reverse $ init xs) afterParty)
I assume that none of the list elements are negative, and use a "tortoise and hare" approach. The hare steps through the list, adding up elements. The tortoise does the same thing, but it keeps its sum doubled and it carefully ensures that it only takes a step when that step won't put it ahead of the hare.
approxEqualSums
:: (Num a, Ord a)
=> [a] -> (Maybe a, [a])
approxEqualSums as0 = stepHare 0 Nothing as0 0 as0
where
-- ht is the current best guess.
stepHare _tortoiseSum ht tortoise _hareSum []
= (ht, tortoise)
stepHare tortoiseSum ht tortoise hareSum (h:hs)
= stepTortoise tortoiseSum ht tortoise (hareSum + h) hs
stepTortoise tortoiseSum ht [] hareSum hare
= stepHare tortoiseSum ht [] hareSum hare
stepTortoise tortoiseSum ht tortoise#(t:ts) hareSum hare
| tortoiseSum' <= hareSum
= stepTortoise tortoiseSum' (Just t) ts hareSum hare
| otherwise
= stepHare tortoiseSum ht tortoise hareSum hare
where tortoiseSum' = tortoiseSum + 2*t
In use:
> approxEqualSums [1..10]
(Just 6,[7,8,9,10])
6 is the last element before going over half, and 7 is the first one after that.
I asked in the comment and OP says [1..n] is not really defining the question. Yes i guess what's asked is like [1 -> n] in random ascending sequence such as [1,3,7,19,37,...,1453,...,n].
Yet..! Even as per the given answers, for a list like [1..n] we really don't need to do any list operation at all.
The sum of [1..n] is n*(n+1)/2.
Which means we need to find m for n*(n+1)/4
Which means m(m+1)/2 = n*(n+1)/4.
So if n == 100 then m^2 + m - 5050 = 0
All we need is
formula where a = 1, b = 1 and c = -5050 yielding the reasonable root to be 70.565 ⇒ 71 (rounded). Lets check. 71*72/2 = 2556 and 5050-2556 = 2494 which says 2556 - 2494 = 62 minimal difference (<71). Yes we must split at 71. So just do like result = [[1..71],[72..100]] over..!
But when it comes to not subsequent ascending, that's a different animal. It has to be done by first finding the sum and then like binary search by jumping halfway the list and comparing the sums to decide whether to jump halfway back or forward accordingly. I will implement that one later.
Here's a code which is empirically behaving better than linear, and gets to the 2,000,000 in just over 1 second even when interpreted:
g :: (Ord c, Num c) => [c] -> [(Int, c)]
g = head . dropWhile ((> 0) . snd . last) . map (take 2) . tails . zip [1..]
. (\xs -> zipWith (-) (map (last xs -) xs) xs) . scanl1 (+)
g [1..10] ==> [(6,13),(7,-1)] -- 0.0s
g [1..70000] ==> [(49497,32494),(49498,-66502)] -- 0.09s
g [70000,70000-1..1] ==> [(20502,66502),(20503,-32494)] -- 0.09s
g [1..100000] ==> [(70710,75190),(70711,-66232)] -- 0.11s
g [1..1000000] ==> [(707106,897658),(707107,-516556)] -- 0.62s
g [1..2000000] ==> [(1414213,1176418),(1414214,-1652010)] -- 1.14s n^0.88
g [1..3000000] ==> [(2121320,836280),(2121321,-3406362)] -- 1.65s n^0.91
It works by running the partial sums with scanl1 (+) and taking the total sum as its last, so that for each partial sum, subtracting it from the total gives us the sum of the second part of the split.
The algorithm assumes all the numbers in the input list are strictly positive, so the partial sums list is monotonically increasing. Nothing else is assumed about the numbers.
The value must be chosen from the pair (the g's result) so that its second component's absolute value is the smaller between the two.
This is achieved by minimumBy (comparing (abs . snd)) . g.
clarifications: There's some confusion about "complexity" in the comments below, yet the answer says nothing at all about complexity but uses a specific empirical measurement. You can't argue with empirical data (unless you misinterpret its meaning).
The answer does not claim it "is better than linear", it says "it behaves better than linear" [in the tested range of problem sizes], which the empirical data incontrovertibly show.
Finally, an appeal to authority. Robert Sedgewick is an authority on algorithms. Take it up with him.
(and of course the algorithm handles unordered data as well as it does ordered).
As for the reasons for OP's code inefficiency: map sum . inits can't help being quadratic, but the equivalent scanl (+) 0 is linear. The radical improvement comes about from a lot of redundant calculations in the former being avoided in the latter. (Another example of this can be seen here.)
I have a simple function (used for some problems of project Euler, in fact). It turns a list of digits into a decimal number.
fromDigits :: [Int] -> Integer
fromDigits [x] = toInteger x
fromDigits (x:xs) = (toInteger x) * 10 ^ length xs + fromDigits xs
I realized that the type [Int] is not ideal. fromDigits should be able to take other inputs like e.g. sequences, maybe even foldables ...
My first idea was to replace the above code with sort of a "fold with state". What is the correct (= minimal) Haskell-category for the above function?
First, folding is already about carrying some state around. Foldable is precisely what you're looking for, there is no need for State or other monads.
Second, it'd be more natural to have the base case defined on empty lists and then the case for non-empty lists. The way it is now, the function is undefined on empty lists (while it'd be perfectly valid). And notice that [x] is just a shorthand for x : [].
In the current form the function would be almost expressible using foldr. However within foldl the list or its parts aren't available, so you can't compute length xs. (Computing length xs at every step also makes the whole function unnecessarily O(n^2).) But this can be easily avoided, if you re-thing the procedure to consume the list the other way around. The new structure of the function could look like this:
fromDigits' :: [Int] -> Integer
fromDigits' = f 0
where
f s [] = s
f s (x:xs) = f (s + ...) xs
After that, try using foldl to express f and finally replace it with Foldable.foldl.
You should avoid the use of length and write your function using foldl (or foldl'):
fromDigits :: [Int] -> Integer
fromDigits ds = foldl (\s d -> s*10 + (fromIntegral d)) 0 ds
From this a generalization to any Foldable should be clear.
A better way to solve this is to build up a list of your powers of 10. This is quite simple using iterate:
powersOf :: Num a => a -> [a]
powersOf n = iterate (*n) 1
Then you just need to multiply these powers of 10 by their respective values in the list of digits. This is easily accomplished with zipWith (*), but you have to make sure it's in the right order first. This basically just means that you should re-order your digits so that they're in descending order of magnitude instead of ascending:
zipWith (*) (powersOf 10) $ reverse xs
But we want it to return an Integer, not Int, so let's through a map fromIntegral in there
zipWith (*) (powersOf 10) $ map fromIntegral $ reverse xs
And all that's left is to sum them up
fromDigits :: [Int] -> Integer
fromDigits xs = sum $ zipWith (*) (powersOf 10) $ map fromIntegral $ reverse xs
Or for the point-free fans
fromDigits = sum . zipWith (*) (powersOf 10) . map fromIntegral . reverse
Now, you can also use a fold, which is basically just a pure for loop where the function is your loop body, the initial value is, well, the initial state, and the list you provide it is the values you're looping over. In this case, your state is a sum and what power you're on. We could make our own data type to represent this, or we could just use a tuple with the first element being the current total and the second element being the current power:
fromDigits xs = fst $ foldr go (0, 1) xs
where
go digit (s, power) = (s + digit * power, power * 10)
This is roughly equivalent to the Python code
def fromDigits(digits):
def go(digit, acc):
s, power = acc
return (s + digit * power, power * 10)
state = (0, 1)
for digit in digits:
state = go(digit, state)
return state[0]
Such a simple function can carry all its state in its bare arguments. Carry around an accumulator argument, and the operation becomes trivial.
fromDigits :: [Int] -> Integer
fromDigits xs = fromDigitsA xs 0 # 0 is the current accumulator value
fromDigitsA [] acc = acc
fromDigitsA (x:xs) acc = fromDigitsA xs (acc * 10 + toInteger x)
If you're really determined to use a right fold for this, you can combine calculating length xs with the calculation like this (taking the liberty of defining fromDigits [] = 0):
fromDigits xn = let (x, _) = fromDigits' xn in x where
fromDigits' [] = (0, 0)
fromDigits' (x:xn) = (toInteger x * 10 ^ l + y, l + 1) where
(y, l) = fromDigits' xn
Now it should be obvious that this is equivalent to
fromDigits xn = fst $ foldr (\ x (y, l) -> (toInteger x * 10^l + y, l + 1)) (0, 0) xn
The pattern of adding an extra component or result to your accumulator, and discarding it once the fold returns, is a very general one when you're re-writing recursive functions using folds.
Having said that, a foldr with a function that is always strict in its second parameter is a really, really bad idea (excessive stack usage, maybe a stack overflow on long lists) and you really should write fromDigits as a foldl as some of the other answers have suggested.
If you want to "fold with state", probably Traversable is the abstraction you're looking for. One of the methods defined in Traversable class is
traverse :: Applicative f => (a -> f b) -> t a -> f (t b)
Basically, traverse takes a "stateful function" of type a -> f b and applies it to every function in the container t a, resulting in a container f (t b). Here, f can be State, and you can use traverse with function of type Int -> State Integer (). It would build an useless data structure (list of units in your case), but you can just discard it. Here's a solution to your problem using Traversable:
import Control.Monad.State
import Data.Traversable
sumDigits :: Traversable t => t Int -> Integer
sumDigits cont = snd $ runState (traverse action cont) 0
where action x = modify ((+ (fromIntegral x)) . (* 10))
test1 = sumDigits [1, 4, 5, 6]
However, if you really don't like building discarded data structure, you can just use Foldable with somewhat tricky Monoid implementation: store not only computed result, but also 10^n, where n is count of digits converted to this value. This additional information gives you an ability to combine two values:
import Data.Foldable
import Data.Monoid
data Digits = Digits
{ value :: Integer
, power :: Integer
}
instance Monoid Digits where
mempty = Digits 0 1
(Digits d1 p1) `mappend` (Digits d2 p2) =
Digits (d1 * p2 + d2) (p1 * p2)
sumDigitsF :: Foldable f => f Int -> Integer
sumDigitsF cont = value $ foldMap (\x -> Digits (fromIntegral x) 10) cont
test2 = sumDigitsF [0, 4, 5, 0, 3]
I'd stick with first implementation. Although it builds unnecessary data structure, it's shorter and simpler to understand (as far as a reader understands Traversable).
I want to sum the squares of the even numbers from a list. I try this but show an error.
sumaDeCuadrados :: [Int] -> Int
sumaDeCuadrados (x:xs) = sumaListAux (map f l) 0
where l = filter even (x:xs)
f = x * x
sumaDeCuadrados _ = 0
and sumaListAux is a function defined as ..
sumaListAux :: [Int] -> Int -> Int
sumaListAux [] r = r
sumaListAux (x:xs) r = x + sumaListAux xs r
sum the squares of the even numbers from a list.
Haskell is a declarative language in some ways, so you can just declare what these things mean.
-- declare a list
> let list = [1..10]
-- declare what the even elements of a lsit are
> let evens xs = filter even xs
-- declare what the squares of a list are
> let squares xs = map (^2) xs
and the sum is already there, sum. So now your sentence:
sum the squares of the even numbers
can be transposed to:
> sum . squares . evens $ list
220
The actual problem is, map expects the first argument to be a function, which accepts an integer and returning an integer, but you are passing it an integer. That is why you are getting an error message like this
Couldn't match expected type `Int -> Int' with actual type `Int'
In the first argument of `map', namely `f'
In the first argument of `sumaListAux', namely `(map f l)'
In the expression: sumaListAux (map f l) 0
So, you need to define f as a separate function, so that map can apply that function to l. I would recommend naming the function with something appropriate, like squarer
squarer :: Int -> Int
squarer x = x * x
sumaDeCuadrados xs = sumaListAux (map squarer (filter even xs)) 0
And then you can call it like this
main = print $ sumaDeCuadrados [1, 2, 3, 4, 5]
-- 20
Building on the answers above, it's possible to do this entirely using higher order functions.
sumEvenSquares :: (Num a) => [a] -> a
sumEvenSquares xs = sum(map(^2)(filter even xs))
In this case, you're able to filter the list using the even predicate, and map the function (^2) onto it. From this returned list, you're then able to sum it.
I have a list of doubles(myList), which I want to add to a new List (someList), but once the new list reaches a set size i.e. 25, I want to stop adding to it. I have tried implementing this function using sum but was unsuccessful. Example code below.
someList = [(a)| a <- myList, sum someList < 30]
The way #DanielFischer phrased the question is compatible with the Haskell way of thinking.
Do you want someList to be the longest prefix of myList that has a sum < 30?
Here's how I'd approach it: let's say our list is
>>> let list = [1..20]
we can find the "cumulative sums" using:
>>> let sums = tail . scanl (+) 0
>>> sums list
[1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,136,153,171,190,210]
Now zip that with the original list to get pairs of elements with the sum up to that point
>>> zip list (sums list)
[(1,1),(2,3),(3,6),(4,10),(5,15),(6,21),(7,28),(8,36),
(9,45),(10,55),(11,66),(12,78),(13,91),(14,105),(15,120),
(16,136),(17,153),(18,171),(19,190),(20,210)]
Then we can takeWhile this list to get the prefix we want:
>>> takeWhile (\x -> snd x < 30) (zip list (sums list))
[(1,1),(2,3),(3,6),(4,10),(5,15),(6,21),(7,28)]
finally we can get rid of the cumulative sums that we used to perform this calculation:
>>> map fst (takeWhile (\x -> snd x < 30) (zip list (sums list)))
[1,2,3,4,5,6,7]
Note that because of laziness, this is as efficient as the recursive solutions -- only the sums up to the point where they fail the test need to be calculated. This can be seen because the solution works on infinite lists (because if we needed to calculate all the sums, we would never finish).
I'd probably abstract this and take the limit as a parameter:
>>> :{
... let initial lim list =
... map fst (takeWhile (\x -> snd x < lim) (zip list (sums list)))
... :}
This function has an obvious property it should satisfy, namely that the sum of a list should always be less than the limit (as long as the limit is greater than 0). So we can use QuickCheck to make sure we did it right:
>>> import Test.QuickCheck
>>> quickCheck (\lim list -> lim > 0 ==> sum (initial lim list) < lim)
+++ OK, passed 100 tests.
someList = makeList myList [] 0 where
makeList (x:xs) ys total = let newTot = total + x
in if newTot >= 25
then ys
else makeList xs (ys ++ [x]) newTot
This takes elements from myList as long as their sum is less than 25.
The logic takes place in makeList. It takes the first element of the input list and adds it to the running total, to see if it's greater than 25. If it is, we shouldn't add it to the output list, and we finish recursing. Otherwise, we put x on the end of the output list (ys) and keep going with the rest of the input list.
The behaviour you want is
ghci> appendWhileUnder 25 [1..5] [1..5]
[1,2,3,4,5,1,2,3]
because that sums to 21 and adding the 4 would bring it to 25.
OK, one way to go about this is by just appending them with ++ then taking the initial segment that's under 25.
appendWhileUnder n xs ys = takeWhileUnder n (xs++ys)
I don't want to keep summing intermediate lists, so I'll keep track with how much I'm allowed (n).
takeWhileUnder n [] = []
takeWhileUnder n (x:xs) | x < n = x:takeWhileUnder (n-x) xs
| otherwise = []
Here I allow x through if it doesn't take me beyond what's left of my allowance.
Possibly undesired side effect: it'll chop out bits of the original list if it sums to over 25. Workaround: use
appendWhileUnder' n xs ys = xs ++ takeWhileUnder (n - sum xs)
which keeps the entire xs whether it brings you over n or not.