I want to print "845100400152152934331135470251" or "1071292029505993517027974728227441735014801995855195223534251"
but in C++ the max value of "Unsigned long long " is "18446744073709551615"
this is much less than which I want to print
please help me...
First of all, your problem is not about printing big numbers but storing them in variables (and maybe calculating on them).
On some compilers (GCC for example), you have variable types like int128 that can handle numbers up to 10^38 (more less).
If this doesn't solve the problem, you'll have to write your own arithmetic. For example, store numbers in strings and write functions that will calculate on them (addition and subtraction is rather easy, multiplying medium (as long as numbers aren't really huge), dividing by big integers hard). Alternatively you can look for already made big integer libraries (on the Internet, c++ doesn't have built-in one).
Related
I have a geometric algorithm which takes as input a polygon. However, the files I am supposed to use as input files store the coordinates of the polygons in a rather peculiar way. Each file consists of one line, a counterclockwise sequence of the vertices. Each vertex is represented by its x and y coordinates each of which is written as the quotient of two integers int/int. However, these integers are incredibly large. I wrote a program that parses them from a string into long long using the function std::stoll. However, it appears that some of the numbers in the input file are larger than 2^64.
The output coordinates are usually quite small, in the range 0-1000. How do I go about parsing these numbers and then dividing them, obtaining doubles? Is there any standard library way of doing this, or should I use something like the boost library?
If you are after a ratio of two large numbers as string, you can shorten the strings:
"194725681173571753193674" divided by "635482929374729202" is the same as
"1947256811735717" divided by "6354829293" to at least 9 digits (I just removed the same amount of digits on both sides). Depending on the needed precision, this might be the simplest solution. Just remove digits before converting to long long.
You can parse the inputs directly into a long double I believe. However, that approach will introduce precision errors. If precision is important, then avoid this.
A general solution for precise results is to represent the large integer with an array of integers where one integer represents the lower order bytes, next integer represents the larger bytes etc. This is generally called arbitrary precision arithmetic.
Is there any standard library way of doing this
No, other than basic building blocks such as vector for storing the array.
or should I use something like the boost library?
That's often a good place to start. Boost happens to have a library for this.
I am trying to write a program for finding Mersenne prime numbers. Using the unsigned long long type I was able to determine the value of the 9th Mersenne prime, which is (2^61)-1. For larger values I would need a data type that could store integer values greater than 2^64.
I should be able to use operators like *, *=, > ,< and % with this data type.
You can not do what you want with C natives types, however there are libraries that let handle arbitrarily large numbers, like the GNU Multiple Precision Arithmetic Library.
To store large numbers, there are many choices, which are given below in order of decreasing preferences:
1) Use third-party libraries developed by others on github, codeflex etc for your mentioned language, that is, C.
2) Switch to other languages like Python which has in-built large number processing capabilities, Java, which supports BigNum, or C++.
3) Develop your own data structures, may be in terms of strings (where 100 char length could refer to 100 decimal digits) with its custom operations like addition, subtraction, multiplication etc, just like complex number library in C++ were developed in this way. This choice could be meant for your research and educational purpose.
What all these people are basically saying is that the 64bit CPU will not be capable of adding those huge numbers with just an instruction but you rather need an algorithm that will be able to add those numbers. Such an algorithm would have to treat the 2 numbers in pieces.
And the libraries they listed will allow you to do that, a good exercise would be to develop one yourself (just the algorithm/function to learn how it's done).
There is no standard way for having data type greater than 64 bits. You should check the documentation of your systems, some of them define 128 bits integers. However, to really have flexible size integers, you should use an other representation, using an array for instance. Then, it's up to you to define the operators =, <, >, etc.
Fortunately, libraries such as GMP permits you to use arbitrary length integers.
Take a look at the GNU MP Bignum Library.
Use double :)
it will solve your problem!
I try to handle with big numbers in C++. One thing that I tried is installing the gmp library but this is not working properly on my computer (see this post). So I want to try another method and that is integer to string conversion.
But I dont get the idea of that. Let me make myself clear. For example we handle with a big integer. Lets say 2^1000. When, for example, I want to calculate 2^1000 mod 10 this is not possible (so far I know) with the normal libraries of c++. So my question is: Is it possible when converting my integer to a string and if the answer is yes:
How can I do arithmetic operations when I convert my integer to a string.
If you are using c++ predefined integer type, then 2^1000 is simply impossible. On your system maximum should be 2^16 or 2^32, max 2^64 (for long long). If you wanted to do that, you need to use (or implement yourself - what I don't recommend) infinite-precision integers.
You can convert normal int to string very easily with
... = std::to_string(/*Your int*/);
If you meant you want to do something like this:
amazing_to_string_conversion(1000000000000000000000000000000000000000000000)
It's not possible in any C++ implementation. The very number constant can't exist in code, it will many, many times overflow.
And if you consider implementing it yourself, it will probably K.O. you, because of very complicated calculations during division and non-trivial calculations like sqrt().
I am pretty new to programming and I have to do an Abstract Data Type (ADT) for integer numbers.
I've browsed the web for some tips, examples, tutorials but i couldn't find anything usefull, so i hope i will get here some answers.
I thinked a lot about how should i format the ADT that stores my integer and I'm thinking of something like this:
int lenght; // stores the length of the number(an limit since this numbers goes to infinite)
int[] digits; // stores the digits of my number, with the dimension equal to length
Now, I'm confused about how should i tackle the sign representation.Is it ok to hold the sign into an char something like: char sign?
But then comes the question what to do when I have to add and multiply two integers, what about the cases when i have overflows on this operations.
So , if some of you have some ideas about how should I represent the number(the format) and how should I do the multiply and add i would be very great full. I don't need any code, I i the learning stage just some ideas. Thank you.
One good way to do this is to store the sign as a bool (e.g. bool is_neg;). That way it's completely clear what that data means (vice with a char, where it's not entirely clear.
You might want to store each digit in an unsigned short (or if you want to be precise about sign, uint16_t). Then, when you do a multiply of two digits, you can just multiply them as unsigned ints (uint32_t), and then the low 16 bits are your result and the overflow is in the high 16 bits. You can then add this to the result array fairly easily. You know that the multiplication of a n-bit number by a k-bit number is at most n + k bits long, so you can preallocate your array to that size and then worry about removing extra zeros later.
Hope this helps, and let me know if you want more tips.
The first design decision you have to make is the choice of a basis.
You seem to lean towards plain decimal. Could be unpacked (one full byte per digit, numerical or ASCII representation), or packed digits pairs (Decimal Coded Binary, twice four bits in a byte).
Other schemes are more convenient for faster operations: basis being a power of 2 or a power of 10, fitting in a byte, a short, an int...
Powers of 10 have the benefit that conversion to and from base 10 can be done word by word.
Addition is an easy matter: add the words in pairs and handle the carries. Same for subtraction, with borrows.
Multiplies are a whole different story if you care about efficiency. The method of written computation taught at school can be used, but it requires length1 x length2 operations. For long numbers, more efficient methods are preferred (http://en.wikipedia.org/wiki/Multiplication_algorithm#Karatsuba_multiplication). They are also more complex.
So, for a very silly project in C++, we are making our own long integer class, called VLI (Very Long Int). The way it works (they backboned it, blame them for stupidity) is this:
User inputs up to 50 digits, which are input as string.
String is stored in pre-made Sequence class, which stores the string in an array, in reverse order.
That means, when "1234" is input, it gets stored as [4|3|2|1].
So, my question is this: How can I go about doing division using only these arrays of chars?
If the input answer is over 32 digits, I can't use ints to check for stuff, and they basically saying using long ints here is cheating.
Any input is welcome, and I can give more clarification if need be, thanks everyone.
Implement the long division algorithm you learned in grade school.
Start by implementing subtraction. Create a function which can string-subtract any number from the input. Then you should be able to detect whether the result is negative. Modify this function to allow the number to be string-shifted before you subtract…
Get your school math book out, you did manual division some years ago in school I suppose. It is exactly the same principle :)
Potatoswatter is correct. I wrote a Pascal program in the past that worked on arbitrary length numbers as strings, and it could calculate the square root as well.
Here is a reminder of technique for long division: Long Division to Decimal Places