Atmel Studio + Arduino + Library : function "not declared in this scope" - c++

First of all, I copied/paste th code to see if it compliles in Arduino IDE, and it does, so I guess it's not a C++ related issue but maybe something more Atmel Studio or linker related.
I recently decided to switch from Arduino IDE to Atmel Studio to develop and program Arduino boards.
I have this project where I use a .h/.c library that I wrote, which is located in "../Lib". I have added the library with "Add existing item" and "Add as Link", because I wanted to work with the original code not a copy (a few things still need to be added to it)
A first it builded without any problem, but then I added an extra function in the library called "determineWinningPosition()". Now compilation returns an error :
D:\Google Drive\ISIB\5 - Mecatronic\Controller_v5_AS\Controller_v5_AS\Controller_v5\Sketch.cpp(76,28): error: 'determineWinningPositions' was not declared in this scope
determineWinningPositions();
The function prototype is declared in the library header "LetMeOut.h" :
#include <Arduino.h>
#include <Wire.h>
#include <avr/sleep.h>
#include <avr/power.h>
#include <EEPROM.h>
#include <stdlib.h>
// Key words
#define MOTOR1 (0)
#define MOTOR2 (1)
#define MAX_SPEED (15)
#define SIZE_RAND_SEQ (100)
#define BUTTON_TIMEOUT (10) // -> 1s
#define WINNING_POS_TOLERANCE (3)
#define GLOBAL_STATE_SIZE (7)
#define STATE0 (3)
#define STATE1 (2)
#define STATE2 (0)
#define STATE3 (1)
#define START (5)
#define STOP (10)
#define CHANGE_SPEED (15)
#define INIT_POS (20)
#define START_SPEED (25)
#define RESET_CMD (30)
#define GO_TO_POS (35)
#define UNLOCK_DOOR (40)
#define LOCK_DOOR (45)
#define CHANGE_WINNING_POS (50)
#define TRUE (1)
#define FALSE (0)
#define EEPROM_1 (0)
#define EEPROM_2 (1)
// Pins
#define DIR_M1 (A0)
#define DIR_M2 (A1)
#define EN_M1 (A2)
#define EN_M2 (A3)
#define SCL_PIN (A4)
#define SDA_PIN (A5)
#define STARTED_PIN (2)
#define A1_PIN (3)
#define B1_PIN (4)
#define A2_PIN (5)
#define CTL_M1 (6)
#define B2_PIN (7)
#define START_PIN (8)
#define STOP_M2 (9)
#define SUCCEED_PIN (10)
#define CTL_M2 (11)
#define STOP_M1 (12)
#define DOOR_PIN (13) // LED
// Prototypes
void Timer1_ISR(void);
void receiveEvent(int howMany);
void requestEvent();
void initI2C(void);
void initMotors(void);
void initEncoder(void);
void initDirectionTimer(void);
void setMotorSpeed(uint8_t motor, uint8_t motorSpeed, uint8_t dir);
void setAllMotorSpeed(uint8_t motorSpeed);
void stopMotor(uint8_t motorID);
void stopAllMotors (void);
void startMotor(uint8_t motorID);
void startAllMotors (void);
void buttonManager(void);
void directionManager(void);
void i2cCommandManager(void);
void printPosition(bool b);
void goToPosition(uint8_t position1_, uint8_t position2_);
void readEncoder(void);
void determineWinningPositions(void);
The function is implemented in "LetMeOut.cpp" :
#include "LetMeOut.h"
extern uint8_t directionChangeCounter1, directionChangeCounter2;
extern uint8_t directionChangeCounterTopValue1;
extern uint8_t directionChangeCounterTopValue2;
extern bool direction1;
extern bool direction2;
extern bool counterChanged;
extern uint8_t button1Counter;
extern bool button1CounterStarted;
extern uint8_t button2Counter;
extern bool button2CounterStarted;
extern volatile uint8_t startButtonCounter;
extern volatile bool startButtonCounterStarted;
extern uint8_t cmd[3];
extern uint8_t globalState[GLOBAL_STATE_SIZE];
extern bool newCmd;
const uint8_t randomSeq[SIZE_RAND_SEQ] = {9, 15, 8, 10, 10, 10, 17, 12, 6, 16, 6, 8, 14, 15, 19, 15, 9, 20, 13, 17, 7, 15, 13, 15, 5, 7, 10, 6, 8, 9, 14, 9, 19, 11, 15, 17, 17, 7, 18, 12, 8, 20, 12, 11, 6, 16, 19, 17, 16, 10, 14, 14, 18, 13, 5, 20, 17, 10, 17, 12, 15, 12, 16, 12, 12, 18, 18, 19, 13, 16, 6, 7, 16, 17, 12, 11, 19, 12, 19, 13, 15, 18, 5, 7, 8, 8, 16, 16, 8, 14, 17, 17, 13, 6, 6, 8, 7, 10, 20, 13};
extern uint8_t index1;
extern uint8_t index2;
extern uint8_t speedSetting;
extern volatile bool started;
extern bool initDone;
extern bool doorUnlocked;
extern volatile bool currentA1, currentB1, currentA2, currentB2;
extern volatile int currentState1, previousState1, currentState2, previousState2, position1, position2;
extern volatile bool printPos;
extern uint8_t winningPosition1;
extern uint8_t winningPosition2;
extern volatile bool succeed;
extern volatile bool motor1Started;
extern volatile bool motor2Started;
extern int* winningPositionList1;
extern int* winningPositionList2;
/************************************************************************************************/
/********************************** Interrupts and Callbacks ************************************/
/************************************************************************************************/
// Interrupt service routine called at every timer 1 overflow : every 100 ms
// Used to measure time between every speed changes and to implement a timeout every 1s to prevent
// the user from "machine gunning" the buttons
void Timer1_ISR(void)
{
// Increase both counters used for speed changes and notify the loop() there's been a change
directionChangeCounter1++;
directionChangeCounter2++;
counterChanged = 1;
// Prevent the user from "machine gunning" the buttons
if (button1CounterStarted)
{
button1Counter++;
if (button1Counter >= BUTTON_TIMEOUT)
{
button1CounterStarted = 0;
button1Counter = 0;
}
}
if (button2CounterStarted)
{
button2Counter++;
if (button2Counter >= BUTTON_TIMEOUT)
{
button2CounterStarted = 0;
button2Counter = 0;
}
}
// Debounce START_PIN
if (startButtonCounterStarted)
{
startButtonCounter++;
if (startButtonCounter >= 2)
{
startButtonCounterStarted = 0;
startButtonCounter = 0;
}
}
}
// Callback function that defines the behaviour in case of some received I2C bytes
void receiveEvent(int howMany)
{
// Read the incoming bytes
cmd[0] = Wire.read();
if (Wire.available())
cmd[1] = Wire.read();
if (Wire.available())
cmd[2] = Wire.read();
// Get rid of any other unread message
while (Wire.available() != 0)
{
Wire.read();
}
// Notify the loop() that there's a new command to be handled
newCmd = 1;
}
// Callback function that defines the behaviour in case of a received request
// for a global state update -> send the global state to the Rapsberry Pi
void requestEvent()
{
// Prepare the message to be sent
globalState[0] = started;
globalState[1] = succeed;
globalState[2] = speedSetting;
globalState[3] = doorUnlocked;
globalState[4] = initDone;
globalState[5] = winningPosition1;
globalState[6] = winningPosition2;
// Send the global state to the raspberry pi
for (int i=0; i<GLOBAL_STATE_SIZE; i++)
{
Wire.write(globalState[i]);
}
}
/************************************************************************************************/
/********************************** Initializations *********************************************/
/************************************************************************************************/
// Initialize the I2C
void initI2C(void)
{
Wire.begin(0x18);
Wire.onReceive(receiveEvent);
Wire.onRequest(requestEvent);
// Disable internal pullup
digitalWrite(SCL_PIN, LOW);
digitalWrite(SDA_PIN, LOW);
}
// Motor control related intializations
void initMotors(void)
{
// Initialize timer 0 to generate a square wave on OC0A (CTL_M1 - D6)
// Toggle OC0A on compare match (non-PWM mode), WF gen CTC mode
TCCR0A = _BV(COM0A0) | _BV(WGM21);
// Prescale = 1024 => period = 2 * 64us * (OCR0A+1);
TCCR0B = _BV(CS02) | _BV(CS00);
// Set initial value of compare (sets the frequency)
OCR0A = MAX_SPEED;
// => Changing OCR0A value will set frequency of the square wave and thus the motors speed
// Initialize timer 2 to generate a square wave on OC2A (CTL_M2 - D11)
// Toggle OC2B on compare match (non-PWM mode), WF gen CTC mode
TCCR2A = _BV(COM2A0) | _BV(WGM21);
// Prescale = 1024 => period = 2 * 64us * (OCR2A+1);
TCCR2B = _BV(CS22) | _BV(CS21) | _BV(CS20);
// Set initial value of compare (sets the frequency)
OCR2A = MAX_SPEED;
// => Changing OCR0A value will set frequency of the square wave and thus the motors speed
// Set the correct modes and initialize all the pins that are necessary for motor control
pinMode(CTL_M1, OUTPUT);
pinMode(CTL_M2, OUTPUT);
pinMode(DIR_M1, OUTPUT);
pinMode(DIR_M2, OUTPUT);
pinMode(EN_M1, OUTPUT);
digitalWrite(EN_M1, LOW);
pinMode(EN_M2, OUTPUT);
digitalWrite(EN_M2, LOW);
}
// Initialize pins and interrupts for the encoder
void initEncoder(void)
{
// Configure pin change interrupts (PCINT) on A1, B1, A2 and B2
// -> PCIE2 group
PCICR = _BV(PCIE2);
// Configure PCIE2 interrupt mask
PCMSK2 = _BV(PCINT19) | _BV(PCINT20) | _BV(PCINT21) | _BV(PCINT23);
pinMode(A1_PIN, INPUT);
pinMode(B1_PIN, INPUT);
pinMode(A2_PIN, INPUT);
pinMode(B2_PIN, INPUT);
}
// Initialize timer1 to overflow every 100 ms (used for timing related things)
void initDirectionTimer(void)
{
// Timer 1 config : normal mode
TCCR1A = 0;
// Prescaler 64 ; CTC mode
TCCR1B = _BV(CS11) | _BV(CS10) | _BV(WGM12);
TIMSK1 = 0b00000010;
// Initiate Timer 1 and compare A value
TCNT1 = 0;
OCR1A = 25000; // overflow every 100ms
}
/************************************************************************************************/
/****************************** Motor-related functions *****************************************/
/************************************************************************************************/
// Set the speed of a particular motor
void setMotorSpeed(uint8_t motor, uint8_t motorSpeed, uint8_t dir)
{
// Make sure the speed isn't too fast
if (motorSpeed < MAX_SPEED)
motorSpeed = MAX_SPEED;
// Set the speed by setting OCRxA and the direction by setting DIR_Mx pin
if (motor == MOTOR1)
{
OCR0A = motorSpeed;
digitalWrite(DIR_M1, dir);
}
else if (motor == MOTOR2)
{
OCR2A = motorSpeed;
digitalWrite(DIR_M2, dir);
}
}
// Set the speed of both motors at the same time
void setAllMotorSpeed(uint8_t motorSpeed)
{
// Make sure the speed isn't too fast
if (motorSpeed < MAX_SPEED)
motorSpeed = MAX_SPEED;
OCR0A = motorSpeed;
OCR2A = motorSpeed;
}
// Stop a particular motor by setting its "Not_EN" pin
void stopMotor(uint8_t motorID)
{
if (motorID == MOTOR1)
{
digitalWrite(EN_M1, HIGH);
}
else
{
digitalWrite(EN_M2, HIGH);
}
}
// Stop all motors by setting their "Not_EN" pin
void stopAllMotors (void)
{
digitalWrite(EN_M1, HIGH);
digitalWrite(EN_M2, HIGH);
}
// Start a particular motor by clearing its "Not_EN" pin
void startMotor(uint8_t motorID)
{
if (motorID == MOTOR1)
{
digitalWrite(EN_M1, LOW);
}
else
{
digitalWrite(EN_M2, LOW);
}
}
// Start all motors by clearing their "Not_EN" pin
void startAllMotors (void)
{
digitalWrite(EN_M1, LOW);
digitalWrite(EN_M2, LOW);
}
/************************************************************************************************/
/********************************** Other functions *********************************************/
/************************************************************************************************/
// Check is the player has pushed the button to stop the needles
// and implement corresponding behavior
void buttonManager(void)
{
// Has player pushed button 1 ?
if (!digitalRead(STOP_M1))
{
// If we're not in a button timeout period, stop the motors
if (!button1CounterStarted)
{
stopMotor(MOTOR1);
motor1Started = 0;
button1CounterStarted = 1;
}
}
else
{
if (!button1CounterStarted)
{
startMotor(MOTOR1);
motor1Started = 1;
}
// Keep the motor stopped during the timeout period
else
{
stopMotor(MOTOR1);
motor1Started = 0;
}
}
// Has player pushed button 2 ?
if (!digitalRead(STOP_M2))
{
// If we're not in a button timeout period, stop the motors
if (!button2CounterStarted)
{
stopMotor(MOTOR2);
motor2Started = 0;
button2CounterStarted = 1;
}
}
else
{
if (!button2CounterStarted)
{
startMotor(MOTOR2);
motor2Started = 1;
}
// Keep the motor stopped during the timeout period
else
{
stopMotor(MOTOR2);
motor2Started = 0;
}
}
if (!digitalRead(STOP_M1) && !digitalRead(STOP_M2))
{
bool won1 = 0, won2 = 0;
// Check if needle 1 is in a winning position
for (int i=0; i<2*WINNING_POS_TOLERANCE+1; i++)
{
if (position1 == winningPositionList1[i])
{
won1 = 1;
break;
}
}
// Check if needle 2 is in a winning position
for (int i=0; i < 2*WINNING_POS_TOLERANCE+1; i++)
{
if (position2 == winningPositionList2[i])
{
won2 = 1;
break;
}
}
// If both are winnin, the player won
if (won1 && won2)
{
digitalWrite(DOOR_PIN, HIGH);
doorUnlocked = TRUE;
Serial.println("WINNER");
succeed = 1;
started = 0;
digitalWrite(STARTED_PIN, started);
digitalWrite(SUCCEED_PIN, succeed);
// Make sure all motors are stopped (in case the switches has been pushed between the previous "if" and this one
// (happened once...)
stopAllMotors();
}
}
}
// Manages the direction changes
// This function is called whenever on of the direction change counter value has changed
void directionManager(void)
{
uint8_t newSpeed;
// Check if our counter has overflowed
if (directionChangeCounter1 >= directionChangeCounterTopValue1)
{
// Switch the direction
direction1 = !direction1;
// Reset the counter
directionChangeCounter1 = 0;
// Find the next value in the randomSeq array -> time intervals are random
index1 = (index1+1)%SIZE_RAND_SEQ;
directionChangeCounterTopValue1 = randomSeq[index1];
// Modify the speed according to the time value
// long time value <=> faster speed
// short time value <=> slower speed
if (directionChangeCounterTopValue1 < 10)
newSpeed = speedSetting + 4;
else if (directionChangeCounterTopValue1 < 15)
newSpeed = speedSetting + 2;
else
newSpeed = speedSetting;
setMotorSpeed(MOTOR1, newSpeed, direction1);
}
// Same as for motor 1...
if (directionChangeCounter2 >= directionChangeCounterTopValue2)
{
direction2 = !direction2;
directionChangeCounter2 = 0;
index2 = (index2+1)%SIZE_RAND_SEQ;
directionChangeCounterTopValue2 = randomSeq[index2];
if (directionChangeCounterTopValue2 < 10)
newSpeed = speedSetting + 4;
else if (directionChangeCounterTopValue2 < 15)
newSpeed = speedSetting + 2;
else
newSpeed = speedSetting;
setMotorSpeed(MOTOR2, newSpeed, direction2);
}
}
// Defines how the uC reacts to i2c commands from raspberry pi server
void i2cCommandManager(void)
{
// Did we get any command from the server ?
if (newCmd)
{
// Serial.print("i2c = ");
// Serial.print(cmd[0]);
// Serial.print(" ");
// Serial.print(cmd[1]);
// Serial.print(" ");
// Serial.println(cmd[2]);
switch (cmd[0])
{
case CHANGE_SPEED : // Change the speed
speedSetting = cmd[1];
setAllMotorSpeed(speedSetting);
Serial.print("speed = ");
Serial.println(speedSetting);
break;
case START : // Start and reset the game (unused, replaced by START_SPEED)
startAllMotors();
started = 1;
succeed = 0;
digitalWrite(STARTED_PIN, started);
digitalWrite(SUCCEED_PIN, succeed);
motor1Started = 1;
motor2Started = 1;
digitalWrite(DOOR_PIN, LOW);
doorUnlocked = FALSE;
Serial.println("START");
break;
case STOP : // Stop the game
stopAllMotors();
started = 0;
digitalWrite(STARTED_PIN, started);
motor1Started = 0;
motor2Started = 0;
Serial.println("STOP");
break;
case INIT_POS : // Calibrate the encoder according to the needles positions the user typed on the html form
position1 = cmd[1];
position2 = cmd[2];
initDone = TRUE;
Serial.print("Init Pos = ");
Serial.print(position1);
Serial.print(" ");
Serial.println(position2);
break;
case START_SPEED : // Reset, start and set the speed
startAllMotors();
started = 1;
succeed = 0;
digitalWrite(STARTED_PIN, started);
digitalWrite(SUCCEED_PIN, succeed);
motor1Started = 1;
motor2Started = 1;
digitalWrite(DOOR_PIN, LOW);
doorUnlocked = FALSE;
Serial.print("START SPEED = ");
speedSetting = cmd[1];
setAllMotorSpeed(speedSetting);
Serial.print("speed = ");
Serial.println(speedSetting);
break;
case RESET_CMD : // Reset the game without starting it
stopAllMotors();
succeed = 0;
started = 0;
digitalWrite(STARTED_PIN, started);
digitalWrite(SUCCEED_PIN, succeed);
motor1Started = 0;
motor2Started = 0;
digitalWrite(DOOR_PIN, LOW);
doorUnlocked = FALSE;
Serial.println("RESET");
break;
case GO_TO_POS : // Make the needles go to a certain position
Serial.print("Go to pos ");
Serial.print(cmd[1]);
Serial.print(" ");
Serial.println(cmd[2]);
goToPosition(cmd[1], cmd[2]);
break;
case UNLOCK_DOOR : // Unlock the door
digitalWrite(DOOR_PIN, HIGH);
doorUnlocked = TRUE;
Serial.println("Unlock the door");
break;
case LOCK_DOOR : // Lock the door
digitalWrite(DOOR_PIN, LOW);
doorUnlocked = FALSE;
Serial.println("Lock the door");
break;
case CHANGE_WINNING_POS : // Redefine the winning position, which is written on the EEPROM to keep it when the uC has been stopped
winningPosition1 = cmd[1];
winningPosition2 = cmd[2];
EEPROM.write(EEPROM_1, winningPosition1);
EEPROM.write(EEPROM_2, winningPosition2);
determineWinningPositions();
Serial.print("Change win. pos. to (");
Serial.print(cmd[1]);
Serial.print(",");
Serial.print(cmd[2]);
Serial.println(")");
break;
}
newCmd = 0;
}
}
// Print the current needles position for debug purposes
void printPosition(bool b)
{
if (printPos && b)
{
Serial.print(position1);
Serial.print(" ");
Serial.println(position2);
printPos = 0;
}
}
// Make the needles go to the position the user submitted on the html form
void goToPosition(uint8_t position1_, uint8_t position2_)
{
// Set the speed pretty slow and make sure the motors are started
setAllMotorSpeed(45);
startAllMotors();
bool okPos1 = 0, okPos2 = 0;
// turn the needles clockwise until the both reach the desired position
while(!(okPos1 && okPos2))
{
if (position1 == position1_)
{
stopMotor(MOTOR1);
okPos1 = 1;
}
if (position2 == position2_)
{
stopMotor(MOTOR2);
okPos2 = 1;
}
}
setAllMotorSpeed(speedSetting);
}
// Determine the new motor position when there's been a change on the encoder pins
void readEncoder(void)
{
// The binary combinations of A1 and B1 is always, in decimal :
// 3 2 0 1 3 2 0 1 3 2 0 1 ... when the motor is rotating clockwise
// 1 0 2 3 1 0 2 3 1 0 2 3 ... when the motor is rotating anticlockwise
// Knowing this we can deduce from A1-B1 combinations which way the motor is turning
currentA1 = digitalRead(A1_PIN);
currentB1 = digitalRead(B1_PIN);
// Serial.print(currentA1);
// Serial.print(currentB1);
// Serial.print(" ");
currentState1 = ((char)currentA1<<1) + currentB1;
if (currentState1 != previousState1)
{
if (currentState1 == STATE0)
{
if (previousState1 == STATE3)
{
position1++;
if (position1 == 60)
position1 = 0;
}
else if (previousState1 == STATE1)
{
position1--;
if (position1 == -1)
position1 = 59;
}
}
if (currentState1 == STATE1)
{
if (previousState1 == STATE0)
{
position1++;
if (position1 == 60)
position1 = 0;
}
else if (previousState1 == STATE2)
{
position1--;
if (position1 == -1)
position1 = 59;
}
}
if (currentState1 == STATE2)
{
if (previousState1 == STATE1)
{
position1++;
if (position1 == 60)
position1 = 0;
}
else if (previousState1 == STATE3)
{
position1--;
if (position1 == -1)
position1 = 59;
}
}
if (currentState1 == STATE3)
{
if (previousState1 == STATE2)
{
position1++;
if (position1 == 60)
position1 = 0;
}
else if (previousState1 == STATE0)
{
position1--;
if (position1 == -1)
position1 = 59;
}
}
previousState1 = currentState1;
printPos = 1;
}
currentA2 = digitalRead(A2_PIN);
currentB2 = digitalRead(B2_PIN);
// Serial.print(currentA2);
// Serial.println(currentB2);
currentState2 = ((char)currentA2<<1) + currentB2;
if (currentState2 != previousState2)
{
if (currentState2 == STATE0)
{
if (previousState2 == STATE3)
{
position2++;
if (position2 == 60)
position2 = 0;
}
else if (previousState2 == STATE1)
{
position2--;
if (position2 == -1)
position2 = 59;
}
}
if (currentState2 == STATE1)
{
if (previousState2 == STATE0)
{
position2++;
if (position2 == 60)
position2 = 0;
}
else if (previousState2 == STATE2)
{
position2--;
if (position2 == -1)
position2 = 59;
}
}
if (currentState2 == STATE2)
{
if (previousState2 == STATE1)
{
position2++;
if (position2 == 60)
position2 = 0;
}
else if (previousState2 == STATE3)
{
position2--;
if (position2 == -1)
position2 = 59;
}
}
if (currentState2 == STATE3)
{
if (previousState2 == STATE2)
{
position2++;
if (position2 == 60)
position2 = 0;
}
else if (previousState2 == STATE0)
{
position2--;
if (position2 == -1)
position2 = 59;
}
}
previousState2 = currentState2;
printPos = 1;
}
}
void determineWinningPositions(void)
{
int firstPos = winningPosition1-WINNING_POS_TOLERANCE;
if (firstPos < 0)
firstPos =+ 60;
for (int i=0; i<(2*WINNING_POS_TOLERANCE+1); i++)
{
winningPositionList1[i] = (firstPos+i)%60;
}
firstPos = winningPosition2-WINNING_POS_TOLERANCE;
if (firstPos < 0)
firstPos =+ 60;
for (int i=0; i<(2*WINNING_POS_TOLERANCE+1); i++)
{
winningPositionList2[i] = (firstPos+i)%60;
}
}
The header is included at the beginning of "Sketch.cpp" :
#include <Arduino.h>
#include "LetMeOut.h"
ISR(TIMER1_COMPA_vect );
ISR(PCINT2_vect );
bool debug = 0;
uint8_t directionChangeCounter1 = 0, directionChangeCounter2 = 0;
uint8_t directionChangeCounterTopValue1 = 10;
uint8_t directionChangeCounterTopValue2 = 10;
bool direction1 = 0;
bool direction2 = 0;
bool counterChanged = 0;
uint8_t button1Counter = 0;
bool button1CounterStarted = FALSE;
uint8_t button2Counter = 0;
bool button2CounterStarted = FALSE;
volatile uint8_t startButtonCounter = 0;
volatile bool startButtonCounterStarted = FALSE;
uint8_t cmd[3] = {0,0,0};
uint8_t globalState[GLOBAL_STATE_SIZE];
bool newCmd = 0;
uint8_t index1 = 0;
uint8_t index2 = 64;
uint8_t speedSetting = MAX_SPEED;
volatile bool started = 0;
bool initDone = FALSE;
bool doorUnlocked = FALSE;
volatile bool currentA1, currentB1, currentA2, currentB2;
volatile int currentState1, previousState1, currentState2, previousState2, position1, position2;
volatile bool printPos = 0;
uint8_t winningPosition1;
uint8_t winningPosition2;
volatile bool succeed = 0; // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
volatile bool motor1Started = 0;
volatile bool motor2Started = 0;
int* winningPositionList1;
int* winningPositionList2;
void setup()
{
Serial.begin(2000000);
Serial.println("****************************************************************");
Serial.println("******************** L'horloge déjantée ************************");
Serial.println("************* Eric Bohnes - ISIB 2017-2018**********************");
Serial.println("****************** Master 2 Electronique ***********************");
Serial.println("****************** Cours de Mécatronique ***********************");
Serial.println("*****Collaboration avec l'Escape Game LET ME OUT Bruxelles *****");
Serial.println("****************************************************************\n\n");
initMotors();
initDirectionTimer();
initI2C();
initEncoder();
// Set the player's STOP buttons on INPUT_PULLUP
pinMode(STOP_M1, INPUT_PULLUP);
pinMode(STOP_M2, INPUT_PULLUP);
pinMode(SUCCEED_PIN, OUTPUT);
pinMode(STARTED_PIN, OUTPUT);
// Enable global interrupts
interrupts();
pinMode(START_PIN, INPUT_PULLUP);
stopAllMotors();
winningPosition1 = EEPROM.read(EEPROM_1);
winningPosition2 = EEPROM.read(EEPROM_2);
digitalWrite(STARTED_PIN, started);
digitalWrite(SUCCEED_PIN, succeed);
winningPositionList1 = (int*)malloc((2*WINNING_POS_TOLERANCE+1)*sizeof(int));
winningPositionList2 = (int*)malloc((2*WINNING_POS_TOLERANCE+1)*sizeof(int));
determineWinningPositions();
}
void loop()
{
// If the player didn't succeed yet, check we must change a direction or if the player pushed a button
if (!succeed)
{
// Check if it's time to change direction
if (counterChanged)
directionManager();
// If the game is started, poll the buttons
if (started)
buttonManager();
// Set the parameter TRUE for debugging purposes
printPosition(FALSE);
}
i2cCommandManager();
if (!digitalRead(START_PIN))
{
if (!startButtonCounterStarted)
{
startAllMotors();
started = 1;
succeed = 0;
digitalWrite(STARTED_PIN, started);
digitalWrite(SUCCEED_PIN, succeed);
motor1Started = 1;
motor2Started = 1;
doorUnlocked = FALSE;
digitalWrite(DOOR_PIN, LOW);
Serial.println("Started by pin");
startButtonCounterStarted = TRUE;
startButtonCounter = 0;
}
}
}
ISR(TIMER1_COMPA_vect)
{
Timer1_ISR();
}
ISR(PCINT2_vect)
{
readEncoder();
}
As I said before, I copied/pasted the sketch in Arduino IDE and it compiles without any errors with this tool. When trying to compile with Atmel Studio, I tried to build/rebuild the solution, the sketch itself, with and without cleaning first, still get the error.
Here is a solution explorer printscreen :
Any clue would be appreciated !
Best regards.
Eric

Related

how do i call a function in loop from another function in void loop arduino

#define CLK 2
#define DT 3
#define SW 4
#include <EEPROM.h>
#include <Wire.h>
#include <LiquidCrystal_PCF8574.h>
LiquidCrystal_PCF8574 lcd(0x27);
int counter = 0;
int currentStateCLK;
int lastStateCLK;
int lastCLK,cnt=0,btnState,lastPress=0;
String currentDir ="";
unsigned long lastButtonPress = 0;
char *mainmenu[] ={"SET MODE","SET TEMP","SET HUMD","SERVO","RESET"};
char *setmode[] ={"INCUBATOR","HATCHER","BACK"};
void setup() {
// Set encoder pins as inputs
Wire.begin();
Wire.beginTransmission(0x27);
pinMode(CLK,INPUT);
pinMode(DT,INPUT);
pinMode(SW, INPUT_PULLUP);
lcd.begin(16, 2);
lcd.setBacklight(255);
lcd.home(); lcd.clear();
Serial.begin(9600);
lastStateCLK = digitalRead(CLK);
delay(100);
if(EEPROM_READ(0)==NULL){
SET_MODE();
}
Serial.print(EEPROM_READ(0));
}
void loop(){
disp();
rot();
}
void disp(){
lcd.setCursor(0,0);
lcd.print(" KGF");
}
void rot() {
int lim=sizeof(mainmenu)/2;
Serial.print(lim);
currentStateCLK = digitalRead(CLK);
if (currentStateCLK != lastStateCLK && currentStateCLK == 1){
lcd.clear();
lcd.setCursor(0, 1);
if (digitalRead(DT) != currentStateCLK) {
counter --;
if(counter<0){
counter=lim-1;
}
}
else {
// Encoder is rotating CW so increment
counter ++;
if(counter>lim-1){
counter=0;
}
lcd.print(mainmenu[counter]);
}
lastStateCLK = currentStateCLK;
int btnState = digitalRead(SW);
if (btnState == LOW) {
//if 50ms have passed since last LOW pulse, it means that the
//button has been pressed, released and pressed again
if (millis() - lastButtonPress > 50) {
if(counter==0){
SET_MODE();
}
}
}
lastButtonPress = millis();
}
delay(1);
}
void SET_MODE(){
int lim=sizeof(setmode)/2;
int currentCLK = digitalRead(CLK);
if (currentCLK != lastCLK && currentCLK == 1){
lcd.clear();
lcd.setCursor(0, 1);
if (digitalRead(DT) != currentCLK) {
cnt --;
if(cnt<0){
cnt=lim-1;
}
}
else {
// Encoder is rotating CW so increment
cnt ++;
if(cnt>lim-1){
cnt=0;
}
}
lcd.print(setmode[cnt]);
}
lastCLK = currentCLK;
btnState = digitalRead(SW);
if (btnState == LOW) {
//if 50ms have passed since last LOW pulse, it means that the
//button has been pressed, released and pressed again
if (millis() - lastButtonPress > 50) {
if(setmode[cnt]=="BACK"){
exit(0);
}
lcd.clear();
lcd.setCursor(0, 1);
EEPROM_WRITE(0,setmode[cnt]);
lcd.print("DONE");
}
lastPress = millis();
}
delay(1);
}
void EEPROM_WRITE(int addrOffset, const String &strToWrite)
{
byte len = strToWrite.length();
EEPROM.write(addrOffset, len);
for (int i = 0; i < len; i++)
{
EEPROM.write(addrOffset + 1 + i, strToWrite[i]);
}
}
String EEPROM_READ(int addrOffset)
{
int newStrLen = EEPROM.read(addrOffset);
char data[newStrLen + 1];
for (int i = 0; i < newStrLen; i++)
{
data[i] = EEPROM.read(addrOffset + 1 + i);
}
data[newStrLen] = '\0';
return String(data);
}
I want to call the SET_MODE() function in the loop from rot() function, I am building a menu based program so the SET MODE menu should redirect to the SET_MODE() function, and as I will be adding more menu and sub-menus how can I perform this task.
The SET_MODE() function doesn't work in loop I do not know why, it only works when I all it under void loop() directly.

Trying to write character from Arduino pin to Putty

So, i am writing a code to send a character (8 data-bits) and a stop bit to Putty using the Arduino timer 1 interrupt. When I try to send a character it shows something in Putty, so it does send, but not the character I am sending. I have searched for all sorts of documentation but i can't seem to find what i need, also I don't know what I'm doing wrong. Code:
#define Fosc 16000000
int rxPin = 7;
int txPin = 8;
int dataBits = 0;
uint8_t txBuffer;
void setup() {
Serial.begin(9600);
pinMode(txPin, OUTPUT);
pinMode(rxPin, INPUT);
setupInterrupts(9600);
}
void loop() {
ReadMessage();
}
void setupInterrupts(long baud)
{
long cmr = ((Fosc / (64 * baud)) - 1); //compare match register
noInterrupts();
TCCR1A = 0;
TCCR1B = 0;
TCNT1 = 0; //counter value to 0
OCR1A = cmr;
TCCR1B |= (1 << WGM12); // CTC mode
TCCR1B |= (1 << CS11) | (1 << CS10); // Set bits for 64 prescaler
//TIMSK1 = _BV(OCIE1A); //attach
interrupts();
}
ISR(TIMER1_COMPA_vect)
{
transmit();
}
void transmit()
{
if (dataBits < 8)
{
if (txBuffer & 0b1) {
digitalWrite(txPin, HIGH);
}
else {
digitalWrite(txPin, LOW);
}
txBuffer >>= 1;
}
dataBits++;
if (dataBits == 9)
{
dataBits = 0;
digitalWrite(txPin, HIGH);
TIMSK1 &= ~_BV(OCIE1A); //detach
}
}
bool getParity(unsigned int n)
{
bool parity = 0;
while (n)
{
parity = !parity;
n = n & (n - 1);
}
return parity;
}
int incomingByte;
void ReadMessage() {
if (Serial.available() > 0) {
incomingByte = Serial.read();
char receivedCharacter = (char) incomingByte;
txBuffer = receivedCharacter;
Serial.println((char)txBuffer);
TIMSK1 = _BV(OCIE1A); //attach
}
}
Putty Output

Arduino NRF24l01 RC sends nothing

I'm trying to execute following source on my RC transmitter and receiver which uses NRF24 module. Today i uploaded same sketch as i did half year ago and it stopped receiving any data from transmitter, nothing is printed in DEBUG_PRINT sections.
On transmitter NRF24 is connected to 7, 8.
On receiver NRF24 is connected to 9, 10.
Wiring checked 7 times, correct, power supply of the receiver is 7.4V to the VIN, power supply for the transmitter is USB source.
Running on the arduino nano.
Source for transmitter is:
// Flash for self-diy NRF24lo* transmiter controller.
// 6 buttons, 4-way sticks, based on CX-10c controller.
#include <EEPROM.h>
#include <SPI.h>
#include "RF24.h"
#define DEBUG_PRINT
// #define DEBUG_PRINT_RAW
#ifdef DEBUG_PRINT
#include <printf.h>
#endif
// IO mappings
#define STICK0 A3
#define STICK1 A2
#define STICK2 A0
#define STICK3 A1
#define BTN0 3
#define BTN1 6
#define BTN2 5
#define BTN3 4
#define BTN4 9
#define BTN5 A4
#define STLED 2
// Optional moddings
#define BTN_LONG_PRESS 1000
#define LED_ST_OFF 0
#define LED_ST_CONST 1
#define LED_ST_FLASH 2
#define LED_ST_FAST_FLASH 3
#define LED_ST_FLASH_TIME 250
#define LED_ST_FAST_FLASH_TIME 100
#define LED_POWER 150
// Package types
#define PACKAGE_STICKS 3
#define PACKAGE_BUTTON 5
#define PACKAGE_PING 7
#define PACKAGE_TIMEOUT 100
// Amount of packages should be dropped sequently to detect disconnect
#define TX_DROP_EDGE 16
// Long press stick 0 to start calibration, long press to stop
// Struct with min/max calibration values
struct STICK_CALIBRATION {
int stmx[4];
int stmn[4];
};
// Struct with info of button presses
struct BTN_STATE {
int press[6];
unsigned long time[6];
// Used in long press to avoid multiple pressing
int acted[6];
};
// Struct with state of flashing/idle/working LED
// FLASH --> CONST/OFF
// FAST_FLASH --> CONST/OFF
struct LED_STATE {
// Previous type (for FLASH return to OFF/CONST state)
int ptype;
// Type of operation
int type;
// ON/OFF
int state;
// Time since action
unsigned long time;
// Count of flashes
int count;
};
// Sender package type.
// Contains type and values for button or values for sticks
struct Package {
int type;
union {
struct {
int number;
int lpress;
int dummy[2];
} button;
struct {
int sticks[4];
} sticks;
} data;
};
// Info of sticks calibration
STICK_CALIBRATION calibration;
bool calibration_mode = 0;
int sticks[4];
// When entering lock mode, stick data is not updating from input
bool lock_mode = 0;
// info of buttons states
BTN_STATE buttons;
LED_STATE led_state;
// Use NRF24lo1 transmitter on pins 7, 8
RF24 radio(7, 8);
byte addresses[][6] = { "TRAAA", "REEEE" };
// Amount of sequently dropped packages. Used to detect disconnect
int tx_dropped = 0;
// Used to prevent longpress repeat
// On long press button could be used as sticky press function,
// to avoid button sticking and long press act once during while push down,
// use this function to mark button as acted
void btn_act(int nubmer);
// Called on button press/longpress
void btn_action(int number, int lpress);
// Set led ON/OFF with change of state flag
void led_set_state(int state);
// Set led action type (FLAST, CONST, e.t.c.)
void led_set(int type, int count);
// Sends single package with given amount of attempts.
// Allows waiting for responce of receiver. The response should be 0.
// Returns 1 on success, 0 on failture.
int send_package(byte* pack, int size);
void setup() {
#ifdef DEBUG_PRINT
Serial.begin(115200);
#endif
// Set up transmitter
radio.begin();
radio.setChannel(77);
radio.enableAckPayload();
radio.setPALevel(RF24_PA_MAX);
radio.openWritingPipe(addresses[1]);
radio.openReadingPipe(1, addresses[0]);
#ifdef DEBUG_PRINT
printf_begin();
radio.printDetails();
#endif
// Read calibration values
byte* cal_struct = (byte*) &calibration;
for (int i = 0; i < sizeof(STICK_CALIBRATION); ++i)
cal_struct[i] = EEPROM.read(i);
#ifdef DEBUG_PRINT
Serial.println("CALIBRATION: ");
for (int i = 0; i < 4; ++i) {
Serial.print('(');
Serial.print(calibration.stmn[i]);
Serial.print(", ");
Serial.print(calibration.stmx[i]);
Serial.print(") ");
}
Serial.println();
#endif
buttons = {{0,0,0,0,0,0}, {0,0,0,0,0,0}, {0,0,0,0,0,0}};
// Clear LED state
led_state.ptype = 0;
led_state.type = 0;
led_state.state = 0;
led_state.time = 0;
led_state.count = 0;
// Prepare pinout
pinMode(STLED, OUTPUT);
pinMode(STICK0, INPUT_PULLUP);
pinMode(STICK1, INPUT_PULLUP);
pinMode(STICK2, INPUT_PULLUP);
pinMode(STICK3, INPUT_PULLUP);
pinMode(BTN0, INPUT_PULLUP);
pinMode(BTN1, INPUT_PULLUP);
pinMode(BTN2, INPUT_PULLUP);
pinMode(BTN3, INPUT_PULLUP);
pinMode(BTN4, INPUT_PULLUP);
pinMode(BTN5, INPUT_PULLUP);
}
void loop() {
// Read sticks & map to calibration
if (!lock_mode) {
sticks[0] = analogRead(STICK0);
sticks[1] = analogRead(STICK1);
sticks[2] = 1024 - analogRead(STICK2);
sticks[3] = 1024 - analogRead(STICK3);
}
// Read stick buttons
int rbtn[6];
rbtn[0] = !digitalRead(BTN0);
rbtn[1] = !digitalRead(BTN1);
// read optional buttons
rbtn[2] = !digitalRead(BTN2);
rbtn[3] = !digitalRead(BTN3);
rbtn[4] = !digitalRead(BTN4);
rbtn[5] = !digitalRead(BTN5);
#ifdef DEBUG_PRINT
#ifdef DEBUG_PRINT_RAW
// Debug out
Serial.print(sticks[0]); Serial.print(' ');
Serial.print(sticks[1]); Serial.print(' ');
Serial.print(sticks[2]); Serial.print(' ');
Serial.print(sticks[3]); Serial.print(' ');
Serial.print(rbtn[0]); Serial.print(' ');
Serial.print(rbtn[1]); Serial.print(' ');
Serial.print(rbtn[2]); Serial.print(' ');
Serial.print(rbtn[3]); Serial.print(' ');
Serial.print(rbtn[4]); Serial.print(' ');
Serial.print(rbtn[5]); Serial.print(' ');
Serial.println();
#endif
#endif
// Map to calibration
if (!calibration_mode && !lock_mode) {
sticks[0] = map(sticks[0], calibration.stmn[0], calibration.stmx[0], 0, 1023);
sticks[1] = map(sticks[1], calibration.stmn[1], calibration.stmx[1], 0, 1023);
sticks[2] = map(sticks[2], calibration.stmn[2], calibration.stmx[2], 0, 1023);
sticks[3] = map(sticks[3], calibration.stmn[3], calibration.stmx[3], 0, 1023);
}
// Check buttons states and update timings
for (int i = 0; i < 6; ++i) {
if (buttons.press[i] && !rbtn[i]) { // Button released
if (!buttons.acted[i])
btn_action(i, (millis() - buttons.time[i]) > BTN_LONG_PRESS);
buttons.press[i] = 0;
buttons.time[i] = 0;
} else if (buttons.press[i]) { // Button keeps down
if ((millis() - buttons.time[i]) > BTN_LONG_PRESS && !buttons.acted[i]) { // Toggle long press
btn_action(i, 1);
// buttons.press[i] = 0;
buttons.time[i] = 0;
}
} else if (rbtn[i]) { // Button pressed
buttons.press[i] = 1;
buttons.acted[i] = 0;
buttons.time[i] = millis();
}
}
// Update LED
if (led_state.type == LED_ST_FLASH && (led_state.time + LED_ST_FLASH_TIME) < millis()
||
led_state.type == LED_ST_FAST_FLASH && (led_state.time + LED_ST_FAST_FLASH_TIME) < millis()) { // Flash period done
if (!led_state.state) { // Count cycle as finished, try to begin another one
--led_state.count;
if (led_state.count <= 0) { // Flashing cycles is done
led_state.type = led_state.ptype;
led_set_state(led_state.type == LED_ST_CONST);
} else { // Turn led ON again, begin next flash cycle
led_state.time = millis();
led_set_state(1);
}
} else { // Just turn the led OFF
led_state.time = millis();
led_set_state(0);
}
}
// Update led flashing
if (led_state.type != LED_ST_FLASH && led_state.type != LED_ST_FAST_FLASH) {
if (calibration_mode)
led_set(LED_ST_FAST_FLASH, 4);
else {
// Update led lighting
if (lock_mode)
led_set(LED_ST_CONST, 0);
else
led_set(LED_ST_OFF, 0);
}
}
// If !paired
if (calibration_mode) {
for (int i = 0; i < 4; ++i) {
if (calibration.stmn[i] > sticks[i])
calibration.stmn[i] = sticks[i];
if (calibration.stmx[i] < sticks[i])
calibration.stmx[i] = sticks[i];
}
} else {
// Sending package with sticks
Package pack;
pack.type = PACKAGE_STICKS;
pack.data.sticks.sticks[0] = sticks[0];
pack.data.sticks.sticks[1] = sticks[1];
pack.data.sticks.sticks[2] = sticks[2];
pack.data.sticks.sticks[3] = sticks[3];
bool result = send_package((byte*) &pack, sizeof(Package));
if (!result) {
if (tx_dropped > TX_DROP_EDGE && led_state.type != LED_ST_FLASH && led_state.type != LED_ST_FAST_FLASH)
led_set(LED_ST_FLASH, 4);
#ifdef DEBUG_PRINT
Serial.println("TX failed");
#endif
}
}
}
int send_package(byte* pack, int size) {
if (!radio.write(pack, size)) {
++tx_dropped;
return 0;
} else {
byte payload;
if (radio.isAckPayloadAvailable()) {
radio.read(&payload, sizeof(byte));
tx_dropped = 0;
return 1;
}
++tx_dropped;
return 0;
}
};
void led_set_state(int state) {
if (led_state.state && !state) {
digitalWrite(STLED, 0);
led_state.state = !led_state.state;
} else if (!led_state.state && state) {
analogWrite(STLED, LED_POWER);
led_state.state = !led_state.state;
}
};
void led_set(int type, int count) {
if (type == LED_ST_CONST || type == LED_ST_OFF) {
led_set_state(type == LED_ST_CONST);
led_state.type = type;
} else {
// if was flashing --> rewrite
// if was constant --> move type to ptype & do flashing
if (led_state.type == LED_ST_CONST || led_state.type == LED_ST_OFF)
led_state.ptype = led_state.type;
led_state.type = type;
led_state.count = count;
led_state.time = millis();
led_set_state(1);
}
};
void btn_act(int number) {
buttons.acted[number] = 1;
};
// Override calls for button presses
void btn_action(int number, int lpress) {
#ifdef DEBUG_PRINT
Serial.print("Press for "); Serial.println(number);
#endif
switch(number) {
// calibration
case 0: {
// press = ?
// Lpress = calibration mode
if (lpress) {
if (calibration_mode && !lock_mode) {
// Write calibration values
byte* cal_struct = (byte*) &calibration;
for (int i = 0; i < sizeof(STICK_CALIBRATION); ++i)
EEPROM.write(i, cal_struct[i]);
calibration_mode = 0;
#ifdef DEBUG_PRINT
Serial.println("NEW CALIBRATION: ");
for (int i = 0; i < 4; ++i) {
Serial.print('(');
Serial.print(calibration.stmn[i]);
Serial.print(", ");
Serial.print(calibration.stmx[i]);
Serial.print(") ");
}
Serial.println();
#endif
} else {
for (int i = 0; i < 4; ++i) {
calibration.stmn[i] = 1024;
calibration.stmx[i] = 0;
}
calibration_mode = 1;
}
}
break;
}
case 1: {
// press = ?
// Lpress = lock mode
if (lpress) {
lock_mode = !lock_mode;
}
break;
}
}
led_set(LED_ST_FAST_FLASH, 2);
btn_act(number);
Package pack;
pack.type = PACKAGE_BUTTON;
pack.data.button.number = number;
pack.data.button.lpress = lpress;
bool result = send_package((byte*) &pack, sizeof(Package));
#ifdef DEBUG_PRINT
if (!result)
Serial.println("Button TX failed");
#endif
};
Source for receiver is:
// Flash for self-diy NRF24lo* receiver controller.
// 6 buttons, 4-way sticks.
#include <Servo.h>
#include <SPI.h>
#include "RF24.h"
#define DEBUG_PRINT
#ifdef DEBUG_PRINT
#include <printf.h>
#endif
// IO mappings
#define CONNECT_0 2
#define CONNECT_1 3
#define CONNECT_2 4
#define CONNECT_3 5
#define CONNECT_4 6
#define CONNECT_5 7
#define CONNECT_6 8
#define CONNECT_A0 A0
#define CONNECT_A1 A1
#define CONNECT_A2 A2
#define CONNECT_A3 A3
#define CONNECT_A4 A4
#define CONNECT_A5 A5
// A6, A7 on nano are only analog input
#define CONNECT_A6 A6
#define CONNECT_A7 A7
// Inverters for sticks
#define INVERT_STICK0 0
#define INVERT_STICK1 0
#define INVERT_STICK2 0
#define INVERT_STICK3 0
// Mappings for sticks
#define SERVO_MAP_STICK0 0, 180
#define SERVO_MAP_STICK1 0, 180
#define SERVO_MAP_STICK2 0, 180
#define SERVO_MAP_STICK3 60, 120
#define ANALOG_MAP_STICK0 0, 255
#define ANALOG_MAP_STICK1 0, 255
#define ANALOG_MAP_STICK2 0, 255
#define ANALOG_MAP_STICK3 0, 255
// Optional moddings
// Package types
#define PACKAGE_STICKS 3
#define PACKAGE_BUTTON 5
#define PACKAGE_PING 7
// Used to detect disconnect from the controller
#define CONNECTION_TIMEOUT 100
// Mpdes for output of the motor
// #define MODE_2_DIGITAL_1_ANALOG
#define MODE_2_ANALOG
// Receiver package struct.
// Contains type and values for button or values for sticks
struct Package {
int type;
union {
struct {
int number;
int lpress;
// Used to complete size of the package.
// Without it, payload is not sending for sticks.
int dummy[2];
} button;
struct {
int sticks[4];
} sticks;
} data;
};
// Describes state of a single buttons on controller
// Single press -> 1
// Second press -> 0
struct Button {
bool state;
bool lstate;
};
// Use NRF24lo1 transmitter on pins 7, 8
RF24 radio(9, 10);
byte addresses[][6] = { "TRAAA", "REEEE" };
// Used to detect timed disconnection from the controller
unsigned long last_receive_time;
bool disconnected;
// Servos mapped to sticks
Servo servo[4];
// Buttons states
Button buttons[6];
// Called on connection restored after drop
void on_connection();
// Called on connection dropped
void on_disconnection();
// Called on button state received
void button_action(int button, int lpress);
// Called on sticks state received
void sticks_action(int sticks[4]);
void setPWMNanofrequency(int freq) {
TCCR2B = TCCR2B & 0b11111000 | freq;
TCCR1B = TCCR1B & 0b11111000 | freq;
}
void setup() {
#ifdef DEBUG_PRINT
Serial.begin(115200);
#endif
// Set up receiver
radio.begin();
radio.setChannel(77);
//radio.setAutoAck(1);
//radio.setRetries(0, 8);
radio.enableAckPayload();
radio.setPALevel(RF24_PA_MAX);
//radio.setCRCLength(RF24_CRC_8);
radio.openWritingPipe(addresses[0]);
radio.openReadingPipe(1, addresses[1]);
#ifdef DEBUG_PRINT
// Debugger output
printf_begin();
radio.printDetails();
#endif
radio.startListening();
// Init buttons with 0
buttons[0] = { 0, 0 };
buttons[1] = { 0, 0 };
buttons[2] = { 0, 0 };
buttons[3] = { 0, 0 };
buttons[4] = { 0, 0 };
buttons[5] = { 0, 0 };
// Set up pinout
pinMode(CONNECT_0, OUTPUT);
pinMode(CONNECT_2, OUTPUT);
pinMode(CONNECT_3, OUTPUT);
pinMode(CONNECT_4, OUTPUT);
pinMode(CONNECT_5, OUTPUT);
pinMode(CONNECT_6, OUTPUT);
pinMode(CONNECT_A0, OUTPUT);
pinMode(CONNECT_A1, OUTPUT);
pinMode(CONNECT_A2, OUTPUT);
pinMode(CONNECT_A3, OUTPUT);
pinMode(CONNECT_A4, OUTPUT);
pinMode(CONNECT_A5, OUTPUT);
pinMode(CONNECT_A6, INPUT);
pinMode(CONNECT_A7, INPUT);
// setPWMNanofrequency(0x02);
// Set up servos
servo[0].attach(CONNECT_A4); // Remapped servos to leave three PWM pins
servo[1].attach(CONNECT_A5);
servo[2].attach(CONNECT_5);
servo[3].attach(CONNECT_6);
// Clear disconnect trigger
last_receive_time = millis();
disconnected = 0;
// Reset outputs
digitalWrite(CONNECT_0, LOW);
digitalWrite(CONNECT_2, LOW);
digitalWrite(CONNECT_3, LOW);
digitalWrite(CONNECT_4, LOW);
digitalWrite(CONNECT_5, LOW);
digitalWrite(CONNECT_6, LOW);
digitalWrite(CONNECT_A0, LOW);
digitalWrite(CONNECT_A1, LOW);
digitalWrite(CONNECT_A2, LOW);
digitalWrite(CONNECT_A3, LOW);
digitalWrite(CONNECT_A4, LOW);
digitalWrite(CONNECT_A5, LOW);
// digitalWrite(CONNECT_A6, LOW);
// digitalWrite(CONNECT_A7, LOW);
}
void loop() {
byte payload = 13;
radio.writeAckPayload(1, &payload, sizeof(byte));
if (radio.available()) {
Package pack;
radio.read((byte*) &pack, sizeof(Package));
// Update trigger
last_receive_time = millis();
if (disconnected)
on_connection();
disconnected = 0;
switch(pack.type) {
case PACKAGE_STICKS: {
#ifdef DEBUG_PRINT
Serial.print(pack.data.sticks.sticks[0]); Serial.print(' ');
Serial.print(pack.data.sticks.sticks[1]); Serial.print(' ');
Serial.print(pack.data.sticks.sticks[2]); Serial.print(' ');
Serial.print(pack.data.sticks.sticks[3]); Serial.println();
#endif
if (INVERT_STICK0) pack.data.sticks.sticks[0] = 1024 - pack.data.sticks.sticks[0];
if (INVERT_STICK1) pack.data.sticks.sticks[1] = 1024 - pack.data.sticks.sticks[1];
if (INVERT_STICK2) pack.data.sticks.sticks[2] = 1024 - pack.data.sticks.sticks[2];
if (INVERT_STICK3) pack.data.sticks.sticks[3] = 1024 - pack.data.sticks.sticks[3];
int ssticks[4];
ssticks[0] = map(pack.data.sticks.sticks[0], 0, 1023, SERVO_MAP_STICK0);
ssticks[1] = map(pack.data.sticks.sticks[1], 0, 1023, SERVO_MAP_STICK1);
ssticks[2] = map(pack.data.sticks.sticks[2], 0, 1023, SERVO_MAP_STICK2);
ssticks[3] = map(pack.data.sticks.sticks[3], 0, 1023, SERVO_MAP_STICK3);
int asticks[4];
asticks[0] = map(pack.data.sticks.sticks[0], 0, 1023, ANALOG_MAP_STICK0);
asticks[1] = map(pack.data.sticks.sticks[1], 0, 1023, ANALOG_MAP_STICK1);
asticks[2] = map(pack.data.sticks.sticks[2], 0, 1023, ANALOG_MAP_STICK2);
asticks[3] = map(pack.data.sticks.sticks[3], 0, 1023, ANALOG_MAP_STICK3);
#ifdef DEBUG_PRINT
Serial.print("Servo data: ");
Serial.print(ssticks[0]); Serial.print(' ');
Serial.print(ssticks[1]); Serial.print(' ');
Serial.print(ssticks[2]); Serial.print(' ');
Serial.print(ssticks[3]); Serial.println();
Serial.print("Analog data: ");
Serial.print(asticks[0]); Serial.print(' ');
Serial.print(asticks[1]); Serial.print(' ');
Serial.print(asticks[2]); Serial.print(' ');
Serial.print(asticks[3]); Serial.println();
#endif
sticks_action(pack.data.sticks.sticks, ssticks, asticks);
break;
}
case PACKAGE_BUTTON: {
#ifdef DEBUG_PRINT
Serial.print(pack.data.button.number); Serial.print(' ');
Serial.print(pack.data.button.lpress); Serial.println();
#endif
// Update states of the buttons
if (pack.data.button.lpress)
buttons[pack.data.button.number].lstate = !buttons[pack.data.button.number].lstate;
else
buttons[pack.data.button.number].state = !buttons[pack.data.button.number].state;
button_action(pack.data.button.number, pack.data.button.lpress);
break;
}
}
} else if (!disconnected && millis() - last_receive_time > CONNECTION_TIMEOUT) {
disconnected = 1;
on_disconnection();
}
}
void on_connection() {
};
void on_disconnection() {
// servo[0].write(0);
// servo[1].write(0);
// servo[2].write(0);
// servo[3].write(0);
// analogWrite(CONNECT_A0, 0);
// analogWrite(CONNECT_A1, 0);
// analogWrite(CONNECT_A2, 0);
// analogWrite(CONNECT_A3, 0);
#ifdef MODE_2_DIGITAL_1_ANALOG
digitalWrite(CONNECT_1, LOW);
digitalWrite(CONNECT_2, LOW);
digitalWrite(CONNECT_3, LOW);
#endif
#ifdef MODE_2_ANALOG
digitalWrite(CONNECT_3, LOW);
digitalWrite(CONNECT_4, LOW);
digitalWrite(CONNECT_0, LOW);
#endif
};
void button_action(int button, int lpress) {
switch (button) {
case 0:
case 1:
break;
case 2: {
digitalWrite(CONNECT_A0, buttons[button].state);
break;
}
case 3: {
digitalWrite(CONNECT_A1, buttons[button].state);
break;
}
case 4: {
digitalWrite(CONNECT_A2, buttons[button].state);
break;
}
case 5: {
digitalWrite(CONNECT_A3, buttons[button].state);
break;
}
}
};
void sticks_action(int sticks[4], int ssticks[4], int asticks[4]) {
servo[0].write(ssticks[0]);
servo[1].write(ssticks[1]);
servo[2].write(ssticks[2]);
servo[3].write(ssticks[3]);
// analogWrite(CONNECT_A0, asticks[0]);
// analogWrite(CONNECT_A1, asticks[1]);
// analogWrite(CONNECT_A2, asticks[2]);
// analogWrite(CONNECT_A3, asticks[3]);
// Control H-Bridge over 3, 4 outputs with right stick
int value = (sticks[2] > 500) ? (sticks[2] - 500) : (sticks[2] < 480) ? (480 - sticks[2]) : (0);
if (value < 500)
value = map(value, 0, 480, 0, 255);
else
value = map(value, 0, 1023 - 500, 0, 255);
value = (value > 255) ? 255 : (value < 0) ? 0 : value;
// connecting 2 digital pins as HIGH,LOW / LOW,HIGH and analog as speed value (used in bts79603 bridge)
#ifdef MODE_2_DIGITAL_1_ANALOG
if (sticks[2] > 500) {
digitalWrite(CONNECT_1, HIGH);
digitalWrite(CONNECT_2, LOW);
analogWrite(CONNECT_3, value);
} else if (sticks[2] < 480) {
digitalWrite(CONNECT_1, LOW);
digitalWrite(CONNECT_2, HIGH);
analogWrite(CONNECT_3, value);
} else {
digitalWrite(CONNECT_1, LOW);
digitalWrite(CONNECT_2, LOW);
analogWrite(CONNECT_3, 0);
}
#endif
// connecting 2 analog pins to simple H-Bridge
#ifdef MODE_2_ANALOG
analogWrite(CONNECT_3, sticks[2] > 500 ? value : 0);
analogWrite(CONNECT_4, sticks[2] < 480 ? value : 0);
analogWrite(CONNECT_0, sticks[2] > 500 || sticks[2] < 480);
#endif
};
Transmitter printDetails output:
STATUS = 0x0e RX_DR=0 TX_DS=0 MAX_RT=0 RX_P_NO=7 TX_FULL=0
RX_ADDR_P0-1 = 0x4141415254 0x4545454552
RX_ADDR_P2-5 = 0xc3 0xc4 0xc5 0xc6
TX_ADDR = 0x4141415254
RX_PW_P0-6 = 0x20 0x20 0x00 0x00 0x00 0x00
EN_AA = 0x3f
EN_RXADDR = 0x03
RF_CH = 0x4d
RF_SETUP = 0x07
CONFIG = 0x0e
DYNPD/FEATURE = 0x00 0x00
Data Rate = 1MBPS
Model = nRF24L01+
CRC Length = 16 bits
PA Power = PA_MAX
Receiver printDetails output:
STATUS = 0x0e RX_DR=0 TX_DS=0 MAX_RT=0 RX_P_NO=7 TX_FULL=0
RX_ADDR_P0-1 = 0x4545454552 0x4141415254
RX_ADDR_P2-5 = 0xc3 0xc4 0xc5 0xc6
TX_ADDR = 0x4545454552
RX_PW_P0-6 = 0x20 0x20 0x00 0x00 0x00 0x00
EN_AA = 0x3f
EN_RXADDR = 0x02
RF_CH = 0x4d
RF_SETUP = 0x07
CONFIG = 0x0e
DYNPD/FEATURE = 0x00 0x00
Data Rate = 1MBPS
Model = nRF24L01+
CRC Length = 16 bits
PA Power = PA_MAX
Code used
Following code on receiver caused IO break.
pinMode(CONNECT_A6, INPUT);
pinMode(CONNECT_A7, INPUT);
A6, A7 pins DOES NOT support mode change and this issue made NRF24 connection to fail.

How can I adjust cursor position without changing screens?

I have a project I'm working on with an LCD screen, two buttons, and a potentiometer, it's a binary calculator. When I reach screenState == 3 I am attempting to change the digits so i can keep track of them and add an 8 bit number with another 8 bit number, while tracking overflow. However, whenever I begin to use the button which the input == 0 it moves the cursor, and then my next button cycles through the screens again. Input == 0 should only change the value between 0 and 1 for whatever lcd.cursor value I'm. How can i adjust that one value without changing screens?
#include <LiquidCrystal.h>
LiquidCrystal lcd(11, 10, 5, 4, 3, 2);
const int numInputs = 2;
const int inputPins[numInputs] = {13, 12};
// tracks screen state
int screenState = 0;
int prevScreenState = 0;
int binaryValue = 0;
// tracks if we are on the right screen to acceptInput and if our value is 0 or 1
bool canAcceptInput = false;
bool valIsZero = false;
int inputState[numInputs];
int lastInputState[numInputs] = {LOW,LOW};
bool inputFlags[numInputs] = {LOW,LOW};
int inputCounter[numInputs];
int cursorPosX = 0;
int cursorPosY = 0;
int blinkingPosX = cursorPosX;
int blinkingPosY = cursorPosY;
unsigned long lastDebounceTime[numInputs] = {0,0};
long debounceDelay = 50;
void setup() {
for(int i = 0; i < numInputs; i++) {
pinMode(inputPins[i], INPUT);
digitalWrite(inputPins[i], HIGH); // pull-up 20k
}
Serial.begin(9600);
lcd.begin(16, 2);
}
void loop() {
setInputFlags();
resolveInputFlags();
}
void setInputFlags() {
for(int i = 0; i < numInputs; i++) {
int reading = digitalRead(inputPins[i]);
if (reading != lastInputState[i]) {
lastDebounceTime[i] = millis();
}
if ((millis() - lastDebounceTime[i]) > debounceDelay) {
if (reading != inputState[i]) {
inputState[i] = reading;
if (inputState[i] == HIGH) {
inputFlags[i] = HIGH;
}
}
}
lastInputState[i] = reading;
}
}
void resolveInputFlags() {
for(int i = 0; i < numInputs; i++) {
if(inputFlags[i] == HIGH) {
// Input Toggle Logic // all invoked upon bttn press
inputCounter[i]++;
updateScreenState(i);
printString(i);
inputFlags[i] = LOW;
}
}
}
void updateScreenState(int input) {
// input 0 = State 0 and 1
if(input == 0) {
if(screenState > 2 & screenState < 19) {
canAcceptInput = true;
binaryValue = 1;
updateScreenValues();
}
else if (screenState == 1) {
//screenState = 0;
binaryValue = 0;
updateScreenValues();
}
else {
//screenState = 2;
binaryValue = 1;
}
// input 1 = State 2 to 6
}else if(input == 1) {
// we have 20 max screen states, this cycles through them using button 2
if(screenState == 0 || screenState == 1 || screenState > 19) {
screenState = 2;
updateScreen();
}else{
screenState++;
updateScreen();
}
}
}
void setCursorValues( int cursorX, int cursorY) {
lcd.setCursor(cursorX, cursorY);
cursorPosX = cursorX;
cursorPosY = cursorY;
}
void updateScreenValues() {
if(canAcceptInput == true) {
if(binaryValue == 0 ){
lcd.print("0");
}
if(binaryValue == 1) {
lcd.print("1");
binaryValue = 0;
}
}
}
// void update -----------------------------------------------------------------------------
void updateScreen() {
// welcome screen -----------------------------
if(screenState == 2){
canAcceptInput = false;
lcd.clear();
setCursorValues(0, 0);
lcd.print("Welcome Screen");
setCursorValues(0, 1);
lcd.print("Press Bttn 1");
}
// start of byte 1 screen ----------------------------------------------------------------
if(screenState == 3){
canAcceptInput = true;
lcd.clear();
setCursorValues(0, 0);
lcd.print("Byte 1 Screen");
setCursorValues(0, 1);
lcd.print(" 0000 0000 ");
//move cursor to MSD and blink
setCursorValues(3, 1);
lcd.blink();
}
//if screenState changes, so will the cursorValues-----------
if(screenState == 4) {
setCursorValues(4, 1);
}
if(screenState == 5) {
setCursorValues(5, 1);
}
if(screenState == 6) {
setCursorValues(6, 1);
}
if(screenState == 7) {
setCursorValues(9, 1);
}
if(screenState == 8) {
setCursorValues(10, 1);
}
if(screenState == 9) {
setCursorValues(11, 1);
}
if(screenState == 10) {
setCursorValues(12, 1);
}
//start of byte 2 screen -------------------------------------------------------
if(screenState == 11){
lcd.clear();
setCursorValues(0, 0);
lcd.print("Byte 2 Screen");
setCursorValues(0, 1);
lcd.print(" 0000 0000 ");
setCursorValues(3, 1);
lcd.blink();
}
//if screenState changes, so will the cursorValues-----------
if(screenState == 12) {
setCursorValues(4, 1);
}
if(screenState == 13) {
setCursorValues(5, 1);
}
if(screenState == 14) {
setCursorValues(6, 1);
}
if(screenState == 15) {
setCursorValues(9, 1);
}
if(screenState == 16) {
setCursorValues(10, 1);
}
if(screenState == 17) {
setCursorValues(11, 1);
}
if(screenState == 18) {
setCursorValues(12, 1);
}
if(screenState == 19){
lcd.clear();
setCursorValues(0, 0);
lcd.print("Solution Screen");
lcd.noCursor();
}
if(screenState == 20){
lcd.clear();
setCursorValues(0, 0);
lcd.print("Contrast Screen");
}
}
void printString(int output) {
Serial.print("Input ");
Serial.print(output);
Serial.print(" was pressed ");
Serial.print(inputCounter[output]);
Serial.println(" times.");
Serial.print("screenState = ");
Serial.println(screenState);
Serial.print("binaryValue = ");
Serial.println(binaryValue);
Serial.print("cursorPosX = ");
Serial.print(cursorPosX);
Serial.print(" cursorPosY = ");
Serial.println(cursorPosY);
Serial.print('\n');
}

Detect multiple claps with clapping sensor (arduino nano)

For school I am making a clapping sensor with my arduino nano. I have found some code to detect if there are 2 claps (link). But now I want to modify the code so it can distinguish if I clapped 1,2 or 3 times. I have now changed the source to detect 1 or 2 claps. But now if I clap twice, always a one clap is detected before it sees the 2 claps. And i have totally no idea how to detect 3 claps. Can someone please help me with this problem?
Code:
#define signalToRelayPin 12
#define sensorPin 7
int lastSoundValue;
int soundValue;
long lastNoiseTime = 0;
long currentNoiseTime = 0;
long lastLightChange = 0;
int relayStatus = HIGH;
void setup() {
pinMode(sensorPin, INPUT);
pinMode(signalToRelayPin, OUTPUT);
Serial.begin(115200);
}
struct DataBlockStruct meting1,meting2;
void loop() {
soundValue = digitalRead(sensorPin);
currentNoiseTime = millis();
if (soundValue == 1) { // if there is currently a noise
if (
(currentNoiseTime > lastNoiseTime + 200) && // to debounce a sound occurring in more than a loop cycle as a single noise
(lastSoundValue == 0) && // if it was silent before
(currentNoiseTime < lastNoiseTime + 800) && // if current clap is less than 0.8 seconds after the first clap
(currentNoiseTime > lastLightChange + 1000) // to avoid taking a third clap as part of a pattern
) {
relayStatus = !relayStatus;
Serial.println("2 X CLAP");
} else {
Serial.println("1 X CLAP");
}
lastNoiseTime = currentNoiseTime;
}
lastSoundValue = soundValue;
}
Try this snippet:
#define signalToRelayPin 12
#define sensorPin 7
int lastSoundValue;
int soundValue;
long lastNoiseTime = 0;
long currentNoiseTime = 0;
long lastLightChange = 0;
int relayStatus = HIGH;
int clap_interval = 500;
int claps = 0;
void setup() {
pinMode(sensorPin, INPUT);
pinMode(signalToRelayPin, OUTPUT);
Serial.begin(115200);
}
struct DataBlockStruct meting1,meting2;
void loop() {
soundValue = digitalRead(sensorPin);
currentNoiseTime = millis();
if (soundValue == 1 && lastSoundValue == 0)
{
if (claps == 0) // allow first to register without much condition
{
claps = 1;
lastNoiseTime = currentNoiseTime;
}
else
{
if (currentNoiseTime > lastNoiseTime + clap_interval)
{
claps++;
lastNoiseTime = currentNoiseTime;
relayStatus = !relayStatus;
}
}
}
else
{
if (currentNoiseTime > lastNoiseTime + 2 * clap_interval) // no claps for a longer duration time to print and/or reset clap
{
if (claps > 0)
{
Serial.print(claps);
Serial.println(" CLAPS");
claps = 0; ///reset
}
}
}
//lastSoundValue = soundValue;
delay(50); // delay polling
}