I have C library with such API:
extern "C" {
typedef struct Opaque Opaque;
Opaque *foo_new();
void foo_delete(Opaque *);
int foo_f(Opaque *, int);
}
To simplify it's usage I wrap it in such way:
class Foo final {
public:
Foo() { self_ = foo_new(); }
~Foo() { foo_delete(self_); }
//code for copy/move constructor and operator=
int f(int a) { return foo_f(self_, a); }
private:
Opaque *self_;
};
All great, but then I have to wrap array of this opaque objects:
extern "C" {
typedef struct OpaqueArray OpaqueArray;
OpaqueArray *calc_foo_array();
void foo_array_delete(OpaqueArray *);
Opaque *foo_array_elem(OpaqueArray *, size_t i);
}
So I need implement class FooArray:
class FooArray final {
public:
??? operator[](const size_t i) {
auto obj = foo_array_elem(self_, i);
???
}
private:
OpaqueArray *self_;
};
But what should I return as result of operator[]?
I can create Foo from Opaque *, but then Foo::~Foo() is free part of array,
what is wrong. I can create FooRef that would be exactly the same as Foo,
but do not call foo_delete, but actually I have several such C classes,
and I prefer do not create so many code duplicates.
May be I can somehow use reinterpret_cast, because of sizeof(Foo) = sizeof(Opaque *) and return Foo & from operator[], but Foo & actually is Opaque **,
so I need somewhere hold Opaque to make it address stable.
May be there is some standard solution for such kind of problem?
You could modify your Foo class so that it can hold a pointer that it doesn't own.
class Foo
{
public:
Foo()
{
self_ = foo_new();
m_owned = true;
}
Foo(Opaque *pOpaque)
{
self_ = foo_new();
m_owned = false;
}
~Foo()
{
if (m_owned) foo_delete(self_);
}
//code for copy/move constructor and operator=
int f(int a) { return foo_f(self_, a); }
private:
bool m_owned;
Opaque *self_;
};
class FooArray
{
public:
Foo operator[](const size_t i)
{
return Foo(foo_array_elem(self_, i));
}
private:
OpaqueArray *self_;
};
I'd do it using proposed by You FooRef but a bit differently:
class FooRef {
public:
FooRef (Opaque *o) { self_ = o; }
int f(int a) { return foo_f(self_, a); }
protected:
Opaque *self_;
};
class Foo : public FooRef {
public:
Foo() { self_ = foo_new(); }
//code for copy/move constructor and operator=
~Foo () { foo_delete(self_); }
};
This solution avoids code duplication and allows you to safely return Foo from array. And by the way you got mechanism to simply create FooRef from Foo. Now you can do just:
class FooArray final {
public:
FooRef operator[](const size_t i) {
return FooRef(foo_array_elem(self_, i));
}
private:
OpaqueArray *self_;
};
I think that this should do the trick in elegant way.
Related
I have two classes, foo and bar, where bar contains a pointer to foo, as below.
#include<iostream>
#include<memory>
class foo {
private:
int num{4};
public:
void sum(const int& to_add) {num += to_add;}
int access_num() {return num;}
};
class bar {
private:
std::shared_ptr<foo> ptr;
public:
void change_ptr(foo& f) {
auto new_ptr = std::make_shared<foo>(f);
ptr = std::move(new_ptr);
}
std::shared_ptr<foo> access_ptr() { return ptr; }
};
If I want to execute the member function sum() of foo via the pointer in bar, how do I do it?
Currently, trying
foo f;
std::shared_ptr<bar> bar_ptr = std::make_shared<bar>();
bar_ptr->change_ptr(f);
// Add three to the int stored in f via the pointer
bar_ptr->access_ptr()->sum(3);
std::cout << f.access_num() << std::endl;
does not work, outputting 4.
This code
void change_ptr(foo& f) {
auto new_ptr = std::make_shared<foo>(f); // copy constructor
ptr = std::move(new_ptr);
}
calls a copy constructor to create an instance of foo on the heap and manage it with std::shared_ptr. You can check it if you delete the copy constructor in foo declaration. The code won't compile. Note that you'll have to provide at least a default constructor since the rule of zero doesn't work if you have explicitly deleted copy constructor.
class foo {
private:
int num{4};
public:
foo() = default;
foo(foo const &other) = delete;
void sum(const int& to_add) {num += to_add;}
int access_num() {return num;}
};
foo f is an automatic variable stored on the stack. There is no much use to manage it with std::shared_ptr. What you probably need is to create an instance of foo on the heap and use std::shared_ptr's to work with it:
#include<memory>
class foo {
private:
int num{4};
public:
void sum(const int& to_add) {num += to_add;}
int access_num() {return num;}
};
class bar {
private:
std::shared_ptr<foo> ptr;
public:
void change_ptr(std::shared_ptr<foo> f) {
ptr = std::move(f); // f is already a copy, so we can safely move it
}
std::shared_ptr<foo> access_ptr() { return ptr; }
};
int main() {
auto f = std::make_shared<foo>();
std::shared_ptr<bar> bar_ptr = std::make_shared<bar>();
bar_ptr->change_ptr(f);
bar_ptr->access_ptr()->sum(3);
std::cout << f->access_num() << std::endl;
}
I want to create a class which behaves a certain way - e.g. spits out certain values from a function double getValue(const int& x) const - based on a "type" that was passed into its constructor. Right now I have two methods:
Store the passed-in "type" and then evaluate a switch statement in getValue each time it is called in order to decide which implementation to use.
Use a switch statement on the passed-in "type" (in the constructor) to create an internal object that represents the desired implementation. So no switch required anymore in getValue itself.
Method 1 "appears" inefficient as switch is called every time I call getValue. Method 2 seems somewhat clunky as I need to utilise <memory> and it also makes copying/assigning my class non-trivial.
Are there any other cleaner methods to tackle a problem like this?
Code Example:
#include <memory>
enum class ImplType { Simple1, Simple2 /* more cases */ };
class MyClass1
{
private:
const ImplType implType;
public:
MyClass1(const ImplType& implType) : implType(implType) { }
double getValue(const int& x) const
{
switch (implType)
{
case ImplType::Simple1: return 1; /* some implemention */
case ImplType::Simple2: return 2; /* some implemention */
}
}
};
class MyClass2
{
private:
struct Impl { virtual double getValue(const int& x) const = 0; };
struct ImplSimple1 : Impl { double getValue(const int& x) const override { return 1; /* some implemention */ } };
struct ImplSimple2 : Impl { double getValue(const int& x) const override { return 2; /* some implemention */ } };
const std::unique_ptr<Impl> impl;
public:
MyClass2(const ImplType& implType) : impl(std::move(createImplPtr(implType))) { }
static std::unique_ptr<Impl> createImplPtr(const ImplType& implType)
{
switch (implType)
{
case ImplType::Simple1: return std::make_unique<ImplSimple1>();
case ImplType::Simple2: return std::make_unique<ImplSimple2>();
}
}
double getValue(const int& x) const { return impl->getValue(x); }
};
int main()
{
MyClass1 my1(ImplType::Simple1);
MyClass2 my2(ImplType::Simple1);
return 0;
}
Your code is basically mimicing a virtual method (sloppy speaking: same interface but implementation is chosen at runtime), hence your code can be much cleaner if you actually do use a virtual method:
#include <memory>
struct base {
virtual double getValue(const int& x) const = 0;
};
struct impl1 : base {
double getValue(const int& x) { return 1.0; }
};
struct impl2 : base {
double getValue(const int& x) { return 2.0; }
};
// ... maybe more...
enum select { impl1s, impl2s };
base* make_impl( select s) {
if (s == impl1s) return new impl1();
if (s == impl2s) return new impl2();
}
int main() {
std::shared_ptr<base> x{ make_impl(impl1) };
}
Not sure if this is what you are looking for. By the way, using <memory> should not make you feel "clunky", but instead you should feel proud that we have such awesome tools in c++ ;).
EDIT: If you dont want the user to work with (smart-)pointers then wrap the above in just another class:
struct foo {
shared_ptr<base> impl;
foo( select s) : impl( make_impl(s) ) {}
double getValue(const int& x) { return impl.getValue(x); }
};
now a user can do
int main() {
auto f1 { impl1s };
auto f2 { impl2s };
f1.getValue(1);
f2.getValue(2);
}
If you have a closed set of types you can choose from, you want std::variant:
using MyClass = std::variant<MyClass1, MyClass2, MyClass3, /* ... */>;
It doesn't use dynamic allocation - it's basically a type-safe modern alternative to union.
More object-oriented approach:
class Interface
{
public:
virtual int getValue() = 0;
};
class GetValueImplementation1 : public Interface
{
public:
int getValue() {return 1;}
};
class GetValueImplementation2 : public Interface
{
public:
int getValue() {return 2;}
};
class GeneralClass
{
public:
GeneralClass(Interface *interface) : interface(interface) {}
~GeneralClass()
{
if (interface)
delete interface;
}
int getValue() { return interface->getValue(); }
private:
Interface *interface;
};
So, in this case you can use it without any pointers:
int main()
{
GeneralClass obj1(new GetValueImplementation1());
GeneralClass obj2(new GetValueImplementation2());
cout << obj1.getValue() << " " << obj2.getValue();
return 0;
}
The output will be:
1 2
But in the case you should be careful with null pointers or use smart ones inside GeneralClass.
I realize that I'll most likely get a lot of "you shouldn't do that because..." answers and they are most welcome and I'll probably totally agree with your reasoning, but I'm curious as to whether this is possible (as I envision it).
Is it possible to define a type of dynamic/generic object in C++ where I can dynamically create properties that are stored and retrieved in a key/value type of system? Example:
MyType myObject;
std::string myStr("string1");
myObject.somethingIJustMadeUp = myStr;
Note that obviously, somethingIJustMadeUp is not actually a defined member of MyType but it would be defined dynamically. Then later I could do something like:
if(myObject.somethingIJustMadeUp != NULL);
or
if(myObject["somethingIJustMadeUp"]);
Believe me, I realize just how terrible this is, but I'm still curious as to whether it's possible and if it can be done in a way that minimizes it's terrible-ness.
C++Script is what you want!
Example:
#include <cppscript>
var script_main(var args)
{
var x = object();
x["abc"] = 10;
writeln(x["abc"]);
return 0;
}
and it's a valid C++.
You can do something very similar with std::map:
std::map<std::string, std::string> myObject;
myObject["somethingIJustMadeUp"] = myStr;
Now if you want generic value types, then you can use boost::any as:
std::map<std::string, boost::any> myObject;
myObject["somethingIJustMadeUp"] = myStr;
And you can also check if a value exists or not:
if(myObject.find ("somethingIJustMadeUp") != myObject.end())
std::cout << "Exists" << std::endl;
If you use boost::any, then you can know the actual type of value it holds, by calling .type() as:
if (myObject.find("Xyz") != myObject.end())
{
if(myObject["Xyz"].type() == typeid(std::string))
{
std::string value = boost::any_cast<std::string>(myObject["Xyz"]);
std::cout <<"Stored value is string = " << value << std::endl;
}
}
This also shows how you can use boost::any_cast to get the value stored in object of boost::any type.
This can be a solution, using RTTI polymorphism
#include <map>
#include <memory>
#include <iostream>
#include <stdexcept>
namespace dynamic
{
template<class T, class E>
T& enforce(T& z, const E& e)
{ if(!z) throw e; return z; }
template<class T, class E>
const T& enforce(const T& z, const E& e)
{ if(!z) throw e; return z; }
template<class Derived>
class interface;
class aggregate;
//polymorphic uncopyable unmovable
class property
{
public:
property() :pagg() {}
property(const property&) =delete;
property& operator=(const property&) =delete;
virtual ~property() {} //just make it polymorphic
template<class Interface>
operator Interface*() const
{
if(!pagg) return 0;
return *pagg; //let the aggregate do the magic!
}
aggregate* get_aggregate() const { return pagg; }
private:
template<class Derived>
friend class interface;
friend class aggregate;
static unsigned gen_id()
{
static unsigned x=0;
return enforce(++x,std::overflow_error("too many ids"));
}
template<class T>
static unsigned id_of()
{ static unsigned z = gen_id(); return z; }
aggregate* pagg;
};
template<class Derived>
class interface: public property
{
public:
interface() {}
virtual ~interface() {}
unsigned id() const { return property::id_of<Derived>(); }
};
//sealed movable
class aggregate
{
public:
aggregate() {}
aggregate(const aggregate&) = delete;
aggregate& operator=(const aggregate&) = delete;
aggregate(aggregate&& s) :m(std::move(s.m)) {}
aggregate& operator=(aggregate&& s)
{ if(this!=&s) { m.clear(); std::swap(m, s.m); } return *this; }
template<class Interface>
aggregate& add_interface(interface<Interface>* pi)
{
m[pi->id()] = std::unique_ptr<property>(pi);
static_cast<property*>(pi)->pagg = this;
return *this;
}
template<class Inteface>
aggregate& remove_interface()
{ m.erase[property::id_of<Inteface>()]; return *this; }
void clear() { m.clear(); }
bool empty() const { return m.empty(); }
explicit operator bool() const { return empty(); }
template<class Interface>
operator Interface*() const
{
auto i = m.find(property::id_of<Interface>());
if(i==m.end()) return nullptr;
return dynamic_cast<Interface*>(i->second.get());
}
template<class Interface>
friend aggregate& operator<<(aggregate& s, interface<Interface>* pi)
{ return s.add_interface(pi); }
private:
typedef std::map<unsigned, std::unique_ptr<property> > map_t;
map_t m;
};
}
/// this is a sample on how it can workout
class interface_A: public dynamic::interface<interface_A>
{
public:
virtual void methodA1() =0;
virtual void methodA2() =0;
};
class impl_A1: public interface_A
{
public:
impl_A1() { std::cout<<"creating impl_A1["<<this<<"]"<<std::endl; }
virtual ~impl_A1() { std::cout<<"deleting impl_A1["<<this<<"]"<<std::endl; }
virtual void methodA1() { std::cout<<"interface_A["<<this<<"]::methodA1 on impl_A1 in aggregate "<<get_aggregate()<<std::endl; }
virtual void methodA2() { std::cout<<"interface_A["<<this<<"]::methodA2 on impl_A1 in aggregate "<<get_aggregate()<<std::endl; }
};
class impl_A2: public interface_A
{
public:
impl_A2() { std::cout<<"creating impl_A2["<<this<<"]"<<std::endl; }
virtual ~impl_A2() { std::cout<<"deleting impl_A2["<<this<<"]"<<std::endl; }
virtual void methodA1() { std::cout<<"interface_A["<<this<<"]::methodA1 on impl_A2 in aggregate "<<get_aggregate()<<std::endl; }
virtual void methodA2() { std::cout<<"interface_A["<<this<<"]::methodA2 on impl_A2 in aggregate "<<get_aggregate()<<std::endl; }
};
class interface_B: public dynamic::interface<interface_B>
{
public:
virtual void methodB1() =0;
virtual void methodB2() =0;
};
class impl_B1: public interface_B
{
public:
impl_B1() { std::cout<<"creating impl_B1["<<this<<"]"<<std::endl; }
virtual ~impl_B1() { std::cout<<"deleting impl_B1["<<this<<"]"<<std::endl; }
virtual void methodB1() { std::cout<<"interface_B["<<this<<"]::methodB1 on impl_B1 in aggregate "<<get_aggregate()<<std::endl; }
virtual void methodB2() { std::cout<<"interface_B["<<this<<"]::methodB2 on impl_B1 in aggregate "<<get_aggregate()<<std::endl; }
};
class impl_B2: public interface_B
{
public:
impl_B2() { std::cout<<"creating impl_B2["<<this<<"]"<<std::endl; }
virtual ~impl_B2() { std::cout<<"deleting impl_B2["<<this<<"]"<<std::endl; }
virtual void methodB1() { std::cout<<"interface_B["<<this<<"]::methodB1 on impl_B2 in aggregate "<<get_aggregate()<<std::endl; }
virtual void methodB2() { std::cout<<"interface_B["<<this<<"]::methodB2 on impl_B2 in aggregate "<<get_aggregate()<<std::endl; }
};
int main()
{
dynamic::aggregate agg1;
agg1 << new impl_A1 << new impl_B1;
dynamic::aggregate agg2;
agg2 << new impl_A2 << new impl_B2;
interface_A* pa = 0;
interface_B* pb = 0;
pa = agg1; if(pa) { pa->methodA1(); pa->methodA2(); }
pb = *pa; if(pb) { pb->methodB1(); pb->methodB2(); }
pa = agg2; if(pa) { pa->methodA1(); pa->methodA2(); }
pb = *pa; if(pb) { pb->methodB1(); pb->methodB2(); }
agg2 = std::move(agg1);
pa = agg2; if(pa) { pa->methodA1(); pa->methodA2(); }
pb = *pa; if(pb) { pb->methodB1(); pb->methodB2(); }
return 0;
}
tested with MINGW4.6 on WinXPsp3
Yes it is terrible. :D
It had been done numerous times to different extents and success levels.
QT has Qobject from which everything related to them decends.
MFC has CObject from which eveything decends as does C++.net
I don't know if there is a way to make it less bad, I guess if you avoid multiple inheritance like the plague (which is otherwise a useful language feature) and reimplement the stdlib it would be better. But really if that is what you are after you are probably using the wrong language for the task.
Java and C# are much better suited to this style of programming.
#note if I have read your question wrong just delete this answer.
Check out Dynamic C++
struct Foo {
char * DataPtr;
};
class ISomeInterface {
public:
Foo GetFoo( ) const;
Foo GetFoo( );
};
The Foo::DataPtr is a pointer to an internal buffer of the object behing ISomeInterface. Is there a way to make sure that the Foo::DataPtr returned by the const version of ISomeInterface::GetFoo is a const char * ?
You need a
struct ConstFoo {
const char* DataPtr;
};
for this. The const in C++ is not transitive. (this is also why you have iterator and const_iterator.)
A struct
struct Foo {
char * DataPtr;
}
is not the same as
struct Foo {
const char * DataPtr;
}
so you cannot differentiate how you would like.
You could make the const GetFoo() return a const Foo object (which I suspect is not what you want, as it will make all the member variables const), or make another struct with a const char * DataPtr (say FooConst) which is returned on the const call.
You could try to change the design of your Foo and 'hide' the acess to DataPtr behind functions. For instance:
class Foo {
char * DataPtr;
public:
//just some examples
void doThis() const {}
void doThat() {}
};
class ISomeInterface {
public:
const Foo GetFoo( ) const { return Foo(); }
Foo GetFoo( ) { return Foo(); }
};
...
const Foo foo1 = ISomeInterface().GetFoo();
foo1.doThis();
foo1.doThat(); //error
Foo foo2 = ISomeInterface().GetFoo();
foo2.doThis();
foo2.doThat();
Providing functions that define which operations are const and those that are not you can avoid duplicating your Foo and obtain the const-correctness restrictions you seem to be aiming for.
Following code does NOT work, but it expresses well what I wish to do. There is a problem with the template struct container, which I think SHOULD work because it's size is known for any template argument.
class callback {
public:
// constructs a callback to a method in the context of a given object
template<class C>
callback(C& object, void (C::*method)())
: ptr.o(object), ptr.m(method) {}
// calls the method
void operator()() {
(&ptr.o ->* ptr.m) ();
}
private:
// container for the pointer to method
template<class C>
struct {
C& o;
void (C::*m)();
} ptr;
};
Is there any way to do such a thing? I mean have a non-template class callback which wraps any pointer to method?
Thanks C++ gurus!
Edit:
Please see this:
Callback in C++, template member? (2)
This is a complete working example that does what I think you're trying to do:
#include <iostream>
#include <memory>
// INTERNAL CLASSES
class CallbackSpecBase
{
public:
virtual ~CallbackSpecBase() {}
virtual void operator()() const = 0;
};
template<class C>
class CallbackSpec : public CallbackSpecBase
{
public:
CallbackSpec(C& o, void (C::*m)()) : obj(o), method(m) {}
void operator()() const { (&obj->*method)(); }
private:
C& obj;
void (C::*method)();
};
// PUBLIC API
class Callback
{
public:
Callback() {}
void operator()() { (*spec)(); }
template<class C>
void set(C& o, void (C::*m)()) { spec.reset(new CallbackSpec<C>(o, m)); }
private:
std::auto_ptr<CallbackSpecBase> spec;
};
// TEST CODE
class Test
{
public:
void foo() { std::cout << "Working" << std::endl; }
void bar() { std::cout << "Like a charm" << std::endl; }
};
int main()
{
Test t;
Callback c;
c.set(t, &Test::foo);
c();
c.set(t, &Test::bar);
c();
}
I recently implemented this:
#define UNKOWN_ITEM 0xFFFFFFFF
template <typename TArg>
class DelegateI
{
public:
virtual void operator()(TArg& a)=0;
virtual bool equals(DelegateI<TArg>* d)=0;
};
template <class TArg>
class Event
{
public:
Event()
{
}
~Event()
{
for (size_t x=0; x<m_vDelegates.size(); x++)
delete m_vDelegates[x];
}
void operator()(TArg& a)
{
for (size_t x=0; x<m_vDelegates.size(); x++)
{
m_vDelegates[x]->operator()(a);
}
}
void operator+=(DelegateI<TArg>* d)
{
if (findInfo(d) != UNKOWN_ITEM)
{
delete d;
return;
}
m_vDelegates.push_back(d);
}
void operator-=(DelegateI<TArg>* d)
{
uint32 index = findInfo(d);
delete d;
if (index == UNKOWN_ITEM)
return;
m_vDelegates.erase(m_vDelegates.begin()+index);
}
protected:
int findInfo(DelegateI<TArg>* d)
{
for (size_t x=0; x<m_vDelegates.size(); x++)
{
if (m_vDelegates[x]->equals(d))
return (int)x;
}
return UNKOWN_ITEM;
}
private:
std::vector<DelegateI<TArg>*> m_vDelegates;
};
template <class TObj, typename TArg>
class ObjDelegate : public DelegateI<TArg>
{
public:
typedef void (TObj::*TFunct)(TArg&);
ObjDelegate(TObj* t, TFunct f)
{
m_pObj = t;
m_pFunct = f;
}
virtual bool equals(DelegateI<TArg>* di)
{
ObjDelegate<TObj,TArg> *d = dynamic_cast<ObjDelegate<TObj,TArg>*>(di);
if (!d)
return false;
return ((m_pObj == d->m_pObj) && (m_pFunct == d->m_pFunct));
}
virtual void operator()(TArg& a)
{
if (m_pObj && m_pFunct)
{
(*m_pObj.*m_pFunct)(a);
}
}
TFunct m_pFunct; // pointer to member function
TObj* m_pObj; // pointer to object
};
template <typename TArg>
class FunctDelegate : public DelegateI<TArg>
{
public:
typedef void (*TFunct)(TArg&);
FunctDelegate(TFunct f)
{
m_pFunct = f;
}
virtual bool equals(DelegateI<TArg>* di)
{
FunctDelegate<TArg> *d = dynamic_cast<FunctDelegate<TArg>*>(di);
if (!d)
return false;
return (m_pFunct == d->m_pFunct);
}
virtual void operator()(TArg& a)
{
if (m_pFunct)
{
(*m_pFunct)(a);
}
}
TFunct m_pFunct; // pointer to member function
};
template <typename TArg>
class ProxieDelegate : public DelegateI<TArg>
{
public:
ProxieDelegate(Event<TArg>* e)
{
m_pEvent = e;
}
virtual bool equals(DelegateI<TArg>* di)
{
ProxieDelegate<TArg> *d = dynamic_cast<ProxieDelegate<TArg>*>(di);
if (!d)
return false;
return (m_pEvent == d->m_pEvent);
}
virtual void operator()(TArg& a)
{
if (m_pEvent)
{
(*m_pEvent)(a);
}
}
Event<TArg>* m_pEvent; // pointer to member function
};
template <class TObj, class TArg>
DelegateI<TArg>* delegate(TObj* pObj, void (TObj::*NotifyMethod)(TArg&))
{
return new ObjDelegate<TObj, TArg>(pObj, NotifyMethod);
}
template <class TArg>
DelegateI<TArg>* delegate(void (*NotifyMethod)(TArg&))
{
return new FunctDelegate<TArg>(NotifyMethod);
}
template <class TArg>
DelegateI<TArg>* delegate(Event<TArg>* e)
{
return new ProxieDelegate<TArg>(e);
}
use it like so:
define:
Event<SomeClass> someEvent;
enlist callbacks:
someEvent += delegate(&someFunction);
someEvent += delegate(classPtr, &class::classFunction);
someEvent += delegate(&someOtherEvent);
trigger:
someEvent(someClassObj);
You can also make your own delegates and overide what they do. I made a couple of others with one being able to make sure the event triggers the function in the gui thread instead of the thread it was called.
You need to use polymorphism. Use an abstract base class with a virtual invocation method (operator() if you please), with a templated descendant that implements the virtual method using the correct type signature.
The way you have it now, the data holding the type is templated, but the code meant to invoke the method and pass the object isn't. That won't work; the template type parameters need to flow through both construction and invocation.
#Barry Kelly
#include <iostream>
class callback {
public:
virtual void operator()() {};
};
template<class C>
class callback_specialization : public callback {
public:
callback_specialization(C& object, void (C::*method)())
: o(object), m(method) {}
void operator()() {
(&o ->* m) ();
}
private:
C& o;
void (C::*m)();
};
class X {
public:
void y() { std::cout << "ok\n"; }
};
int main() {
X x;
callback c(callback_specialization<X>(x, &X::y));
c();
return 0;
}
I tried this, but it does not work (print "ok")... why?
Edit:
As Neil Butterworth mentioned, polymorphism works through pointers and references,
X x;
callback& c = callback_specialization<X>(x, &X::y);
c();
Edit:
With this code, I get an error:
invalid initialization of non-const reference of type ‘callback&’
from a temporary of type ‘callback_specialization<X>’
Now, I don't understand that error, but if I replace callback& c with const callback& c and virtual void operator()() with virtual void operator()() const, it works.
You didn't say what errors you found, but I found that this worked:
template<typename C>
class callback {
public:
// constructs a callback to a method in the context of a given object
callback(C& object, void (C::*method)())
: ptr(object,method) {}
// calls the method
void operator()() {
(&ptr.o ->* ptr.m) ();
}
private:
// container for the pointer to method
// template<class C>
struct Ptr{
Ptr(C& object, void (C::*method)()): o(object), m(method) {}
C& o;
void (C::*m)();
} ptr;
};
Note that Ptr needs a constructor as it has a reference member.
You could do without struct Ptr and have the raw members.
Tested with VS2008 express.
Improving the OP's answer:
int main() {
X x;
callback_specialization<X> c(x, &X::y);
callback& ref(c);
c();
return 0;
}
This prints "ok".
Tested on VS2008 express.
Please see this
Callback in C++, template member? (2)