I have a Django view which needs can be cached, however it needs to be recycled every 100th time when the view is called by the HTTP request.
I cannot use the interval based caching here since the number will keep changing upon traffic.
How would I implement this? Are there other nice methods around except maintaining a counter (in db) ?
Here are some ideas / feedback:
You're going to have to centralize something if you need it to be exact - the Redis idea in this linked solution looks OK if you can't put it in the main DB. If Redis is in your stack, I'd use that. If the 100 requests can be per user and you're using sessions, you could attach a counter to the session.
implementing a counter that counts requests with django
To not centralize the counter outside of the webserver would mean your app needs to be and stay single-threaded to keep counts in memory. It would also reset if the server was restarted. Not a great idea IMO...
If you really can't make it work with anything else, you could hack something like a request counter on your load balancer (...if the load balancer is a single machine you control, and you're comfortable doing that) and pass it as a header for Django to read.
Related
So I'm trying to accomplish the following. User browses webpage and at the sime time there is a task running in the background. When the task completes it should return args where one of args is flag: True in order to trigger a javascript and javascript shows a modal form.
I tested it before without async tasks and it works, but now with celery it just stores results in database. I did some research on tornado-celery and related stuff but some of components like tornado-redis is not mantained anymore so it would not be vise in my opinion to use that.
So what are my options, thanks?
If I understand you correctly, then you want to communicate something from the server side back to the client. You generally have three options for that:
1) Make a long pending request to the server - kinda bad. Jumping over the details, it will bog down your web server if not configured to handle that, it will make your site score low on performance tests and if the request fails, everything fails.
2) Poll the server with numerous requests with a time interval (0.2 s, something like that) - better. It will increase the traffic, but the requests will be tiny and will not interfere with the site's performance very much. If you instate a long interval to not load the server with pointless requests, then the users will see the data with a bit of a delay. On the upside this will not fail (if written correctly) even if the connection is interrupted.
3) Websockets where the server can just hit the client with any message whenever needed - nice, but takes some time to get used to. If you want to try, you can use django-channels which is a nice library for Django websockets.
If I did not understand you correctly and this is not the problem at hand and you are figuring how to get data back from a Celery task to Django, then you can store the Celery task ID-s and use the ID-s to first check, if the task is completed and then query the data from Celery.
My django rest app accepts request to scrape multiple pages for prices & compare them (which takes time ~5 seconds) then returns a list of the prices from each page as a json object.
I want to update the user with the current operation, for example if I scrape 3 pages I want to update the interface like this :
Searching 1/3
Searching 2/3
Searching 3/3
How can I do this?
I am using Angular 2 for my front end but this shouldn't make a big difference as it's a backend issue.
This isn't the only way, but this is how I do this in Django.
Things you'll need
Asynchronous worker procecess
This allows you to do work outside the context of the request-response cycle. The most common are either django-rq or Celery. I'd recommend django-rq for its simplicity, especially if all you're implementing is a progress indicator.
Caching layer (optional)
While you can use the database for persistence in this case, temporary cache key-value stores make more sense here as the progress information is ephemeral. The Memcached backend is built into Django, however I'd recommend switching to Redis as it's more fully featured, super fast, and since it's behind Django's caching abstraction, does not add complexity. (It's also a requirement for using the django-rq worker processes above)
Implementation
Overview
Basically, we're going to send a request to the server to start the async worker, and poll a different progress-indicator endpoint which gives the current status of that worker's progress until it's finished (or failed).
Server side
Refactor the function you'd like to track the progress of into an async task function (using the #job decorator in the case of django-rq)
The initial POST endpoint should first generate a random unique ID to identify the request (possibly with uuid). Then, pass the POST data along with this unique ID to the async function (in django-rq this would look something like function_name.delay(payload, unique_id)). Since this is an async call, the interpreter does not wait for the task to finish and moves on immediately. Return a HttpResponse with a JSON payload that includes the unique ID.
Back in the async function, we need to set the progress using cache. At the very top of the function, we should add a cache.set(unique_id, 0) to show that there is zero progress so far. Using your own math implementation, as the progress approaches 100% completion, change this value to be closer to 1. If for some reason the operation fails, you can set this to -1.
Create a new endpoint to be polled by the browser to check the progress. This looks for a unique_id query parameter and uses this to look up the progress with cache.get(unique_id). Return a JSON object back with the progress amount.
Client side
After sending the POST request for the action and receiving a response, that response should include the unique_id. Immediately start polling the progress endpoint at a regular interval, setting the unique_id as a query parameter. The interval could be something like 1 second using setInterval(), with logic to prevent sending a new request if there is still a pending request.
When the progress received equals to 1 (or -1 for failures), you know the process is finished and you can stop polling
That's it! It's a bit of work just to get progress indicators, but once you've done it once it's much easier to re-use the pattern in other projects.
Another way to do this which I have not explored is via Webhooks / Channels. In this way, polling is not required, and the server simply sends the messages to the client directly.
I am working on a mobile app that will broadcast a push message to hundreds of thousands of devices at a time. When each user opens their app from the push message, the app will hit our API for data. The API resource will be identical for each user of this push.
Now let's assume that all 500,000 users open their app at the same time. API Gateway will get 500,000 identical calls.
Because all 500,000 nearly concurrent requests are asking for the same data, I want to cache it. But keep in mind that it takes about 2 seconds to compute the requested value.
What I want to happen
I want API Gateway to see that the data is not in the cache, let the first call through to my backend service while the other requests are held in queue, populate the cache from the first call, and then respond to the other 499,999 requests using the cached data.
What is (seems to be) happening
API Gateway, seeing that there is no cached value, is sending every one of the 500,000 requests to the backend service! So I will be recomputing the value with some complex db query way more times than resources will allow. This happens because the last call comes into API Gateway before the first call has populated the cache.
Is there any way I can get this behavior?
I know that based on my example that perhaps I could prime the cache by invoking the API call myself just before broadcasting the bulk push job, but the actual use-case is slightly more complicated than my simplified example. But rest assured, solving this simplified use-case will solve what I am trying to do.
If you anticipate that kind of burst concurrency, priming the cache yourself is certainly the best option. Have you also considered adding throttling to the stage/method to protect your backend from a large surge in traffic? Clients could be instructed to retry on throttles and they would eventually get a response.
I'll bring your feedback and proposed solution to the team and put it on our backlog.
We have a very simple AppFabric setup where there are two clients -- lets call them Server A and Server B. Server A is also the lead cache host, and both Server A and B have a local cache enabled. We'd like to be able to make an update to an item from server B and have that change propagate to the local cache of Server A within 30 seconds (for example).
As I understand it, there appears to be two different ways of getting changes propagated to the client:
Set a timeout on the client cache to evict items every X seconds. On next request for the item it will get the item from the host cache since the local cache doesn't have the item
Enable notifications and effectively subscribe to get updates from the cache host
If my requirement is to get updates to all clients within 30 seconds then setting a timeout of less than 30 seconds on the local cache appears to be the only choice if going with option #1 above. Due to the size of the cache, this would be inefficient to evict all of the cache (99.99% of which probably hasn't changed in the last 30 seconds).
I think what we need to implement is option #2 above, but I'm not sure I understand how this works. I've read all of the msdn documentation (http://msdn.microsoft.com/en-us/library/ee808091.aspx) and have looked at some examples but it is still unclear to me whether it is really necessary to write custom code or if this is only if you want to do extra handling.
So my question is: is it necessary to add code to your existing application if want to have updates propagated to all local caches via notifications, or is the callback feature just an bonus way of adding extra handling or code if a notification is pushed down? Can I just enable Notifications and set the appropriate polling interval at the client and things will just work?
It seems like the default behavior (when Notifications are enabled) should be to pull down fresh items automatically at each polling interval.
I ran some tests and am happy to say that you do NOT need to write any code to ensure that all clients are kept in sync. If you set the following as a child element of the cluster config:
In the client config you need to set sync="NotificationBased" on the element.
The element in the client config will tell the client how often it should check for new notifications on the server. In this case, every 15 seconds the client will check for notifications and pull down any items that have changed.
I'm guessing the callback logic that you can add to your app is just in case you want to add your own special logic (like emailing the president every time an item changes in the cache).
I've got a django site that is producing a csv download. The content of the csv is dictated by user defined parameters. It's possible that users will set parameters that require significant thinking time on the server. I need a way of sustaining the http connection so the browser doesn't kick up an error message. I heard that it's possible to send intermittent http headers to do this. Can anyone point me in the right direction to set this up on a django site?
(unfortunatly I'm stuck with the possibility of slow reports - improving my sql won't mitigate this)
Don't do it online. Trigger an offline task, use a bit of Javascript to repeatedly call a view that checks if the task has finished, and redirect to the finished file when it's ready.
Instead of blocking the user and it's browser for 20 minutes (which is not a good idea) do the time-consuming task in the background. When the task will finish and generate the result simply notify the user so that he/she will just need to download the ready result.