In the fixed pipeline, what happens of the color set by gl_color when using a material?
Is there a way to retrieve the color set by gl_color in a glsl fragment shader?
See OpenGL 2.1 API Specification - 2.15.3 Shader Variables, page 76
Vertex Attributes
Vertex shaders can access built-in vertex attribute variables corresponding to the per-vertex state set by commands such as Vertex, Normal, Color. .....
See OpenGL Shading Language 1.20 Specification - 7.3 Vertex Shader Built-In Attributes, page 49:
The following attribute names are built into the OpenGL vertex language and can be used from within a vertex shader to access the current values of attributes declared by OpenGL.
attribute vec4 gl_Color;
This means, the color which is set by glColor* can be accessed by the attribute attribute vec4 gl_Color; in the vertex shader.
See [OpenGL Shading Language 1.20 Specification - 7.5 Built-In Uniform State, page 50]:
As an aid to accessing OpenGL processing state, the following uniform variables are built into the OpenGL Shading Language.
.....
struct gl_MaterialParameters {
vec4 emission; // Ecm
vec4 ambient; // Acm
vec4 diffuse; // Dcm
vec4 specular; // Scm
float shininess; // Srm
};
uniform gl_MaterialParameters gl_FrontMaterial;
uniform gl_MaterialParameters gl_BackMaterial;
This means, that the material properties which are set by glMaterial, can be accessed by the built-in uniform variables gl_FrontMaterial, gl_BackMaterial.
See also OpenGL Shading Language (GLSL) Quick Reference Guide
Referring to the additional question in the comment:
And do you know which shader model (Gouraud, Phong...) is used by the old fixed pipeline, when only a color is set?
Phong shading is not possibel in the OpenGL fixed function pipeline. See Legacy opengl - Why is phong shading not possible?
Except you implement phong shading in your own shader. See Per Fragment Lighting
In general the shading model can be set by glShadeModel, which can be either GL_SMOOTH or GL_FLAT.
Further note:
If Lighting is enabled (glEnable(GL_LIGHTING)), then then you have to set the color (gl_Color) by glMaterial.
But if additionally GL_COLOR_MATERIAL is enabled (glEnable(GL_COLOR_MATERIAL)), then you can specify that the material parameters track the current color, by glColorMaterial.
e.g.
glEnable(GL_LIGHTING);
glEnable(GL_COLOR_MATERIAL);
glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE);
See How lighting works
Related
When seeing some OpenGL examples, some use the following types of variables when declaring them at the top of the shader:
in
out
and some use:
attribute
varying
uniform
What is the difference? Are they mutually exclusive?
attribute and varying were removed from GLSL 1.40 and above (desktop GL version 3.1) in core OpenGL. OpenGL ES 2 still uses them, but were removed from ES 3.0 code.
You can still use the old constructs in compatibility profiles, but attribute only maps to vertex shader inputs. varying maps to both VS outputs and FS inputs.
uniform has not changed; it still means what it always has: values set by the outside world which are fixed during a rendering operation.
In modern OpenGL, you have a series of shaders hooked up to a pipeline. A simple pipeline will have a vertex shader and a fragment shader.
For each shader in the pipeline, the in is the input to that stage, and the out is the output to that stage. The out from one stage will get matched with the in from the next stage.
A uniform can be used in any shader and will stay constant for the entire draw call.
If you want an analogy, think of it as a factory. The in and out are conveyor belts going in and out of machines. The uniform are knobs that you turn on a machine to change how it works.
Example
Vertex shader:
// Input from the vertex array
in vec3 VertPos;
in vec2 VertUV;
// Output to fragment shader
out vec2 TexCoord;
// Transformation matrix
uniform mat4 ModelViewProjectionMatrix;
Fragment shader:
// Input from vertex shader
in vec2 TexCoord;
// Output pixel data
out vec4 Color;
// Texture to use
uniform sampler2D Texture;
Older OpenGL
In older versions of OpenGL (2.1 / GLSL 1.20), other keywords were used instead of in and out:
attribute was used for the inputs to the vertex shader.
varying was used for the vertex shader outputs and fragment shader inputs.
Fragment shader outputs were implicitly declared, you would use gl_FragColor instead of specifying your own.
Most GLSL shaders are using a attribute for the color in the vertex shader, which will be forwarded as varying to the fragment shader. Like this:
attribute vec4 position;
attribute vec4 color;
uniform mat4 mvp;
varying vec4 destinationColor;
void main(){
destinationColor = color;
gl_Position = mvp * position;
};
Setting the color can be done with glVertexAtribPointer() to pass one color per vertex or with glVertexAttrib4fv() to pass a global color for all vertexes. I try to understand the difference to the predefined variable gl_Color in the vertex shader (if there is any difference at all). i.e.
attribute vec4 position;
uniform mat4 mvp;
varying vec4 destinationColor;
void main(){
destinationColor = gl_Color;
gl_Position = mvp * position;
};
and using glColorPointer() to pass one color per vertex or glColor4fv() to use a global color for all vertexes. To me the second shader looks better (= more efficient?), because it uses less attributes. But all tutorials & online resources are using the first approach - so I wonder if I missed anything or if there is no difference at all.
What is better practice when writing GLSL shaders?
To me the second shader looks better (= more efficient?), because it uses less attributes.
It does not use fewer attributes. It just uses fewer explicit attribute declarations. All of the work needed to get that color value to OpenGL is still there. It's still being done. The hardware is still fetching data from a buffer object or getting it from the glColor context value or whatever.
You just don't see it in your shader's text. But just because you don't see it doesn't mean that it happens for free.
User-defined attributes are preferred for the following reasons:
User-defined attributes make it clear how many resources your shaders are using. If you want to know how many attributes you need to provide to a shader, just look at the global declarations. But with predefined attributes, you can't do this; you have to scan through the entire vertex shader for any gl_* names that name a predefined attribute.
User-defined attributes can do more things. If you want to pass integer values as integers to the vertex shader, you must use a user-defined attribute. If you need to pass a double-precision float to the vertex shader, again, a predefined attribute cannot help you.
Predefined attributes were removed from core OpenGL contexts. OSX, for example, does not allow the compatibility profile. You can still use OpenGL 2.1, but if you want to use any OpenGL version 3.2 or greater on OSX, you cannot use removed functionality. And the built-in vertex attributes were removed in OpenGL 3.1.
Predefined attributes were never a part of OpenGL ES 2.0+. So if you want to write shaders that can work in OpenGL ES, you again cannot use them.
So basically, there's no reason to use them these days.
if I remember correctly gl_Color is deprecated remnant from the old style API without VAO/VBO using glBegin() ... glEnd(). If you go to core profile there is no gl_Color anymore ... so I assume you use old OpenGL version or compatibility profile.
If you try to use gl_Color in core profile (for example 4.00) you got:
0(35) : error C7616: global variable gl_Color is removed after version 140
Which means gl_Color was removed from GLSL 1.4
It is not entirely matter of performance but the change in graphic rendering SW architecture or hierarchy of the GL calls if you want.
I'm just starting to learn graphics using opengl and barely grasp the ideas of shaders and so forth. Following a set of tutorials, I've drawn a triangle on screen and assigned a color attribute to each vertex.
Using a vertex shader I forwarded the color values to a fragment shader which then simply assigned the vertex color to the fragment.
Vertex shader:
[.....]
layout(location = 1) in vec3 vertexColor;
out vec3 fragmentColor;
void main(){
[.....]
fragmentColor = vertexColor;
}
Fragment shader:
[.....]
out vec3 color;
in vec3 fragmentColor;
void main()
{
color = fragmentColor;
}
So I assigned a different colour to each vertex of the triangle. The result was a smoothly interpolated coloured triangle.
My question is: since I send a specific colour to the fragment shader, where did the smooth interpolation happen? Is it a state enabled by default in opengl? What other values can this state have and how do I switch among them? I would expect to have total control over the pixel colours using a fragment shader, but there seem to be calculations behind the scenes that alter the result. There are clearly things I don't understand, can anyone help on this matter?
Within the OpenGL pipeline, between the vertex shading stages (vertex, tesselation, and geometry shading) and fragment shading, is the rasterizer. Its job is to determine which screen locations are covered by a particular piece of geometry(point, line, or triangle). Knowing those locations, along with the input vertex data, the rasterizer linearly interpolates the data values for each varying variable in the fragment shader and sends those values as inputs into your fragment shader. When applied to color values, this is called Gouraud shading.
source : OpenGL Programming Guide, Eighth Edition.
If you want to see what happens without interpolation, call glShadeModel(GL_FLAT) before you draw. The default value is GL_SMOOTH.
I'm having some problem understanding one line in the most basic (flat) shader example while reading OpenGL SuperBible.
In chapter 6, Listing 6.4 and 6.5 it introduces the following two very basic shaders.
6.4 Vertex Shader:
// Flat Shader
// Vertex Shader
// Richard S. Wright Jr.
// OpenGL SuperBible
#version 130
// Transformation Matrix
uniform mat4 mvpMatrix;
// Incoming per vertex
in vec4 vVertex;
void main(void)
{
// This is pretty much it, transform the geometry
gl_Position = mvpMatrix * vVertex;
}
6.5 Fragment Shader:
// Flat Shader
// Fragment Shader
// Richard S. Wright Jr.
// OpenGL SuperBible
#version 130
// Make geometry solid
uniform vec4 vColorValue;
// Output fragment color
out vec4 vFragColor;
void main(void)
{
gl_FragColor = vColorValue;
}
My confusion is that it says vFragColor in the out declaration while saying gl_FragColor in main().
On the other hand, in code from the website, it has been corrected to 'vFragColor = vColorValue;' in the main loop.
What my question is that other then being a typo in the book, what is the rule for naming out values of shaders? Do they have to follow specific names?
On OpenGL.org I've found that gl_Position is required for the out of the vertex shader. Is there any such thing for the fragment shader? Or it is just that if there is only one output, then it will be the color in the buffer?
What happens when there is more then one out of a fragment shader? How does the GLSL compiler know which one to use in the buffer?
As stated in the GLSL specification for version 1.3, the use of gl_FragColor in the fragment shader is deprecated. Instead, you should use a user defined output variable like the
vFragColor variable described in your fragment shader. As you said, it's a typo.
What is the rule for naming out values of shaders?
The variable name can be anything you like, unless it collides with any existing names.
What happens when there is more then one out of a fragment shader? How does the GLSL compiler know which one to use in the buffer?
When there is more than one out in the fragment shader, you should assign slots to the fragment shader outputs by calling BindFragDataLocation. You can then say which slots will render to which render target by calling DrawBuffers.
The specification states that if you have one output variable in the fragment shader defined, it will be assigned to index 0 and output 0. For more information, I recommend you take a look at it yourself.
gl_FragColor was the original output variable in early versions of GLSL. This was the color of the fragment that was to be drawn.
Your initial confusion is justified, as there's no reason to declare that out variable and then write to glFragColor.
In later versions it became customizable, such that you could give arbitrary names to your output variables. You can map these arbitrary outputs to specific buffers with the command glBindFragDataLocation.
I'm not 100% positive, but I believe if you don't call this function before linking, then your output variables will be randomly assigned to buffers. If you only have one output, then it should always be assigned to buffer 0.
I'm trying to figure out how to do texture mapping using GLSL version 4.10. I'm pretty new to GLSL and was happy to get a triangle rendering today with colors fading based on sin(time) using shaders. Now I'm interested in using shaders with a single texture.
A lot of tutorials and even Stack Overflow answers suggest using gl_MultiTexCoord0. However, this has been deprecated since GLSL 1.30 and the latest version is now 4.20. My graphics card doesn't support 4.20 which is why I'm trying to use 4.10.
I know I'm generating and binding my texture appropriately, and I have proper vertex coordinates and texture coordinates because my heightmap rendered perfectly when I was using the fixed-function pipeline, and it renders fine with color rather than the texture.
Here are my GLSL shaders and some of my C++ draw code:
---heightmap.vert (GLSL)---
in vec3 position;
in vec2 texcoord;
out vec2 p_texcoord;
uniform mat4 projection;
uniform mat4 modelview;
void main(void)
{
gl_Position = projection * modelview * vec4(position, 1.0);
p_texcoord = texcoord;
}
---heightmap.frag (GLSL)---
in vec2 p_texcoord;
out vec4 color;
uniform sampler2D texture;
void main(void)
{
color = texture2D(texture, p_texcoord);
}
---Heightmap::Draw() (C++)---
// Bind Shader
// Bind VBO + IBO
// Enable Vertex and Texcoord client state
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, textureId);
// glVertexPointer(...)
// glTexCoordPointer(...)
glUniform4fv(projLoc, projection);
glUniform4fv(modelviewLoc, modelview);
glUniform1i(textureId, 0);
// glDrawElements(...)
// glDisable/unbind everything
The thing that I am also suspicious about are whether I have to pass the texture coord stuff to the fragment shader as a varying since I'm not touching it in the vertex shader. Also, I have no idea how it's going to get the interpolated texcoords from that. It seems like it's just going to get 0.f or 1.f, not the interpolated coordinate. I don't know enough about shaders to understand how that works. If somebody could enlighten me I would be thrilled!
Edit 1:
#Bahbar: So sorry, that was a typo. I'm typing code on one machine while reading it off another. Like I said, it all worked with the fixed function pipeline. Although glEnableClientState and gl[Vertex|TexCoord]Pointer are deprecated, they should still work with shaders, no? glVertexPointer rather than glVertexAttribPointer worked with colors rather than textures. Also, I am using glBindAttribLocation (position to 0 and texcoord to 1).
The reason I am still using glVertexPointer is I am trying to un-deprecate one thing at a time.
glBindTexture takes a texture object as a second parameter.
// Enable Vertex and Texcoord client state
I assume you meant the generic vertex attributes ? Where are your position and texcoord attributes set up ? To do that, you need some calls to glEnableVertexAttrib, and glVertexAttribPointer instead of glEnableClientState and glVertex/TexCoordPointer (all those are deprecated in the same way that gl_MultiTexCoord is in glsl).
And of course, to figure out where the attributes are bound, you need to either call glGetAttribLocation to figure out where the GL chose to put the attrib, or define it yourself with glBindAttribLocation (before linking the program).
Edit to add, following your addition:
Well, 0 might end up pulling data from glVertexPointer (for reasons you should not rely on. attrib 0 is special and most IHVs make it work just like Vertex), but 1 very likely won't be pulling data from glTexCoord.
In theory, there is no overlap between the generic attributes (like your texcoord, that gets its data from glVertexAttribPointer(1,XXX), 1 here being your chosen location), and the built-in attributes (like gl_MultiTexCoord[0] that gets its data from glTexCoordPointer).
Now, nvidia is known to not follow the spec, and indeed aliases attributes (this comes from the Cg model, as far as I know), and will go so far as saying to use a specific attribute location for glTexCoord (the Cg spec suggests it uses location 8 for TexCoord0 - and location 1 is the attribute blendweight - see table 39, p242), but really you should just bite the bullet and switch your TexCoordPointer to VertexAttribPointer calls.