I would like to fit a 2D array by an elliptic function: (x / a)² + (y / b)² = 1 ----> (and so get the a and b)
And then, be able to replot it on my graph.
I found many examples on internet, but no one with this simple Cartesian equation. I probably have searched badly ! I think a basic solution for this problem could help many people.
Here is an example of the data:
Sadly, I can not put the values... So let's assume that I have an X,Y arrays defining the coordinates of each of those points.
This can be solved directly using least squares. You can frame this as minimizing the sum of squares of quantity (alpha * x_i^2 + beta * y_i^2 - 1) where alpha is 1/a^2 and beta is 1/b^2. You have all the x_i's in X and the y_i's in Y so you can find the minimizer of ||Ax - b||^2 where A is an Nx2 matrix (i.e. [X^2, Y^2]), x is the column vector [alpha; beta] and b is column vector of all ones.
The following code solves the more general problem for an ellipse of the form Ax^2 + Bxy + Cy^2 + Dx +Ey = 1 though the idea is exactly the same. The print statement gives 0.0776x^2 + 0.0315xy+0.125y^2+0.00457x+0.00314y = 1 and the image of the ellipse generated is also below
import numpy as np
import matplotlib.pyplot as plt
alpha = 5
beta = 3
N = 500
DIM = 2
np.random.seed(2)
# Generate random points on the unit circle by sampling uniform angles
theta = np.random.uniform(0, 2*np.pi, (N,1))
eps_noise = 0.2 * np.random.normal(size=[N,1])
circle = np.hstack([np.cos(theta), np.sin(theta)])
# Stretch and rotate circle to an ellipse with random linear tranformation
B = np.random.randint(-3, 3, (DIM, DIM))
noisy_ellipse = circle.dot(B) + eps_noise
# Extract x coords and y coords of the ellipse as column vectors
X = noisy_ellipse[:,0:1]
Y = noisy_ellipse[:,1:]
# Formulate and solve the least squares problem ||Ax - b ||^2
A = np.hstack([X**2, X * Y, Y**2, X, Y])
b = np.ones_like(X)
x = np.linalg.lstsq(A, b)[0].squeeze()
# Print the equation of the ellipse in standard form
print('The ellipse is given by {0:.3}x^2 + {1:.3}xy+{2:.3}y^2+{3:.3}x+{4:.3}y = 1'.format(x[0], x[1],x[2],x[3],x[4]))
# Plot the noisy data
plt.scatter(X, Y, label='Data Points')
# Plot the original ellipse from which the data was generated
phi = np.linspace(0, 2*np.pi, 1000).reshape((1000,1))
c = np.hstack([np.cos(phi), np.sin(phi)])
ground_truth_ellipse = c.dot(B)
plt.plot(ground_truth_ellipse[:,0], ground_truth_ellipse[:,1], 'k--', label='Generating Ellipse')
# Plot the least squares ellipse
x_coord = np.linspace(-5,5,300)
y_coord = np.linspace(-5,5,300)
X_coord, Y_coord = np.meshgrid(x_coord, y_coord)
Z_coord = x[0] * X_coord ** 2 + x[1] * X_coord * Y_coord + x[2] * Y_coord**2 + x[3] * X_coord + x[4] * Y_coord
plt.contour(X_coord, Y_coord, Z_coord, levels=[1], colors=('r'), linewidths=2)
plt.legend()
plt.xlabel('X')
plt.ylabel('Y')
plt.show()
Following the suggestion by ErroriSalvo, here is the complete process of fitting an ellipse using the SVD. The arrays x, y are coordinates of the given points, let's say there are N points. Then U, S, V are obtained from the SVD of the centered coordinate array of shape (2, N). So, U is a 2 by 2 orthogonal matrix (rotation), S is a vector of length 2 (singular values), and V, which we do not need, is an N by N orthogonal matrix.
The linear map transforming the unit circle to the ellipse of best fit is
sqrt(2/N) * U * diag(S)
where diag(S) is the diagonal matrix with singular values on the diagonal. To see why the factor of sqrt(2/N) is needed, imagine that the points x, y are taken uniformly from the unit circle. Then sum(x**2) + sum(y**2) is N, and so the coordinate matrix consists of two orthogonal rows of length sqrt(N/2), hence its norm (the largest singular value) is sqrt(N/2). We need to bring this down to 1 to have the unit circle.
N = 300
t = np.linspace(0, 2*np.pi, N)
x = 5*np.cos(t) + 0.2*np.random.normal(size=N) + 1
y = 4*np.sin(t+0.5) + 0.2*np.random.normal(size=N)
plt.plot(x, y, '.') # given points
xmean, ymean = x.mean(), y.mean()
x -= xmean
y -= ymean
U, S, V = np.linalg.svd(np.stack((x, y)))
tt = np.linspace(0, 2*np.pi, 1000)
circle = np.stack((np.cos(tt), np.sin(tt))) # unit circle
transform = np.sqrt(2/N) * U.dot(np.diag(S)) # transformation matrix
fit = transform.dot(circle) + np.array([[xmean], [ymean]])
plt.plot(fit[0, :], fit[1, :], 'r')
plt.show()
But if you assume that there is no rotation, then np.sqrt(2/N) * S is all you need; these are a and b in the equation of the ellipse.
You could try a Singular Value Decomposition of the data matrix.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.svd.html
First center the data by subtracting mean values of X,Y from each column respectively.
X=X-np.mean(X)
Y=Y-np.mean(Y)
D=np.vstack(X,Y)
Then, apply SVD and extract
-eigenvalues (members of s) -> axis length
-eigenvectors(U) -> axis orientation
U, s, V = np.linalg.svd(D, full_matrices=True)
This should be a least-squares fit.
Of course, things can get more complicated than this, please see
https://www.emis.de/journals/BBMS/Bulletin/sup962/gander.pdf
Related
given a vector of N-dimensional points. The vector will be of size N+1.
Is there a generalized algorithm to find the center and radius of the ND sphere using those points where the sphere intersects every single one of those points?
The same question has been asked on the mathematics stackexchange and has received a constructive answer:
Does a set of n+1 points that affinely span R^n lie on a unique (n-1)-sphere?
Here is an implementation in python/numpy of the algorithm described at that answer.
import numpy as np
def find_sphere_through_points(points):
n_points, n_dim = points.shape
if (n_points != n_dim + 1):
raise ValueError('Number of points must be equal to 1 + dimension')
a = np.concatenate((points, np.ones((n_points, 1))), axis=1)
b = (points**2).sum(axis=1)
x = np.linalg.solve(a, b)
center = x[:-1] / 2
radius = x[-1] + center#center
return center, radius
To test this method, we can generate random points on the surface of a sphere, using the method described in this related question:
Generate a random sample of points distributed on the surface of a unit spher
import numpy as np
def sample_spherical(npoints, ndim=3, center=None):
vec = np.random.randn(npoints, ndim)
vec /= np.linalg.norm(vec, axis=1).reshape(npoints,1)
if center is None:
return vec
else:
return vec + center
n = 5
center = np.random.rand(n)
points = sample_spherical(n+1, ndim=n, center=center)
guessed_center, guessed_radius = find_sphere_through_points(points)
print('True center:\n ', center)
print('Calc center:\n ', guessed_center)
print('True radius:\n ', 1.0)
print('Calc radius:\n ', guessed_radius)
# True center:
# [0.18150032 0.94979547 0.07719378 0.26561175 0.37509931]
# Calc center:
# [0.18150032 0.94979547 0.07719378 0.26561175 0.37509931]
# True radius:
# 1.0
# Calc radius:
# 0.9999999999999997
The center of a circle by three points, let (X, Y) and its radius R are found as follows:
(X - X0)² + (Y - Y0)² = R²
(X - X1)² + (Y - Y1)² = R²
(X - X2)² + (Y - Y2)² = R²
Then subtracting pair-wise to eliminate R,
(2X - X0 - X1)(X1 - X0) + (2Y - Y0 - Y1)(Y1 - Y0) = 0
(2X - X0 - X2)(X2 - X0) + (2Y - Y0 - Y2)(Y2 - Y0) = 0
This is a system of two linear equations in two unknowns, giving the coordinates of the center (in fact we construct the intersection of two bisectors). The radius follows from the first equation.
This immediately generalizes to D dimensions.
This question already has answers here:
Finding whether a point lies inside a rectangle or not
(10 answers)
Closed 2 years ago.
I have a rotated rectangle with these coordinates as vertices:
1 670273 4879507
2 677241 4859302
3 670388 4856938
4 663420 4877144
And I have points with these coordinates:
670831 4867989
675097 4869543
Using only the Python 2.7 standard library, I want to determine if the points fall within the rotated rectangle.
I am not able to add additional Python libraries to my Jython implementation
What would it take to do this?
A line equation of the form ax+by+c==0 can be constructed from 2 points. For a given point to be inside a convex shape, we need testing whether it lies on the same side of every line defined by the shape's edges.
In pure Python code, taking care of writing the equations avoiding divisions, this could be as follows:
def is_on_right_side(x, y, xy0, xy1):
x0, y0 = xy0
x1, y1 = xy1
a = float(y1 - y0)
b = float(x0 - x1)
c = - a*x0 - b*y0
return a*x + b*y + c >= 0
def test_point(x, y, vertices):
num_vert = len(vertices)
is_right = [is_on_right_side(x, y, vertices[i], vertices[(i + 1) % num_vert]) for i in range(num_vert)]
all_left = not any(is_right)
all_right = all(is_right)
return all_left or all_right
vertices = [(670273, 4879507), (677241, 4859302), (670388, 4856938), (663420, 4877144)]
The following plot tests the code visually for several shapes. Note that for shapes with horizontal and vertical lines usual line equations could provoke division by zero.
import matplotlib.pyplot as plt
import numpy as np
vertices1 = [(670273, 4879507), (677241, 4859302), (670388, 4856938), (663420, 4877144)]
vertices2 = [(680000, 4872000), (680000, 4879000), (690000, 4879000), (690000, 4872000)]
vertices3 = [(655000, 4857000), (655000, 4875000), (665000, 4857000)]
k = np.arange(6)
r = 8000
vertices4 = np.vstack([690000 + r * np.cos(k * 2 * np.pi / 6), 4863000 + r * np.sin(k * 2 * np.pi / 6)]).T
all_shapes = [vertices1, vertices2, vertices3, vertices4]
for vertices in all_shapes:
plt.plot([x for x, y in vertices] + [vertices[0][0]], [y for x, y in vertices] + [vertices[0][1]], 'g-', lw=3)
for x, y in zip(np.random.randint(650000, 700000, 1000), np.random.randint(4855000, 4880000, 1000)):
color = 'turquoise'
for vertices in all_shapes:
if test_point(x, y, vertices):
color = 'tomato'
plt.plot(x, y, '.', color=color)
plt.gca().set_aspect('equal')
plt.show()
PS: In case you are running a 32-bit version of numpy, with this size of integers it might be necessary to convert the values to float to avoid overflow.
If this calculation needs to happen very often, the a,b,c values can be precalculated and stored. If the direction of the edges is known, only one of all_left or all_right is needed.
When the shape is fixed, a text version of the function can be generated:
def generate_test_function(vertices, is_clockwise=True, function_name='test_function'):
ext_vert = list(vertices) + [vertices[0]]
unequality_sign = '>=' if is_clockwise else '<='
print(f'def {function_name}(x, y):')
parts = []
for (x0, y0), (x1, y1) in zip(ext_vert[:-1], ext_vert[1:]):
a = float(y1 - y0)
b = float(x0 - x1)
c = a * x0 + b * y0
parts.append(f'({a}*x + {b}*y {unequality_sign} {c})')
print(' return', ' and '.join(parts))
vertices = [(670273, 4879507), (677241, 4859302), (670388, 4856938), (663420, 4877144)]
generate_test_function(vertices)
This would generate a function as:
def test_function(x, y):
return (-20205.0*x + -6968.0*y >= -47543270741.0) and (-2364.0*x + 6853.0*y >= 31699798882.0) and (20206.0*x + 6968.0*y >= 47389003912.0) and (2363.0*x + -6853.0*y >= -31855406372.0)
This function then can be copy-pasted and optimized by the Jython compiler. Note that the shape doesn't need to be rectangular. Any convex shape will do, allowing to use a tighter box.
Take three consequent vertices A, B, C (your 1,2,3)
Find lengths of sides AB and BC
lAB = sqrt((B.x - A.x)^2+(B.y - A.y)^2)
Get unit (normalized) direction vectors
uAB = ((B.x - A.x) / lAB, (B.y - A.y) / lAB)
For tested point P get vector BP
BP = ((P.x - B.x), (P.y - B.y))
And calculate signed distances from sides to point using cross product
SignedDistABP = Cross(BP, uAB) = BP.x * uAB.y - BP.y * uAB.x
SignedDistBCP = - Cross(BP, uBC) = - BP.x * uBC.y + BP.y * uBC.x
For points inside rectangle both distances should have the same sign - either negative or positive depending on vertices order (CW or CCW), and their absolute values should not be larger than lBC and lAB correspondingly
Abs(SignedDistABP) <= lBC
Abs(SignedDistBCP) <= lAB
As the shape is an exact rectangle, the easiest is to rotate all points by the angle
-arctan((4859302-4856938)/(677241-670388))
Doing so, the rectangle becomes axis-aligned and you just have to perform four coordinate comparisons. Rotations are easy to compute with complex numbers.
In fact you can simply represent all points as complex numbers, compute the vector defined by some side, and multiply everything by the conjugate.
A slightly different approach is to consider the change of coordinate frame that brings some corner to the origin and two incident sides to (1,0) and (0,1). This is an affine transformation. Then your test boils down to checking insideness to the unit square.
I'm interested in drawing a circle of a vary radius using sin() and cos() functions.
Is there a golden rule to increment the radians so that there isn't multiple plots to the same location and no gaps in the circle drawn on a pixel based display?
x = cos(r) * radius
y = sin(r) * radius
r = r + s
My guess would be that s is something to do with dividing 2 × PI by the a number derived from the radius?
I'm sure this is either really simple or impossible due to the limitations of floating point calculations.
Thanks for your time
Anthony
The length of arc is simply s = r * delta_fi where r is the radius of the circle, fi is the angle and delta_fi is the change of the angle.
The projection of this arc to x-axis is delta_x = s * sin(fi) and to y-axis it is delta_y = s * cos(fi)
You want such delta_fi that either delta_x or delta_y is 1.
Obviously, the problem is symmetrical and we can solve it for fi from -45° to 45° and for delta y and then apply the same solution in other quadrants. We have:
r * delta_fi * cos(fi) = 1
Hence:
delta_fi = 1/cos(fi)/r
The coordinates of a circle can indeed be completely defined using the trigonometric functions sine and cosine:
x = cos(angle)
y = sin(angle)
If the radius is any other value than 1 (which happens to define the unit circle), the underlying principles of trigonometric functions still apply and, therefore, the following equations can be derived:
x = cos(angle) * radius
y = sin(angle) * radius
To implement this in Python (with the kind help of Numpy) all that is necessary in addition to what we have already defined is a suitable vector (or 1-dimensional array) for the angle, which will be evaluated by the function x and y.
import numpy as np
r = 2 # An arbitrary value for the radius
angle = np.linspace(0, 2*np.pi, 1000) # A vector covering all angles from
# 0 to 2*pi (the full circle in radians)
# with an arbitrary number of
# elements, 1000 in this example
x = np.cos(angle)*r
y = np.sin(angle)*r
On plotting this circle don't forget to adjust the size of the figure to a square, otherwise the circle will be distorted.
import matplotlib.pyplot as plt
plt.figure(figsize=(3, 3))
plt.plot(x, y)
I must be the worst person on the planet when it comes to math because i can't figure out how to change this circle radius:
from math import *
posx, posy = 0,0
sides = 32
glBegin(GL_POLYGON)
for i in range(100):
cosine=cos(i*2*pi/sides)+posx
sine=sin(i*2*pi/sides)+posy
glVertex2f(cosine,sine)
I'm not entirely sure how or why this becomes a circle because the *2 confuses me a bit.
Note that this is done in Pyglet under Python2.6 calling OpenGL libraries.
Followed Example 4-1: http://fly.cc.fer.hr/~unreal/theredbook/chapter04.html
Clarification: This works, i'm interested in why and how to modify the radius.
This should do the trick :)
from math import *
posx, posy = 0,0
sides = 32
radius = 1
glBegin(GL_POLYGON)
for i in range(100):
cosine= radius * cos(i*2*pi/sides) + posx
sine = radius * sin(i*2*pi/sides) + posy
glVertex2f(cosine,sine)
But I would pick another names for variables. cosine and sine is not exactly what these variables are.
And as far as I see, you son't need a loop from 1 to 100 (or from 0 to 99, I'm not too good at Python), you just need a loop from 1 to sides.
Explanation:
When you calculate
x = cos (angle)
y = sin(angle)
you get a point on a circle with radius = 1, and centre in the point (0; 0) (because sin^2(angle) + cos^2(angle) = 1).
If you want to change a radius to R, you simply multiply cos and sin by R.
x = R * cos (angle)
y = R * sin(angle)
If you want to transfer the circle to another location (for example, you want the circle to have it's centre at (X_centre, Y_centre), you add X_centre and Y_xentre to x and y accordingly:
x = R * cos (angle) + X_centre
y = R * sin(angle) + Y_centre
When you need to loop through N points (in your case N = sides) on your circle, you should change the angle on each iteration. All those angles should be equal and their sum should be 2 * pi. So each angle should be equal to 2 * pi/ N. And to get i-th angle you multiply this value by i: i * 2 * pi / N.
math : P=pr^2=p*r*r= p*r*2 programming i*2*pi/sides
together : i = p i*2, *2=r^2 this should help you
I have this algorithm here:
pc = # the point you are coloring now
p0 = # start point
p1 = # end point
v = p1 - p0
d = Length(v)
v = Normalize(v) # or Scale(v, 1/d)
v0 = pc - p0
t = Dot(v0, v)
t = Clamp(t/d, 0, 1)
color = (start_color * t) + (end_color * (1 - t))
to generate point to point linear gradients. It works very well for me. I was wondering if there was a similar algorithm to generate radial gradients. By similar, I mean one that solves for color at point P rather than solve for P at a certain color (where P is the coordinate you are painting).
Thanks
//loop through vector
//x and y px position
int x = i%w;
int y = i/w;
float d = distance(center,int2(x,y));
//if within the grad circle
if(d < radius)
{
//somehow set v[i] alpha to this:
float a = d/r;
}
Linerise over atan2(dy,dx) where dx is x-center, and dy is y-center.
cx # center x
cy # center y
r1 # ring is defined by two radius
r2 # r1 < r2
c1 # start color
c2 # stop color
ang # start angle
px # currect point x,y
py
if( px^2 + py^2 <= r2^2 AND px^2 + py^2 >= r1^2 ) # lies in ring?
t= atan2(py-cy,px-cx)+ang
t= t+ pi # atan2 is from -pi to pi
if (t > 2* pi) # it might over 2pi becuse of +ang
t=t-2*pi
t=t/(2*pi) # normalise t from 0 to 1
color = (c1 * t) + (c2 * (1 - t))
Problem whit this algorhitm is that ang is actualy wrong and should be rotated by pi and normalized between 0 and 2pi.
Based on the comment, what you want can still be viewed as a linear gradient -- i.e. you have a line from the center to the outside of the circle, and you have a linear gradient along that line. As such, the calculation is virtually identical to what you already had.
Edit: Okay, apparently I misunderstood what you want. To figure a gradient running around a radius, you still basically linearize it -- figure out the circumference at that radius (2*Pi*R), and then do a linear interpolation along a line of that length.