Related
I would like to access a member of std::vector<std::variant> by index. Considering the following snippet:
struct Data {
using data_types = std::variant<std::basic_string<char>, double, int>;
public:
template <class T>
void push_back(const T& t) {
m_data.push_back(t);
}
private:
std::vector<data_types> m_data;
};
int main()
{
Data d;
d.push_back(0);
d.push_back("string");
d.push_back(3.55);
}
I would like to access the values like d[0] (should return int) or d[1] (should return std::string).
What I have tried so far but what isn't working is to add the following public method to the existing struct:
template <class T>
T& operator[](const size_t &index) {
return std::visit([](const T& value) {
return static_cast<T>(value);
}, m_data[index]);
}
Any ideas how to achieve the desired result?
The type of an expression in C++ cannot depend on runtime parameters; basically it can only depend on types of the arguments, plus non-type template arguments.
So d[0] and d[1] must have the same type, as the type of the pieces of the expression are identical, and there are no non-type template arguments.
std::get<int>(d[0]) vs std::get<double>(d[1]) can differ in type.
std::get<1>(d[0]) vs std::get<2>(d[1]) can differ in type.
std::visit is a mechanism used to get around this; here, we create every a function object call, one for each possible type, and then pick one at runtime to actually call. However, the type returned from the visit still follows the above rule: it doesn't depend on what type is stored in the variant, and every possible type in the variant must have a valid instantiation of the function.
C++ type system is not a runtime type system. It is compile-time. Stuff like variant and dynamic_cast and any give some runtime exposure to it, but it is intentionally minimal.
If you are wanting to print the contents of a variant, you can do this:
std::visit([](auto& x){
std::cout << x;
}, d[0]);
the trick here is that each of the various types of variant have a lambda function body written for them (so they all must be valid). Then, at run time, the one actually in the variant is run.
You can also test the variant and ask if it has a specific type, either via std::get or manually.
bool has_int = std::visit([](auto& x){
return std::is_same_v<int, std::decay_t<decltype(x)>>::value;
}, d[0]);
this gives you a bool saying if d[0] has an int in it or not.
The next bit is getting insane. Please don't read this unless you fully understand how to use variants and want to know more:
You can even extract out the type index of the variant and pass that around as a run time value:
template<auto I>
using konstant_t = std::integral_constant<decltype(I),I>;
template<auto I>
constexpr konstant_t<I> konstant_v{};
template<auto...Is>
using venum_t = std::variant< konstant_t<Is>... >;
template<class Is>
struct make_venum_helper;
template<class Is>
using make_venum_helper_t = typename make_venum_helper<Is>::type;
template<std::size_t...Is>
struct make_venum_helper<std::index_sequence<Is...>>{
using type=venum_t<Is...>;
};
template<std::size_t N>
using make_venum_t = typename make_venum_helper<std::make_index_sequence<N>>::type;
template<std::size_t...Is>
constexpr auto venum_v( std::index_sequence<Is...>, std::size_t I ) {
using venum = make_venum_t<sizeof...(Is)>;
constexpr venum arr[]={
venum( konstant_v<Is> )...
};
return arr[I];
}
template<std::size_t N>
constexpr auto venum_v( std::size_t I ) {
return venum_v( std::make_index_sequence<N>{}, I );
}
template<class...Ts>
constexpr auto venum_v( std::variant<Ts...> const& v ) {
return venum_v< sizeof...(Ts) >( v.index() );
}
now you can do this:
using venum = make_venum_t<3>;
venum idx = venum_v(d[0]);
and idx holds the index of the engaged type in d[0]. This is only somewhat useful, as you still need std::visit to use it usefully:
std::visit([&](auto I) {
std::cout << std::get<I>( d[0] );
}, idx );
(within the lambda, I is a std::integral_constant, which can be constexpr converted to an integer.)
but lets you do some interesting things with it.
To extract a value from variant, use std::get:
struct Data
{
...
template <class T>
T& operator[](size_t index)
{
return std::get<T>(m_data[index]);
}
};
However, because this overloaded operator is a template, you can't use simple operator syntax to call it. Use the verbose syntax:
int main()
{
Data d;
d.push_back(0);
d.push_back("string");
d.push_back(3.55);
std::cout << d.operator[]<double>(2);
}
Or rename it to use a plain name instead of the fancy operator[].
Visitor pattern:
#include <iostream>
#include <string>
#include <variant>
#include <vector>
template <class ...Ts>
struct MultiVector : std::vector<std::variant<Ts...>> {
template <class Visitor>
void visit(std::size_t i, Visitor&& v) {
std::visit(v, (*this)[i]);
}
};
int main() {
MultiVector<std::string, int, double> vec;
vec.push_back(0);
vec.push_back("string");
vec.push_back(3.55);
vec.visit(2, [](auto& e) { std::cout << e << '\n'; });
}
I am looking for a class that is like std::variant that holds all types instead of one of the types.
So I would like to be able to write:
std::all_variant<int, double> av{1, 3.14159};
int i = std::get<int>(av); // i should be 1.
double d = std::get<double>(av); // d should be 3.14159
This is basically a tuple but guarantees that each type appears only once so you can do std::get<Type> instead of std::get<Index>.
For context I want to be able to write the following code (so if there is a better way of doing that I would appreciate to know):
std::all_variant<int, double> av{1, 3.14159};
template <typename T> // T must be either int or double.
void MyFunc(std::all_variant<int, double> av) {
std::cout << std::get<T>(av);
}
int main() {
MyFunc<int>(av); // Should print 1.
MyFunc<double>(av); // Should print 3.14159.
MyFunc<std::string>(av); // Error! av doesn't have std::string variant.
}
I'm not sure what this would be called so I'm not sure if this is in the standard library. I guess it wouldn't be to hard to write one but I don't want to reinvent the wheel.
I am looking for a class that is like std::variant that holds all types instead of one of the types.
What you are looking for is called std::tuple
std::tuple<int,double> mytup( 1, 2.0 );
std::cout << std::get<int>( mytup ) << "\n"; // prints 1
std::cout << std::get<double>( mytup ) << "\n"; // prints 2
std::cout << std::get<std::string>( mytup ) << "\n"; // compiler error
Live example
As for single type appearance requirement you would get compilation error when you try to use std::get<type> instead of index with std::tuple with duplicated types. (thanks #max66)
In addition to Slava's answer, you can enforce type-uniqueness in a tuple using for example something like is_unique from this post:
#include <tuple>
#include <type_traits>
// From https://stackoverflow.com/a/47511516
template <typename...>
inline constexpr auto is_unique = std::true_type{};
template <typename T, typename... Rest>
inline constexpr auto is_unique<T, Rest...> = std::bool_constant<
(!std::is_same_v<T, Rest> && ...) && is_unique<Rest...>
>{};
// Tuple that only accept unique type parameters
template<typename... Ts>
using uniq_tuple = typename std::enable_if<is_unique<Ts...>, std::tuple<Ts...>>::type;
int main()
{
// Compiles
uniq_tuple<int, float> t1;
// Fails
uniq_tuple<int, float, int> t2;
return 0;
}
Have educational task: write template function, which takes arbitrary std::tuple and 2 indexes inside and returns std::pair, containing elements of given std::tuple with correspondent indexes.
Example:
auto t = std::make_tuple(0, 3.5, "Hello");
std::pair<double, char const *> p = to_pair<1,2>(t);
// p contains 3.5 and "Hello"
Written something like this:
template<int I, int J>
auto to_pair(std::tuple t) -> decltype(std::make_pair(std::get<I>(t), std::get<J>(t))) {
return std::make_pair(std::get<I>(t), std::get<J>(t));
}
However got an error:
r: missing template arguments before ‘t’
auto to_pair(std::tuple t) -> decltype(std::make_pair(get<I>t, get<J>t))
^
What I'm doing wrong and what is correct syntax here?
std::tuple is a template class, so there's no std::tuple, only std::tuple<T, ...>. In your case, the type of t is std::tuple<int, double, char const *>.
Also, you're calling std::get without an argument (there's missing braces).
You're almost there, the function should be something along the lines of:
template<int I, int J, class... T>
auto to_pair(std::tuple<T...> t)
-> decltype(std::make_pair(std::get<I>(t), std::get<J>(t))) {
return std::make_pair(std::get<I>(t), std::get<J>(t));
}
(Note: This question is about not having to specify the number of elements and still allow nested types to be directly initialized.)
This question discusses the uses left for a C array like int arr[20];. On his answer, #James Kanze shows one of the last strongholds of C arrays, it's unique initialization characteristics:
int arr[] = { 1, 3, 3, 7, 0, 4, 2, 0, 3, 1, 4, 1, 5, 9 };
We don't have to specify the number of elements, hooray! Now iterate over it with the C++11 functions std::begin and std::end from <iterator> (or your own variants) and you never need to even think of its size.
Now, are there any (possibly TMP) ways to achieve the same with std::array? Use of macros allowed to make it look nicer. :)
??? std_array = { "here", "be", "elements" };
Edit: Intermediate version, compiled from various answers, looks like this:
#include <array>
#include <utility>
template<class T, class... Tail, class Elem = typename std::decay<T>::type>
std::array<Elem,1+sizeof...(Tail)> make_array(T&& head, Tail&&... values)
{
return { std::forward<T>(head), std::forward<Tail>(values)... };
}
// in code
auto std_array = make_array(1,2,3,4,5);
And employs all kind of cool C++11 stuff:
Variadic Templates
sizeof...
rvalue references
perfect forwarding
std::array, of course
uniform initialization
omitting the return type with uniform initialization
type inference (auto)
And an example can be found here.
However, as #Johannes points out in the comment on #Xaade's answer, you can't initialize nested types with such a function. Example:
struct A{ int a; int b; };
// C syntax
A arr[] = { {1,2}, {3,4} };
// using std::array
??? std_array = { {1,2}, {3,4} };
Also, the number of initializers is limited to the number of function and template arguments supported by the implementation.
Best I can think of is:
template<class T, class... Tail>
auto make_array(T head, Tail... tail) -> std::array<T, 1 + sizeof...(Tail)>
{
std::array<T, 1 + sizeof...(Tail)> a = { head, tail ... };
return a;
}
auto a = make_array(1, 2, 3);
However, this requires the compiler to do NRVO, and then also skip the copy of returned value (which is also legal but not required). In practice, I would expect any C++ compiler to be able to optimize that such that it's as fast as direct initialization.
I'd expect a simple make_array.
template<typename ret, typename... T> std::array<ret, sizeof...(T)> make_array(T&&... refs) {
// return std::array<ret, sizeof...(T)>{ { std::forward<T>(refs)... } };
return { std::forward<T>(refs)... };
}
Combining a few ideas from previous posts, here's a solution that works even for nested constructions (tested in GCC4.6):
template <typename T, typename ...Args>
std::array<T, sizeof...(Args) + 1> make_array(T && t, Args &&... args)
{
static_assert(all_same<T, Args...>::value, "make_array() requires all arguments to be of the same type."); // edited in
return std::array<T, sizeof...(Args) + 1>{ std::forward<T>(t), std::forward<Args>(args)...};
}
Strangely, can cannot make the return value an rvalue reference, that would not work for nested constructions. Anyway, here's a test:
auto q = make_array(make_array(make_array(std::string("Cat1"), std::string("Dog1")), make_array(std::string("Mouse1"), std::string("Rat1"))),
make_array(make_array(std::string("Cat2"), std::string("Dog2")), make_array(std::string("Mouse2"), std::string("Rat2"))),
make_array(make_array(std::string("Cat3"), std::string("Dog3")), make_array(std::string("Mouse3"), std::string("Rat3"))),
make_array(make_array(std::string("Cat4"), std::string("Dog4")), make_array(std::string("Mouse4"), std::string("Rat4")))
);
std::cout << q << std::endl;
// produces: [[[Cat1, Dog1], [Mouse1, Rat1]], [[Cat2, Dog2], [Mouse2, Rat2]], [[Cat3, Dog3], [Mouse3, Rat3]], [[Cat4, Dog4], [Mouse4, Rat4]]]
(For the last output I'm using my pretty-printer.)
Actually, let us improve the type safety of this construction. We definitely need all types to be the same. One way is to add a static assertion, which I've edited in above. The other way is to only enable make_array when the types are the same, like so:
template <typename T, typename ...Args>
typename std::enable_if<all_same<T, Args...>::value, std::array<T, sizeof...(Args) + 1>>::type
make_array(T && t, Args &&... args)
{
return std::array<T, sizeof...(Args) + 1> { std::forward<T>(t), std::forward<Args>(args)...};
}
Either way, you will need the variadic all_same<Args...> type trait. Here it is, generalizing from std::is_same<S, T> (note that decaying is important to allow mixing of T, T&, T const & etc.):
template <typename ...Args> struct all_same { static const bool value = false; };
template <typename S, typename T, typename ...Args> struct all_same<S, T, Args...>
{
static const bool value = std::is_same<typename std::decay<S>::type, typename std::decay<T>::type>::value && all_same<T, Args...>::value;
};
template <typename S, typename T> struct all_same<S, T>
{
static const bool value = std::is_same<typename std::decay<S>::type, typename std::decay<T>::type>::value;
};
template <typename T> struct all_same<T> { static const bool value = true; };
Note that make_array() returns by copy-of-temporary, which the compiler (with sufficient optimisation flags!) is allowed to treat as an rvalue or otherwise optimize away, and std::array is an aggregate type, so the compiler is free to pick the best possible construction method.
Finally, note that you cannot avoid copy/move construction when make_array sets up the initializer. So std::array<Foo,2> x{Foo(1), Foo(2)}; has no copy/move, but auto x = make_array(Foo(1), Foo(2)); has two copy/moves as the arguments are forwarded to make_array. I don't think you can improve on that, because you can't pass a variadic initializer list lexically to the helper and deduce type and size -- if the preprocessor had a sizeof... function for variadic arguments, perhaps that could be done, but not within the core language.
Using trailing return syntax make_array can be further simplified
#include <array>
#include <type_traits>
#include <utility>
template <typename... T>
auto make_array(T&&... t)
-> std::array<std::common_type_t<T...>, sizeof...(t)>
{
return {std::forward<T>(t)...};
}
int main()
{
auto arr = make_array(1, 2, 3, 4, 5);
return 0;
}
Unfortunatelly for aggregate classes it requires explicit type specification
/*
struct Foo
{
int a, b;
}; */
auto arr = make_array(Foo{1, 2}, Foo{3, 4}, Foo{5, 6});
EDIT No longer relevant:
In fact this make_array implementation is listed in sizeof... operator
The code below introduces undefined behavior as per [namespace.std]/4.4
4.4 The behavior of a C++ program is undefined if it declares a deduction guide for any standard library class template.
# c++17 version
Thanks to template argument deduction for class templates proposal we can use deduction guides to get rid of make_array helper
#include <array>
namespace std
{
template <typename... T> array(T... t)
-> array<std::common_type_t<T...>, sizeof...(t)>;
}
int main()
{
std::array a{1, 2, 3, 4};
return 0;
}
Compiled with -std=c++1z flag under x86-64 gcc 7.0
I know it's been quite some time since this question was asked, but I feel the existing answers still have some shortcomings, so I'd like to propose my slightly modified version. Following are the points that I think some existing answers are missing.
1. No need to rely on RVO
Some answers mention that we need to rely on RVO to return the constructed array. That is not true; we can make use of copy-list-initialization to guarantee there will never be temporaries created. So instead of:
return std::array<Type, …>{values};
we should do:
return {{values}};
2. Make make_array a constexpr function
This allow us to create compile-time constant arrays.
3. No need to check that all arguments are of the same type
First off, if they are not, the compiler will issue a warning or error anyway because list-initialization doesn't allow narrowing. Secondly, even if we really decide to do our own static_assert thing (perhaps to provide better error message), we should still probably compare the arguments' decayed types rather than raw types. For example,
volatile int a = 0;
const int& b = 1;
int&& c = 2;
auto arr = make_array<int>(a, b, c); // Will this work?
If we are simply static_asserting that a, b, and c have the same type, then this check will fail, but that probably isn't what we'd expect. Instead, we should compare their std::decay_t<T> types (which are all ints)).
4. Deduce the array value type by decaying the forwarded arguments
This is similar to point 3. Using the same code snippet, but don't specify the value type explicitly this time:
volatile int a = 0;
const int& b = 1;
int&& c = 2;
auto arr = make_array(a, b, c); // Will this work?
We probably want to make an array<int, 3>, but the implementations in the existing answers probably all fail to do that. What we can do is, instead of returning a std::array<T, …>, return a std::array<std::decay_t<T>, …>.
There is one disadvantage about this approach: we can't return an array of cv-qualified value type any more. But most of the time, instead of something like an array<const int, …>, we would use a const array<int, …> anyway. There is a trade-off, but I think a reasonable one. The C++17 std::make_optional also takes this approach:
template< class T >
constexpr std::optional<std::decay_t<T>> make_optional( T&& value );
Taking the above points into account, a full working implementation of make_array in C++14 looks like this:
#include <array>
#include <type_traits>
#include <utility>
template<typename T, typename... Ts>
constexpr std::array<std::decay_t<T>, 1 + sizeof... (Ts)>
make_array(T&& t, Ts&&... ts)
noexcept(noexcept(std::is_nothrow_constructible<
std::array<std::decay_t<T>, 1 + sizeof... (Ts)>, T&&, Ts&&...
>::value))
{
return {{std::forward<T>(t), std::forward<Ts>(ts)...}};
}
template<typename T>
constexpr std::array<std::decay_t<T>, 0> make_array() noexcept
{
return {};
}
Usage:
constexpr auto arr = make_array(make_array(1, 2),
make_array(3, 4));
static_assert(arr[1][1] == 4, "!");
C++11 will support this manner of initialization for (most?) std containers.
(Solution by #dyp)
Note: requires C++14 (std::index_sequence). Although one could implement std::index_sequence in C++11.
#include <iostream>
// ---
#include <array>
#include <utility>
template <typename T>
using c_array = T[];
template<typename T, size_t N, size_t... Indices>
constexpr auto make_array(T (&&src)[N], std::index_sequence<Indices...>) {
return std::array<T, N>{{ std::move(src[Indices])... }};
}
template<typename T, size_t N>
constexpr auto make_array(T (&&src)[N]) {
return make_array(std::move(src), std::make_index_sequence<N>{});
}
// ---
struct Point { int x, y; };
std::ostream& operator<< (std::ostream& os, const Point& p) {
return os << "(" << p.x << "," << p.y << ")";
}
int main() {
auto xs = make_array(c_array<Point>{{1,2}, {3,4}, {5,6}, {7,8}});
for (auto&& x : xs) {
std::cout << x << std::endl;
}
return 0;
}
С++17 compact implementation.
template <typename... T>
constexpr auto array_of(T&&... t) {
return std::array{ static_cast<std::common_type_t<T...>>(t)... };
}
While this answer is directed more towards this question, that question was marked as a duplicate of this question. Hence, this answer is posted here.
A particular use that I feel hasn't been fully covered is a situation where you want to obtain a std::array of chars initialized with a rather long string literal but don't want to blow up the enclosing function. There are a couple of ways to go about this.
The following works but requires us to explicitly specify the size of the string literal. This is what we're trying to avoid:
auto const arr = std::array<char const, 12>{"some string"};
One might expect the following to produce the desired result:
auto const arr = std::array{"some string"};
No need to explicitly specify the size of the array during initialization due to template deduction. However, this wont work because arr is now of type std::array<const char*, 1>.
A neat way to go about this is to simply write a new deduction guide for std::array. But keep in mind that some other code could depend on the default behavior of the std::array deduction guide.
namespace std {
template<typename T, auto N>
array(T (&)[N]) -> array<T, N>;
}
With this deduction guide std::array{"some string"}; will be of type std::array<const char, 12>. It is now possible to initialize arr with a string literal that is defined somewhere else without having to specify its size:
namespace {
constexpr auto some_string = std::array{"some string"};
}
auto func() {
auto const arr = some_string;
// ...
}
Alright, but what if we need a modifiable buffer and we want to initialize it with a string literal without specifying its size?
A hacky solution would be to simply apply the std::remove_cv type trait to our new deduction guide. This is not recommended because this will lead to rather surprising results. String literals are of type const char[], so it's expected that our deduction guide attempts to match that.
It seems that a helper function is necessary in this case. With the use of the constexpr specifier, the following function can be executed at compile time:
#include <array>
#include <type_traits>
template<typename T, auto N>
constexpr auto make_buffer(T (&src)[N]) noexcept {
auto tmp = std::array<std::remove_cv_t<T>, N>{};
for (auto idx = decltype(N){}; idx < N; ++idx) {
tmp[idx] = src[idx];
}
return tmp;
}
Making it possible to initialize modifiable std::array-like buffers as such:
namespace {
constexpr auto some_string = make_buffer("some string");
}
auto func() {
auto buff = some_string;
// ...
}
And with C++20, the helper function can even be simplified:
#include <algorithm>
#include <array>
#include <type_traits>
template<typename T, auto N>
constexpr auto make_buffer(T (&src)[N]) noexcept {
std::array<std::remove_cv_t<T>, N> tmp;
std::copy(std::begin(src), std::end(src), std::begin(tmp));
return tmp;
}
C++20 UPDATE: Although there are some excellent answers that provide the desired functionality (such as Gabriel Garcia's answer that uses std::index_sequence), I am adding this answer because the simplest way to do this as of C++20 isn't mentioned: just use std::to_array(). Using the OP's last example of an array of structs:
struct A{ int a; int b; };
// C syntax
A arr[] = { {1,2}, {3,4} };
// using std::array
auto std_array = std::to_array<A>({ {1,2}, {3,4} });
If std::array is not a constraint and if you have Boost, then take a look at list_of(). This is not exactly like C type array initialization that you want. But close.
Create an array maker type.
It overloads operator, to generate an expression template chaining each element to the previous via references.
Add a finish free function that takes the array maker and generates an array directly from the chain of references.
The syntax should look something like this:
auto arr = finish( make_array<T>->* 1,2,3,4,5 );
It does not permit {} based construction, as only operator= does. If you are willing to use = we can get it to work:
auto arr = finish( make_array<T>= {1}={2}={3}={4}={5} );
or
auto arr = finish( make_array<T>[{1}][{2}[]{3}][{4}][{5}] );
None of these look like good solutions.
Using variardics limits you to your compiler-imposed limit on number of varargs and blocks recursive use of {} for substructures.
In the end, there really isn't a good solution.
What I do is I write my code so it consumes both T[] and std::array data agnostically -- it doesn't care which I feed it. Sometimes this means my forwarding code has to carefully turn [] arrays into std::arrays transparently.
None of the template approaches worked properly for me for arrays of structs, so I crafted this macro solution:
#define make_array(T, ...) \
(std::array<T,sizeof((T[]){ __VA_ARGS__ })/sizeof(T)> {{ __VA_ARGS__ }})
auto a = make_array(int, 1, 2, 3);
struct Foo { int x, y; };
auto b = make_array(Foo,
{ 1, 2 },
{ 3, 4 },
{ 5, 6 },
);
Note that although the macro expands its array arguments twice, the first time is inside sizeof, so any side effects in the expression will correctly happen only once.
Have fun!
(Note: This question is about not having to specify the number of elements and still allow nested types to be directly initialized.)
This question discusses the uses left for a C array like int arr[20];. On his answer, #James Kanze shows one of the last strongholds of C arrays, it's unique initialization characteristics:
int arr[] = { 1, 3, 3, 7, 0, 4, 2, 0, 3, 1, 4, 1, 5, 9 };
We don't have to specify the number of elements, hooray! Now iterate over it with the C++11 functions std::begin and std::end from <iterator> (or your own variants) and you never need to even think of its size.
Now, are there any (possibly TMP) ways to achieve the same with std::array? Use of macros allowed to make it look nicer. :)
??? std_array = { "here", "be", "elements" };
Edit: Intermediate version, compiled from various answers, looks like this:
#include <array>
#include <utility>
template<class T, class... Tail, class Elem = typename std::decay<T>::type>
std::array<Elem,1+sizeof...(Tail)> make_array(T&& head, Tail&&... values)
{
return { std::forward<T>(head), std::forward<Tail>(values)... };
}
// in code
auto std_array = make_array(1,2,3,4,5);
And employs all kind of cool C++11 stuff:
Variadic Templates
sizeof...
rvalue references
perfect forwarding
std::array, of course
uniform initialization
omitting the return type with uniform initialization
type inference (auto)
And an example can be found here.
However, as #Johannes points out in the comment on #Xaade's answer, you can't initialize nested types with such a function. Example:
struct A{ int a; int b; };
// C syntax
A arr[] = { {1,2}, {3,4} };
// using std::array
??? std_array = { {1,2}, {3,4} };
Also, the number of initializers is limited to the number of function and template arguments supported by the implementation.
Best I can think of is:
template<class T, class... Tail>
auto make_array(T head, Tail... tail) -> std::array<T, 1 + sizeof...(Tail)>
{
std::array<T, 1 + sizeof...(Tail)> a = { head, tail ... };
return a;
}
auto a = make_array(1, 2, 3);
However, this requires the compiler to do NRVO, and then also skip the copy of returned value (which is also legal but not required). In practice, I would expect any C++ compiler to be able to optimize that such that it's as fast as direct initialization.
I'd expect a simple make_array.
template<typename ret, typename... T> std::array<ret, sizeof...(T)> make_array(T&&... refs) {
// return std::array<ret, sizeof...(T)>{ { std::forward<T>(refs)... } };
return { std::forward<T>(refs)... };
}
Combining a few ideas from previous posts, here's a solution that works even for nested constructions (tested in GCC4.6):
template <typename T, typename ...Args>
std::array<T, sizeof...(Args) + 1> make_array(T && t, Args &&... args)
{
static_assert(all_same<T, Args...>::value, "make_array() requires all arguments to be of the same type."); // edited in
return std::array<T, sizeof...(Args) + 1>{ std::forward<T>(t), std::forward<Args>(args)...};
}
Strangely, can cannot make the return value an rvalue reference, that would not work for nested constructions. Anyway, here's a test:
auto q = make_array(make_array(make_array(std::string("Cat1"), std::string("Dog1")), make_array(std::string("Mouse1"), std::string("Rat1"))),
make_array(make_array(std::string("Cat2"), std::string("Dog2")), make_array(std::string("Mouse2"), std::string("Rat2"))),
make_array(make_array(std::string("Cat3"), std::string("Dog3")), make_array(std::string("Mouse3"), std::string("Rat3"))),
make_array(make_array(std::string("Cat4"), std::string("Dog4")), make_array(std::string("Mouse4"), std::string("Rat4")))
);
std::cout << q << std::endl;
// produces: [[[Cat1, Dog1], [Mouse1, Rat1]], [[Cat2, Dog2], [Mouse2, Rat2]], [[Cat3, Dog3], [Mouse3, Rat3]], [[Cat4, Dog4], [Mouse4, Rat4]]]
(For the last output I'm using my pretty-printer.)
Actually, let us improve the type safety of this construction. We definitely need all types to be the same. One way is to add a static assertion, which I've edited in above. The other way is to only enable make_array when the types are the same, like so:
template <typename T, typename ...Args>
typename std::enable_if<all_same<T, Args...>::value, std::array<T, sizeof...(Args) + 1>>::type
make_array(T && t, Args &&... args)
{
return std::array<T, sizeof...(Args) + 1> { std::forward<T>(t), std::forward<Args>(args)...};
}
Either way, you will need the variadic all_same<Args...> type trait. Here it is, generalizing from std::is_same<S, T> (note that decaying is important to allow mixing of T, T&, T const & etc.):
template <typename ...Args> struct all_same { static const bool value = false; };
template <typename S, typename T, typename ...Args> struct all_same<S, T, Args...>
{
static const bool value = std::is_same<typename std::decay<S>::type, typename std::decay<T>::type>::value && all_same<T, Args...>::value;
};
template <typename S, typename T> struct all_same<S, T>
{
static const bool value = std::is_same<typename std::decay<S>::type, typename std::decay<T>::type>::value;
};
template <typename T> struct all_same<T> { static const bool value = true; };
Note that make_array() returns by copy-of-temporary, which the compiler (with sufficient optimisation flags!) is allowed to treat as an rvalue or otherwise optimize away, and std::array is an aggregate type, so the compiler is free to pick the best possible construction method.
Finally, note that you cannot avoid copy/move construction when make_array sets up the initializer. So std::array<Foo,2> x{Foo(1), Foo(2)}; has no copy/move, but auto x = make_array(Foo(1), Foo(2)); has two copy/moves as the arguments are forwarded to make_array. I don't think you can improve on that, because you can't pass a variadic initializer list lexically to the helper and deduce type and size -- if the preprocessor had a sizeof... function for variadic arguments, perhaps that could be done, but not within the core language.
Using trailing return syntax make_array can be further simplified
#include <array>
#include <type_traits>
#include <utility>
template <typename... T>
auto make_array(T&&... t)
-> std::array<std::common_type_t<T...>, sizeof...(t)>
{
return {std::forward<T>(t)...};
}
int main()
{
auto arr = make_array(1, 2, 3, 4, 5);
return 0;
}
Unfortunatelly for aggregate classes it requires explicit type specification
/*
struct Foo
{
int a, b;
}; */
auto arr = make_array(Foo{1, 2}, Foo{3, 4}, Foo{5, 6});
EDIT No longer relevant:
In fact this make_array implementation is listed in sizeof... operator
The code below introduces undefined behavior as per [namespace.std]/4.4
4.4 The behavior of a C++ program is undefined if it declares a deduction guide for any standard library class template.
# c++17 version
Thanks to template argument deduction for class templates proposal we can use deduction guides to get rid of make_array helper
#include <array>
namespace std
{
template <typename... T> array(T... t)
-> array<std::common_type_t<T...>, sizeof...(t)>;
}
int main()
{
std::array a{1, 2, 3, 4};
return 0;
}
Compiled with -std=c++1z flag under x86-64 gcc 7.0
I know it's been quite some time since this question was asked, but I feel the existing answers still have some shortcomings, so I'd like to propose my slightly modified version. Following are the points that I think some existing answers are missing.
1. No need to rely on RVO
Some answers mention that we need to rely on RVO to return the constructed array. That is not true; we can make use of copy-list-initialization to guarantee there will never be temporaries created. So instead of:
return std::array<Type, …>{values};
we should do:
return {{values}};
2. Make make_array a constexpr function
This allow us to create compile-time constant arrays.
3. No need to check that all arguments are of the same type
First off, if they are not, the compiler will issue a warning or error anyway because list-initialization doesn't allow narrowing. Secondly, even if we really decide to do our own static_assert thing (perhaps to provide better error message), we should still probably compare the arguments' decayed types rather than raw types. For example,
volatile int a = 0;
const int& b = 1;
int&& c = 2;
auto arr = make_array<int>(a, b, c); // Will this work?
If we are simply static_asserting that a, b, and c have the same type, then this check will fail, but that probably isn't what we'd expect. Instead, we should compare their std::decay_t<T> types (which are all ints)).
4. Deduce the array value type by decaying the forwarded arguments
This is similar to point 3. Using the same code snippet, but don't specify the value type explicitly this time:
volatile int a = 0;
const int& b = 1;
int&& c = 2;
auto arr = make_array(a, b, c); // Will this work?
We probably want to make an array<int, 3>, but the implementations in the existing answers probably all fail to do that. What we can do is, instead of returning a std::array<T, …>, return a std::array<std::decay_t<T>, …>.
There is one disadvantage about this approach: we can't return an array of cv-qualified value type any more. But most of the time, instead of something like an array<const int, …>, we would use a const array<int, …> anyway. There is a trade-off, but I think a reasonable one. The C++17 std::make_optional also takes this approach:
template< class T >
constexpr std::optional<std::decay_t<T>> make_optional( T&& value );
Taking the above points into account, a full working implementation of make_array in C++14 looks like this:
#include <array>
#include <type_traits>
#include <utility>
template<typename T, typename... Ts>
constexpr std::array<std::decay_t<T>, 1 + sizeof... (Ts)>
make_array(T&& t, Ts&&... ts)
noexcept(noexcept(std::is_nothrow_constructible<
std::array<std::decay_t<T>, 1 + sizeof... (Ts)>, T&&, Ts&&...
>::value))
{
return {{std::forward<T>(t), std::forward<Ts>(ts)...}};
}
template<typename T>
constexpr std::array<std::decay_t<T>, 0> make_array() noexcept
{
return {};
}
Usage:
constexpr auto arr = make_array(make_array(1, 2),
make_array(3, 4));
static_assert(arr[1][1] == 4, "!");
C++11 will support this manner of initialization for (most?) std containers.
(Solution by #dyp)
Note: requires C++14 (std::index_sequence). Although one could implement std::index_sequence in C++11.
#include <iostream>
// ---
#include <array>
#include <utility>
template <typename T>
using c_array = T[];
template<typename T, size_t N, size_t... Indices>
constexpr auto make_array(T (&&src)[N], std::index_sequence<Indices...>) {
return std::array<T, N>{{ std::move(src[Indices])... }};
}
template<typename T, size_t N>
constexpr auto make_array(T (&&src)[N]) {
return make_array(std::move(src), std::make_index_sequence<N>{});
}
// ---
struct Point { int x, y; };
std::ostream& operator<< (std::ostream& os, const Point& p) {
return os << "(" << p.x << "," << p.y << ")";
}
int main() {
auto xs = make_array(c_array<Point>{{1,2}, {3,4}, {5,6}, {7,8}});
for (auto&& x : xs) {
std::cout << x << std::endl;
}
return 0;
}
С++17 compact implementation.
template <typename... T>
constexpr auto array_of(T&&... t) {
return std::array{ static_cast<std::common_type_t<T...>>(t)... };
}
While this answer is directed more towards this question, that question was marked as a duplicate of this question. Hence, this answer is posted here.
A particular use that I feel hasn't been fully covered is a situation where you want to obtain a std::array of chars initialized with a rather long string literal but don't want to blow up the enclosing function. There are a couple of ways to go about this.
The following works but requires us to explicitly specify the size of the string literal. This is what we're trying to avoid:
auto const arr = std::array<char const, 12>{"some string"};
One might expect the following to produce the desired result:
auto const arr = std::array{"some string"};
No need to explicitly specify the size of the array during initialization due to template deduction. However, this wont work because arr is now of type std::array<const char*, 1>.
A neat way to go about this is to simply write a new deduction guide for std::array. But keep in mind that some other code could depend on the default behavior of the std::array deduction guide.
namespace std {
template<typename T, auto N>
array(T (&)[N]) -> array<T, N>;
}
With this deduction guide std::array{"some string"}; will be of type std::array<const char, 12>. It is now possible to initialize arr with a string literal that is defined somewhere else without having to specify its size:
namespace {
constexpr auto some_string = std::array{"some string"};
}
auto func() {
auto const arr = some_string;
// ...
}
Alright, but what if we need a modifiable buffer and we want to initialize it with a string literal without specifying its size?
A hacky solution would be to simply apply the std::remove_cv type trait to our new deduction guide. This is not recommended because this will lead to rather surprising results. String literals are of type const char[], so it's expected that our deduction guide attempts to match that.
It seems that a helper function is necessary in this case. With the use of the constexpr specifier, the following function can be executed at compile time:
#include <array>
#include <type_traits>
template<typename T, auto N>
constexpr auto make_buffer(T (&src)[N]) noexcept {
auto tmp = std::array<std::remove_cv_t<T>, N>{};
for (auto idx = decltype(N){}; idx < N; ++idx) {
tmp[idx] = src[idx];
}
return tmp;
}
Making it possible to initialize modifiable std::array-like buffers as such:
namespace {
constexpr auto some_string = make_buffer("some string");
}
auto func() {
auto buff = some_string;
// ...
}
And with C++20, the helper function can even be simplified:
#include <algorithm>
#include <array>
#include <type_traits>
template<typename T, auto N>
constexpr auto make_buffer(T (&src)[N]) noexcept {
std::array<std::remove_cv_t<T>, N> tmp;
std::copy(std::begin(src), std::end(src), std::begin(tmp));
return tmp;
}
C++20 UPDATE: Although there are some excellent answers that provide the desired functionality (such as Gabriel Garcia's answer that uses std::index_sequence), I am adding this answer because the simplest way to do this as of C++20 isn't mentioned: just use std::to_array(). Using the OP's last example of an array of structs:
struct A{ int a; int b; };
// C syntax
A arr[] = { {1,2}, {3,4} };
// using std::array
auto std_array = std::to_array<A>({ {1,2}, {3,4} });
If std::array is not a constraint and if you have Boost, then take a look at list_of(). This is not exactly like C type array initialization that you want. But close.
Create an array maker type.
It overloads operator, to generate an expression template chaining each element to the previous via references.
Add a finish free function that takes the array maker and generates an array directly from the chain of references.
The syntax should look something like this:
auto arr = finish( make_array<T>->* 1,2,3,4,5 );
It does not permit {} based construction, as only operator= does. If you are willing to use = we can get it to work:
auto arr = finish( make_array<T>= {1}={2}={3}={4}={5} );
or
auto arr = finish( make_array<T>[{1}][{2}[]{3}][{4}][{5}] );
None of these look like good solutions.
Using variardics limits you to your compiler-imposed limit on number of varargs and blocks recursive use of {} for substructures.
In the end, there really isn't a good solution.
What I do is I write my code so it consumes both T[] and std::array data agnostically -- it doesn't care which I feed it. Sometimes this means my forwarding code has to carefully turn [] arrays into std::arrays transparently.
None of the template approaches worked properly for me for arrays of structs, so I crafted this macro solution:
#define make_array(T, ...) \
(std::array<T,sizeof((T[]){ __VA_ARGS__ })/sizeof(T)> {{ __VA_ARGS__ }})
auto a = make_array(int, 1, 2, 3);
struct Foo { int x, y; };
auto b = make_array(Foo,
{ 1, 2 },
{ 3, 4 },
{ 5, 6 },
);
Note that although the macro expands its array arguments twice, the first time is inside sizeof, so any side effects in the expression will correctly happen only once.
Have fun!