#ifdef not accepting enum definition - c++

I'm currently developing a project which involves 7 files: main.cpp, GpioInterface.h, GpioInterface.cpp, Utility.h and Utility.cpp.
Basically in the main.cpp file I declare the board type using #define BOARD_TYPE WHATEVER and then in GpioInterface.h I define some values if this macro has been defined.
It looks something like this:
main.cpp:
#define __USE_BOARD_ WHATEVER // This should go in an external file in the future
#ifdef __USE_BOARD_
// Define some stuff
#endif
#include "GpioInterface.h"
#include "Utility.h"
// main function here
GpioInterface.h:
#ifndef GPIO_INTERFACE_H
#define GPIO_INTERFACE_H
#include <stdint.h>
#include <stdio.h>
#ifdef __USE_BOARD_
enum GPIO_PIN_MODE {
GPIO_PIN_MODE_OUTPUT = 0x00,
GPIO_PIN_MODE_INPUT = 0x01,
};
enum GPIO_PIN_STATE {
GPIO_PIN_STATE_LOW = 0x00,
GPIO_PIN_STATE_HIGH = 0x01,
};
#endif // __USE_BOARD_
// some other stuff
#endif // GPIO_INTERFACE_H
Utility.cpp:
#include "Utility.h"
#include "GpioInterface.h"
void someFunction() {
GPIO_digitalWrite(2, GPIO_PIN_STATE_HIGH); // Write HIGH in pin 2
}
When compiling, the GpioInterface.h file is giving me the following error 'GPIO_PIN_STATE_HIGH' was not declared in this scope.
Any idea how to make the enums defined in GpioInterface.h visible to Utility.cpp?
Thanks!

main.cpp is compiled correctly due to
#define __USE_BOARD_ WHATEVER // This should go in an external file in the future
at the beginning. In Utility.cpp you don't have that define so include of "GpioInterface.h" doesn't define enums.

Ideally, such definition should be moved to a compile-time option e.g. if you're using gcc, it should look like gcc -D__USE_BOARD_=WHATEVER , See:
https://gcc.gnu.org/onlinedocs/gcc/Preprocessor-Options.html
Similar option exists for g++ , and for MSVC(++) also, See:
https://learn.microsoft.com/en-us/cpp/build/reference/d-preprocessor-definitions
The advantages are that these are compile-time configurations for a given platform, no need to change the code for each platform and to figure out (like in your case) where the macros are defined.

Unless your GpioInterface.h file, or one of the files it includes, has a macro definition for __USE_BOARD_ then there won't be one, and the #ifdef __USE_BOARD_ will evaluate to false and the enums won't be defined. When the compiler compiles Utility.cpp it won't have a definition for GPIO_PIN_STATE_HIGH and you'll get an error.

The easiest way would be to simply remove the #ifdef around your enums.
Alternatively you could pass __USE_BOARD_ via compiler argument like amritanshu mentioned in his answer or (preferably) declare it in your build configuration settings (of an IDE for example).
If you don't want/can use any IDE or build tool for some reason i'd recommend creating an additional header for global defines and include it everywhere it is needed. This, however, isn't really clean and i always would prefer using build configurations.

Related

Macro for including headers [duplicate]

Is there a way to define a macro that contains a #include
directive in its body?
If I just put
the "#include", it gives the error
C2162: "expected macro formal parameter"
since here I am not using # to concatenate strings.
If I use "\# include", then I receive the following two errors:
error C2017: illegal escape sequence
error C2121: '#' : invalid character : possibly the result of a macro expansion
Any help?
So like the others say, no, you can't have #include statements inside a macro, since the preprocessor only does one pass. However, you can make the preprocessor do basically the same thing with a gnarly trick I found myself using recently.
Realise that preprocessor directives won't do anything inside a macro, however they WILL do something in a file. So, you can stick a block of code you want to mutate into a file, thinking of it like a macro definition (with pieces that can be altered by other macros), and then #include this pseudo-macro file in various places (make sure it has no include guards!). It doesn't behave exactly like a macro would, but it can achieve some pretty macro-like results, since #include basically just dumps the contents of one file into another.
For example, consider including lots of similarly named headers that come in groups. It is tedious to write them all out, or perhaps even they are auto-generated. You can partially automate their inclusion by doing something like this:
Helper macros header:
/* tools.hpp */
#ifndef __TOOLS_HPP__
#def __TOOLS_HPP__
// Macro for adding quotes
#define STRINGIFY(X) STRINGIFY2(X)
#define STRINGIFY2(X) #X
// Macros for concatenating tokens
#define CAT(X,Y) CAT2(X,Y)
#define CAT2(X,Y) X##Y
#define CAT_2 CAT
#define CAT_3(X,Y,Z) CAT(X,CAT(Y,Z))
#define CAT_4(A,X,Y,Z) CAT(A,CAT_3(X,Y,Z))
// etc...
#endif
Pseudo-macro file
/* pseudomacro.hpp */
#include "tools.hpp"
// NO INCLUDE GUARD ON PURPOSE
// Note especially FOO, which we can #define before #include-ing this file,
// in order to alter which files it will in turn #include.
// FOO fulfils the role of "parameter" in this pseudo-macro.
#define INCLUDE_FILE(HEAD,TAIL) STRINGIFY( CAT_3(HEAD,FOO,TAIL) )
#include INCLUDE_FILE(head1,tail1.hpp) // expands to #head1FOOtail1.hpp
#include INCLUDE_FILE(head2,tail2.hpp)
#include INCLUDE_FILE(head3,tail3.hpp)
#include INCLUDE_FILE(head4,tail4.hpp)
// etc..
#undef INCLUDE_FILE
Source file
/* mainfile.cpp */
// Here we automate the including of groups of similarly named files
#define FOO _groupA_
#include "pseudomacro.hpp"
// "expands" to:
// #include "head1_groupA_tail1.hpp"
// #include "head2_groupA_tail2.hpp"
// #include "head3_groupA_tail3.hpp"
// #include "head4_groupA_tail4.hpp"
#undef FOO
#define FOO _groupB_
#include "pseudomacro.hpp"
// "expands" to:
// #include "head1_groupB_tail1.hpp"
// #include "head2_groupB_tail2.hpp"
// #include "head3_groupB_tail3.hpp"
// #include "head4_groupB_tail4.hpp"
#undef FOO
#define FOO _groupC_
#include "pseudomacro.hpp"
#undef FOO
// etc.
These includes could even be in the middle of codes blocks you want to repeat (with FOO altered), as the answer by Bing Jian requests: macro definition containing #include directive
I haven't used this trick extensively, but it gets my job done. It can obviously be extended to have as many "parameters" as needed, and you can run whatever preprocessor commands you like in there, plus generate actual code. You just can't use the stuff it creates as the input into another macro, like you can with normal macros, since you can't stick the include inside a macro. But it can go inside another pseudo-macro :).
Others might have some comments on other limitations, and what could go wrong :).
I will not argue the merits for it, but freetype (www.freetype.org) does the following:
#include FT_FREETYPE_H
where they define FT_FREETYPE_H elsewhere
C and C++ languages explicitly prohibit forming preprocessor directives as the result of macro expansion. This means that you can't include a preprocessor directive into a macro replacement list. And if you try to trick the preprocessor by "building" a new preprocessor directive through concatenation (and tricks like that), the behavior is undefined.
I believe the C/C++ preprocessor only does a single pass over the code, so I don't think that would work. You might be able to get a "#include" to be placed in the code by the macro, but the compiler would choke on it, since it doesn't know what to do with that. For what you're trying to do to work the preprocessor would have to do a second pass over the file in order to pick up the #include.
I also wanted to do this, and here's the reason:
Some header files (notably mpi.h in OpenMPI) work differently if you are compiling in C or C++. I'm linking to a C MPI code from my C++ program. To include the header, I do the usual:
extern "C" {
#include "blah.h"
}
But this doesn't work because __cplusplus is still defined even in C linkage. That means mpi.h, which is included by blah.h, starts defining templates and the compiler dies saying you can't use templates with C linkage.
Hence, what I have to do in blah.h is to replace
#include <mpi.h>
with
#ifdef __cplusplus
#undef __cplusplus
#include <mpi.h>
#define __cplusplus
#else
#include <mpi.h>
#endif
Remarkably it's not just mpi.h that does this pathological thing. Hence, I want to define a macro INCLUDE_AS_C which does the above for the specified file. But I guess that doesn't work.
If anyone can figure out another way of accomplishing this, please let me know.
I think you are all right in that this task seems impossible as I also got from
http://groups.google.com/group/comp.lang.c++/browse_thread/thread/03d20d234539a85c#
No, preprocessor directives in C++
(and C) are not reflective.
Pawel Dziepak
Anyway, the reason behind this attempt is that I am trying to make the following
repeatedly used code snippet as a macro:
void foo(AbstractClass object)
{
switch (object.data_type())
{
case AbstractClass::TYPE_UCHAR :
{
typedef unsigned char PixelType;
#include "snippets/foo.cpp"
}
break;
case AbstractClass::TYPE_UINT:
{
typedef unsigned int PixelType;
#include "snippets/foo.cpp"
}
break;
default:
break;
}
}
For another task, I need to have a similar function
void bar(AbstractClass object)
where I will place
#include "snippets/bar.cpp"
and of course it is in "snippets/foo.cpp" and "snippets/bar.cpp" that the task-specific code is written.
I have no idea what you are actually trying to do but it looks like what you might want is a templated function.
That way the PixelType is just a template parameter to the block of code.
Why would the macro need to have an #include? if you're #include'ing whatever file the macro is in, you could just put the #include above the macro with all the rest of the #include statements, and everything should be nice and dandy.
I see no reason to have the macro include anything that couldn't just be included in the file.
Contagious is right -- if you're doing:
myFile.c:
#include "standardAppDefs.h"
#myStandardIncludeMacro
standardAppDefs.h:
#define myStandardIncludeMacro #include <foo.h>
Why not just say:
myFile.c:
#include "standardAppDefs.h"
standardAppDefs.h:
#include <foo.h>
And forget the macros?

How to avoid long compilation time for #define in common header

I was wondering if there is an elegant way to solve this problem. Suppose there's a common header eg
// common.h
#ifndef COMMON_H
#define COMMON_H
#define ENABLE_SOMETHING
//#define ENABLE_SOMETHING_ELSE
#define ENABLE_WHATEVER
// many others
#endif
Now this file is included by, let's say 100 other header files and the various #define are used to enable or disable some parts of code which are confined to just 1-2 files.
Everytime a single #define is changed the whole project seems to be rebuilt (I'm working on Xcode 5.1), which makes sense as it must be literally replaced all around the code and the compiler can't know a priori where it's used.
I'm trying to find a better way to manage this, to avoid long compilation times, as these defines are indeed changed many times. Splitting each define in their corresponding file/files could be a solution but I'd like the practical way to have everything packed together.
So I was wondering if there is a pattern which is usually used to solve this problem, I was thinking about having
// common.h
class Enables
{
static const bool feature;
};
// common..cpp
bool Enables::feature = false;
Will this be semantically equivalent when compiling optimized binary? (eg. code inside false enables will totally disappear).
You have two distinct problems here:
Splitting each define in their corresponding file/files could be a solution but I'd like the practical way to have everything packed together.
This is your first problem. If I undestand correctly, if you have more than one functional area, you are not interested in having to include a header for each of them (but a single header for everything).
Apply these steps:
do split the code by functionality, into different headers; Each header should contain (at most) what was enabled by a single #define FEATURESET (and be completely agnostic to the existence of the FEATURESET macro).
ensure each header is only compiled once (add #pragma once at the beginning of each feature header file)
add a convenience header file that performs #if or #ifdef based on your defined features, and includes the feature files as required:
// parsers.h
// this shouldn't be here: #pragma once
#ifdef PARSEQUUX_SAFE
#include <QuuxSafe.h>
#elif defined PARSEQUUX_FAST
#include <QuuxFast.h>
#else
#include <QuuxSafe.h>
#endif
// eventually configure static/global class factory here
// see explanation below for mentions of class factory
Client code:
#include <parsers.h> // use default Quux parser
#define PARSEQUUX_SAFE
#include <parsers.h> // use safe (but slower) Quux parser
So I was wondering if there is a pattern which is usually used to solve this problem
This is your second problem.
The canonical way to enable functionality by feature in C++, is to define feature API, in terms of base classes, class factories and programming to a generic interface.
// common.h
#pragma once
#include <Quux.h> // base Quux class
struct QuuxFactory
{
enum QuuxType { Simple, Feathered };
static std::unique_ptr<Quux> CreateQuux(int arg);
static QuuxType type;
};
// common.cpp:
#include <common.h>
#include <SimpleQuux.h> // SimpleQuux: public Quux
#include <FeatheredQuux.h> // FeatheredQuux: public Quux
std::unique_ptr<Quux> QuuxFactory::CreateQuux(int arg)
{
switch(type) {
case Simple:
return std::unique_ptr<Quux>{new SimpleQuux{arg}};
case Feathered:
return std::unique_ptr<Quux>{new FeatheredQuux{arg}};
};
// TODO: handle errors
}
Client code:
// configure behavior:
QuuxFactory::type = QuuxFactory::FeatheredQuux;
// ...
auto quux = QuuxFactory::CreateQuux(10); // creates a FeatheredQuux in this case
This has the following advantages:
it is straightforward and uses no macros
it is reusable
it provides an adequate level of abstraction
it uses no macros (as in "at all")
the actual implementations of the hypothetical Quux functionality are only included in one file (as an implementation detail, compiled only once). You can include common.h wherever you want and it will not include SimpleQuux.h and FeatheredQuux.h at all.
As a generic guideline, you should write your code, such that it requires no macros to run. If you do, you will find that any macros you want to add over it, are trivial to add. If instead you rely on macros from the start to define your API, the code will be unusable (or close to unusable) without them.
There is a way to split defines but still use one central configuration header.
main_config.h (it must not have an include guard or #pragma once, because that would cause strange results if main_config.h is included more than once in one compilation unit):
#ifdef USES_SOMETHING
#include "something_config.h"
#endif
#ifdef USES_WHATEVER
#include "whatever_config.h"
#endif
something_config.h (must not have include guards for the same reason as main_config.h):
#define ENABLE_SOMETHING
All source and header files would #include only main_config.h, but before the include they must declare what part of it would they be referring to:
some_source.cpp:
#define USES_SOMETHING
#include "main_config.h"
some_other_file.h:
#define USES_WHATEVER
#include "main_config.h"

Code completion still acknowledges macro after undef

I have a bunch of macros defined that only serve a purpose within a small area of a project. I want to undefine them so that they don't pollute the global namespace, but Visual Studio still acknowledges their presence after #undef in other files. IE:
//A.hpp
#define A_MACRO
...
//~A.hpp
#undef A_MACRO
...
//B.hpp
#include "A.hpp"
#include "~A.hpp"
...
//main.cpp
#include "B.hpp"
A_MACRO // <- code completion recognizes this despite it being undefined
// and invalid
Do I just have to deal with this, or is there another way to accomplish what I'm trying to do?
EDIT: It seems Code::Blocks properly erases it beyond #undef, so it has to be something within Visual Studio's settings.
Its a perfectly valid tag.
Consider that somewhere in your code you may want to add:
#ifdef A_MACRO
...
#endif
or even:
#ifndef A_MACRO
...
#endif
Wouldn't it suck if your Intellisense quit working?
The macro label is a valid label in both of these contexts. Whether the macro is currently defined or not.

why headerFileName_H

while I am creating a c++ header file, I declare the header file like;
/*--- Pencere.h ---*/
#ifndef PENCERE_H
#define PENCERE_H
I want to learn that why do I need to write underline.
You don't need to use the underline, it's just a convention to separate the header name and extension. You cannot use the literal . since that's not valid in an identifier so you replace it with an underscore which is valid.
The reason you actually do it is as an include guard. The entire contents of the file are something like:
#ifndef PENCERE_H
#define PENCERE_H
// Your stuff goes here.
#endif
so that, if you accidentally include it twice:
#include "pencere.h"
#include "pencere.h"
you won't get everything in it duplicated. The double inclusions are normally more subtle than that - for example, you may include pax.h and diablo.h in your code and pax.h also includes diablo.h for its purposes:
main.c:
#include "pax.h"
#include "diablo.h"
// Other stuff
pax.h:
#ifndef PAX_H
#define PAX_H
#include "diablo.h"
// Other stuff
#endif
diablo.h:
#ifndef DIABLO_H
#define DIABLO_H
typedef int mytype;
#endif
In this case, if the include guards weren't there you would try to compile the line typedef int mytype; twice in your program. Once for main.c -> pax.h -> diablo.h and again for main.c -> diablo.h.
With the include guards, the pre-processor symbol DIABLO_H is defined when main.c includes diablo.h so the #define and typedef are not processed.
This particular mapping of header files to #define names breaks down in the situation where you have dir1/pax.h and dir2/pax.h since they would both use PAX_H. In that case, you can use a scheme like DIR1_PAX_H and DIR2_PAX_H to solve the problem.
The underline is not necessary, that's just a way to produce a string for the include guard that is unlikely to be produced anywhere else and cause hard to detect problems. Even more, you are free to select any symbol for the include guard as long as it will not be defined anywhere else.
It's because you can't #define PENCERE.H
You can define anything you want, but by using a format of using the filename, replacing . with _ means you shouldn't clash #defines that guard importing the same header file twice.
You don't need to write the underline. All you need is a preprocessor symbol which isn't defined anywhere else. If you like (and/or if you have a Pascal background ;-}) you could just as well say
/*--- Pencere.h ---*/
#ifndef THE_PENCERE_HEADER_FILE_WAS_INCLUDED
#define THE_PENCERE_HEADER_FILE_WAS_INCLUDED

macro definition containing #include directive

Is there a way to define a macro that contains a #include
directive in its body?
If I just put
the "#include", it gives the error
C2162: "expected macro formal parameter"
since here I am not using # to concatenate strings.
If I use "\# include", then I receive the following two errors:
error C2017: illegal escape sequence
error C2121: '#' : invalid character : possibly the result of a macro expansion
Any help?
So like the others say, no, you can't have #include statements inside a macro, since the preprocessor only does one pass. However, you can make the preprocessor do basically the same thing with a gnarly trick I found myself using recently.
Realise that preprocessor directives won't do anything inside a macro, however they WILL do something in a file. So, you can stick a block of code you want to mutate into a file, thinking of it like a macro definition (with pieces that can be altered by other macros), and then #include this pseudo-macro file in various places (make sure it has no include guards!). It doesn't behave exactly like a macro would, but it can achieve some pretty macro-like results, since #include basically just dumps the contents of one file into another.
For example, consider including lots of similarly named headers that come in groups. It is tedious to write them all out, or perhaps even they are auto-generated. You can partially automate their inclusion by doing something like this:
Helper macros header:
/* tools.hpp */
#ifndef __TOOLS_HPP__
#def __TOOLS_HPP__
// Macro for adding quotes
#define STRINGIFY(X) STRINGIFY2(X)
#define STRINGIFY2(X) #X
// Macros for concatenating tokens
#define CAT(X,Y) CAT2(X,Y)
#define CAT2(X,Y) X##Y
#define CAT_2 CAT
#define CAT_3(X,Y,Z) CAT(X,CAT(Y,Z))
#define CAT_4(A,X,Y,Z) CAT(A,CAT_3(X,Y,Z))
// etc...
#endif
Pseudo-macro file
/* pseudomacro.hpp */
#include "tools.hpp"
// NO INCLUDE GUARD ON PURPOSE
// Note especially FOO, which we can #define before #include-ing this file,
// in order to alter which files it will in turn #include.
// FOO fulfils the role of "parameter" in this pseudo-macro.
#define INCLUDE_FILE(HEAD,TAIL) STRINGIFY( CAT_3(HEAD,FOO,TAIL) )
#include INCLUDE_FILE(head1,tail1.hpp) // expands to #head1FOOtail1.hpp
#include INCLUDE_FILE(head2,tail2.hpp)
#include INCLUDE_FILE(head3,tail3.hpp)
#include INCLUDE_FILE(head4,tail4.hpp)
// etc..
#undef INCLUDE_FILE
Source file
/* mainfile.cpp */
// Here we automate the including of groups of similarly named files
#define FOO _groupA_
#include "pseudomacro.hpp"
// "expands" to:
// #include "head1_groupA_tail1.hpp"
// #include "head2_groupA_tail2.hpp"
// #include "head3_groupA_tail3.hpp"
// #include "head4_groupA_tail4.hpp"
#undef FOO
#define FOO _groupB_
#include "pseudomacro.hpp"
// "expands" to:
// #include "head1_groupB_tail1.hpp"
// #include "head2_groupB_tail2.hpp"
// #include "head3_groupB_tail3.hpp"
// #include "head4_groupB_tail4.hpp"
#undef FOO
#define FOO _groupC_
#include "pseudomacro.hpp"
#undef FOO
// etc.
These includes could even be in the middle of codes blocks you want to repeat (with FOO altered), as the answer by Bing Jian requests: macro definition containing #include directive
I haven't used this trick extensively, but it gets my job done. It can obviously be extended to have as many "parameters" as needed, and you can run whatever preprocessor commands you like in there, plus generate actual code. You just can't use the stuff it creates as the input into another macro, like you can with normal macros, since you can't stick the include inside a macro. But it can go inside another pseudo-macro :).
Others might have some comments on other limitations, and what could go wrong :).
I will not argue the merits for it, but freetype (www.freetype.org) does the following:
#include FT_FREETYPE_H
where they define FT_FREETYPE_H elsewhere
C and C++ languages explicitly prohibit forming preprocessor directives as the result of macro expansion. This means that you can't include a preprocessor directive into a macro replacement list. And if you try to trick the preprocessor by "building" a new preprocessor directive through concatenation (and tricks like that), the behavior is undefined.
I believe the C/C++ preprocessor only does a single pass over the code, so I don't think that would work. You might be able to get a "#include" to be placed in the code by the macro, but the compiler would choke on it, since it doesn't know what to do with that. For what you're trying to do to work the preprocessor would have to do a second pass over the file in order to pick up the #include.
I also wanted to do this, and here's the reason:
Some header files (notably mpi.h in OpenMPI) work differently if you are compiling in C or C++. I'm linking to a C MPI code from my C++ program. To include the header, I do the usual:
extern "C" {
#include "blah.h"
}
But this doesn't work because __cplusplus is still defined even in C linkage. That means mpi.h, which is included by blah.h, starts defining templates and the compiler dies saying you can't use templates with C linkage.
Hence, what I have to do in blah.h is to replace
#include <mpi.h>
with
#ifdef __cplusplus
#undef __cplusplus
#include <mpi.h>
#define __cplusplus
#else
#include <mpi.h>
#endif
Remarkably it's not just mpi.h that does this pathological thing. Hence, I want to define a macro INCLUDE_AS_C which does the above for the specified file. But I guess that doesn't work.
If anyone can figure out another way of accomplishing this, please let me know.
I think you are all right in that this task seems impossible as I also got from
http://groups.google.com/group/comp.lang.c++/browse_thread/thread/03d20d234539a85c#
No, preprocessor directives in C++
(and C) are not reflective.
Pawel Dziepak
Anyway, the reason behind this attempt is that I am trying to make the following
repeatedly used code snippet as a macro:
void foo(AbstractClass object)
{
switch (object.data_type())
{
case AbstractClass::TYPE_UCHAR :
{
typedef unsigned char PixelType;
#include "snippets/foo.cpp"
}
break;
case AbstractClass::TYPE_UINT:
{
typedef unsigned int PixelType;
#include "snippets/foo.cpp"
}
break;
default:
break;
}
}
For another task, I need to have a similar function
void bar(AbstractClass object)
where I will place
#include "snippets/bar.cpp"
and of course it is in "snippets/foo.cpp" and "snippets/bar.cpp" that the task-specific code is written.
I have no idea what you are actually trying to do but it looks like what you might want is a templated function.
That way the PixelType is just a template parameter to the block of code.
Why would the macro need to have an #include? if you're #include'ing whatever file the macro is in, you could just put the #include above the macro with all the rest of the #include statements, and everything should be nice and dandy.
I see no reason to have the macro include anything that couldn't just be included in the file.
Contagious is right -- if you're doing:
myFile.c:
#include "standardAppDefs.h"
#myStandardIncludeMacro
standardAppDefs.h:
#define myStandardIncludeMacro #include <foo.h>
Why not just say:
myFile.c:
#include "standardAppDefs.h"
standardAppDefs.h:
#include <foo.h>
And forget the macros?