Custom container unnecessarily creating new elements instances when space is reserved - c++

For my own education, I am trying to learn how to implement efficient custom containers in C++. I have now a basic working version of a my custom vector type. However, for some reason, when the vector has to be expanded to fit more elements (in which case a call to its inner 'reserve' function is made), it creates extra copies of elements.
To help explaining what I mean, I show below a minimum reproducible example. Let a minimum version of CustomVector class look like the following:
template<class T>
class CustomVector
{
private:
size_t m_size = 0;
size_t m_capacity = 1;
T *m_data = nullptr;
public:
CustomVector()
{
}
CustomVector(const size_t new_capacity)
{
m_capacity = new_capacity;
m_size = 0;
m_data = new T[m_capacity]();
}
~CustomVector()
{
if (m_data != nullptr)
delete[] m_data;
}
void reserve(size_t new_capacity)
{
if (m_data == nullptr)
{
m_capacity = new_capacity;
m_size = 0;
m_data = new T[m_capacity]();
}
else if (new_capacity > m_capacity)
{
T* new_data = new T[new_capacity]();
memmove(new_data, m_data, (m_size) * sizeof(T));
delete[] m_data;
m_capacity = new_capacity;
m_data = new_data;
}
}
void push_back(const T & value)
{
if (m_data == nullptr)
{
m_capacity = 1;
m_size = 0;
m_data = new T[m_capacity]();
m_data[0] = value;
}
else if (m_size + 1 >= m_capacity)
{
reserve(m_capacity*2);
}
else
{
m_data[m_size-1] = value;
m_size++;
}
}
};
Now, to facilitate seeing the problem, I also create a class called Object. Each new instance of such class that is created automatically receives an unique id number:
class Object
{
private:
static int idCounter;
public:
int id;
Object()
{
id = idCounter;
idCounter++;
}
};
int Object::idCounter = 0;
Lastly, here is how the main function of this example looks like:
int main()
{
CustomVector<Object> objects; //comment this line...
//std::vector<Object> objects; //...and uncomment this to try with std::vector
Object x;
printf("%d\n", x.id);
objects.push_back(x);
Object y;
printf("%d\n", y.id);
objects.push_back(y);
Object z;
printf("%d ", z.id);
system("Pause");
return 0;
}
The output, using my CustomVector as the container, is:
0 2 5
While the output using a std::vector as the container is:
0 1 2
The desirable behavior for me is exactly that of std::vector, that is, pushing back instances of classes should create full new temporary instances of such class.
Could someone help me understand what am I doing wrong?

The problem is most likely this line in the push_back function:
m_data = new T[m_capacity]();
This will cause the creation of m_capacity number of T objects, and therefore m_capacity calls to the T constructor. This is bad if the T constructor is expensive (not to mention some beginners do input and other things in the constructor).
What std::vector most likely does is keeping a buffer of bytes, and then when pushing back it does placement new to construct an object in place in some position in the buffer.

Related

Why is my _capacity variable not updating?

I'm supposed to create a header file for this one program that'll create a new array with an increased length. My professor said that there's nothing visibly wrong, but I keep getting an error saying that my _capacity variable isn't updating. What am I doing wrong?
I tried increasing _capacity by doing _capacity += _growth_factor and also created a new array T* new_stack = new T[_capacity + _growth_factor], so how come the array still has the old _capacity?
#include "ArrayStack.h"
template <typename T>
class ArrayStackConst : public ArrayStack<T>
{
public:
ArrayStackConst(size_t initial_size, size_t growth_factor)
: ArrayStack<T>(initial_size, growth_factor)
{
}
protected:
size_t _growth_factor;
T* _stack;
size_t _capacity;
size_t _top;
virtual void ensure_capacity() override
{
if (this->_top == this->_capacity) {
T* new_stack = new T[_capacity + _growth_factor];
for (int i = 0; i < _capacity; i++) {
new_stack[i] = _stack[i];
}
T* temp = _stack;
_stack = new_stack;
delete[] temp, new_stack;
_capacity += _growth_factor;
}
}
};

Problem with malloc and memcpy in array class

I've started writing some code for a List class and I'm lost. I need it for my Arduino project – I can't use STL.
Here's the code.
#include <iostream>
template <typename T>
class List
{
public:
List<typename T>()
{
m_Count = 0;
m_Data = nullptr;
}
~List()
{
free(m_Data);
}
void Push(const T& element)
{
m_Count++;
T* alloc = (T*)malloc(size_t(sizeof(T) * m_Count));
memcpy(alloc, m_Data, m_Count * sizeof(T));
*(m_Data + sizeof(T) * (m_Count - 1)) = element;
}
T* operator [](unsigned int x) const
{
return (m_Data + x * sizeof(T));
}
private:
T* m_Data;
uint64_t m_Count;
};
struct Vertex
{
int x;
int y;
};
int main()
{
List<Vertex> list;
list.Push({ 0, 1 });
list.Push({ 2, 3 });
list.Push({ 4, 5 });
std::cout << list[0]->x << list[1]->x << list[2]->x;
}
The problem lies somewhere in the Push method: When I call memcpy, the program triggers a compiler breakpoint.
The essential problem is in the line *(m_Data + sizeof(T) * (m_Count - 1)) = element;. Here, you are attempting to copy the given element into the old (i.e. pre-existing) m_Data array; this will be nullptr the first time the Push function is called (and one element too small every other time)†.
So, you need to first release the old data (with free(m_Data)), then assign your newly-allocated memory to that pointer (m_Data = alloc), and only then copy element to that array's last element.
However, as others have said, why are you using malloc and free in C++? The code below replaces those calls with new[] and delete[] (although using a std::vector would likely be easier/better/safer, if that were possible).
#include <iostream>
template <typename T>
class List {
public:
List<T>() { // Don't need "typename" here!
m_Count = 0;
m_Data = nullptr;
}
~List() {
delete[] m_Data;
}
void Push(const T& element) {
m_Count++;
T* alloc = new T[m_Count];
for (uint64_t i = 0; i < m_Count - 1; ++i) alloc[i] = m_Data[i]; // Copy old data (if any)
delete[] m_Data; // Release old data
m_Data = alloc; // Assign newly-allocated memory to m_Data
m_Data[m_Count - 1] = element; // Why use pointer arithmetic when you have the [] operator?
}
T* operator [](unsigned int x) const {
return &m_Data[x];
}
private:
T* m_Data;
uint64_t m_Count;
};
struct Vertex {
int x;
int y;
};
int main()
{
List<Vertex> list;
list.Push({ 0, 1 });
list.Push({ 2, 3 });
list.Push({ 4, 5 });
std::cout << list[0]->x << list[1]->x << list[2]->x << std::endl;
std::cout << list[0]->y << list[1]->y << list[2]->y << std::endl;
return 0;
}
I have made a couple of other 'minor improvements' to your code (your operator [] looked very suspicious, as the size of the pointed-to object is inherently taken into account when doing pointer arithmetic); there are others that could be made but that would, IMHO, deviate too far from the code you posted.
† Actually, it will always be nullptr in your code, as you never assign anything else to it.

Move ctor and move assignment operator with non pointer data

I am new to C++ programming and here on the stackoverflow. I hope you will forgive me for my first questions here that are not so good written.
I am adding move constructor and move assignment operator in the class BigData.
Can someone tell me if they are written good?
Thanks a lot
Here is my struct Data that is used in BigData class. This is how I implemented these two methods.
struct Data {
//...
Data(Data &&_d)
{
data = _d.data;
_d.data = nullptr;
size = _d.size;
_d.size = 0;
}
Data& operator=(Data&& _d)
{
if (this != &_d)
{
delete[] data;
data = _d.data;
_d.data = nullptr;
size = _d.size;
_d.size = 0;
}
return *this;
}
unsigned char *data = nullptr;
unsigned int size = 0;
};
But now, I am not sure if I did it good. Since the Data is not the pointer I cant write the same thing as I did when I wrote the methods for Data struct.
Now when I do BigData bd2= move(bd1);
bd1 stays with data array... should I somehow delete it?
class BigData {
public:
BigData(BigData &&_bd)
{
m_data = _bd.GetData();
m_crc = _bd.GetCrc();
_bd.InvalidateCrc();
}
BigData& operator=(BigData &&_bd)
{
if (this != &_bd)
{
m_data = _bd.GetData();
m_crc = _bd.GetCrc();
}
return *this;
}
private:
Data m_data;
unsigned long int m_crc = -1;
};

Program fails when I call a method from constant reference

So, I have a token class:
Token.h
class Token {
std::string name; // token name
int frequency;//frequency
Vector lines;//lines where the token is present
public:
//explanations for the methods in the Token.cpp
Token(std::string tokenname, int linenumber);
virtual ~Token();
const Vector getLines() const;
};
#endif /* TOKEN_H_ */
Token cpp
Token::Token(string tokenname, int linenumber) {
// TODO Auto-generated constructor stub
name = tokenname;
frequency=1;
lines.push_back(linenumber);
}
Token::~Token() {
// TODO Auto-generated destructor stub
}
std::string Token::getName() const{
return name;
}
int Token::getFrequency() const{
return frequency;
}
const Vector Token::getLines() const{
const Vector vec = lines;
return lines;
}
The program fails, when I pass it to the insert method of list class
class List {
private:
class Node {
public:
Token data;
Node* next;
Node(const Token &dataItem, Node* nextptr);
~Node();
};
Node* first;
int length;
public:
List();
virtual ~List();
void insert(const Token &t);
};
List.cpp:
List::Node::Node(const Token &dataItem, Node* nextptr): data(dataItem), next(nextptr){
}
List::Node::~Node(){
cout<<"dead"<<endl;
}
List::List() {
// TODO Auto-generated constructor stub
length = 0;
first = nullptr;
}
List::~List() {
// TODO Auto-generated destructor stub
Node* temp = first;
Node* newtmp;
while(temp->next != nullptr){
newtmp = temp->next;
delete temp;
temp = newtmp;
}
}
const int List::size(){
return length;
}
void List::insert (const Token &t){
Vector dammit = t.getLines();
}
I found out which line in the insert does it(Vector dammit = t.getLines()), so I leave it like that.
It gives me this error message:
double free or corruption (fasttop): 0x0000000000c34040 ***
And here something from main file if you want to run:
int main() {
// cout<<"tokens are here"<<endl;
//
Token hit("aca", 1);
Token hit2("ui", 2);
Token hit1("111", 3);
List list;
list.insert(hit);
list.insert(hit2);
list.insert(hit1);
}
Vector class:
class Vector {
int* store;
int capacity;
int next_index;
public:
Vector();
Vector(int initial_size);
Vector(const Vector &v);
virtual ~Vector();
void push_back(int item);
int pop_back();
const int size() const;
void resize();
void operator =(const Vector &v);
int& operator[] (int k);
const int& operator[] (int k) const;
friend std::ostream& operator<<(std::ostream& os, const Vector& v);
};
Vector::Vector() {
// TODO Auto-generated constructor stub
store = new int [1];
capacity = 1;
next_index = 0;
}
Vector::Vector(int initial_size){
store = new int [initial_size];
capacity = initial_size;
next_index = 0;
}
Vector::Vector(const Vector &v){
store = v.store;
capacity = v.capacity;
next_index = v.next_index;
}
Vector::~Vector() {
// TODO Auto-generated destructor stub
delete[] store;
}
void Vector::resize(){
std::cout<<"in resize"<<std::endl;
std::cout<<capacity<<std::endl;
int length = capacity;
capacity+=100;
int* tempArray;
tempArray = new int[capacity];
for (int i=0; i<length; i++){
tempArray[i] = store[i];
}
if (length>1)
delete[] store;
std::cout<<"finish re4size"<<std::endl;
store = tempArray;
}
void Vector::push_back(int item){
if(next_index >= capacity)
this->resize();
store[next_index] =item;
next_index++;
}
int Vector::pop_back(){
next_index = next_index-1;
int last = store[next_index];
return last;
}
void Vector::operator =(const Vector &v){
//delete[] store;
store = v.store;
capacity = v.capacity;
next_index = v.next_index;
}
const int Vector::size() const{
return next_index-1;
}
int& Vector::operator[] (int k){
//assert((k<next_index)&(k>=0));
return store[k];
}
const int& Vector::operator[] (int k) const{
//assert((k<next_index)&(k>=0));
return store[k];
}
ostream& operator<<(ostream& os, const Vector& v)
{
for(int i=0; i<=v.size(); i++){
os << v[i]<< ' ';
}
return os;
}
In
Vector::Vector(const Vector &v){
store = v.store;
capacity = v.capacity;
next_index = v.next_index;
}
You now have two vectors pointing to the same int* store;
In
void Vector::operator =(const Vector &v){
//delete[] store;
store = v.store;
capacity = v.capacity;
next_index = v.next_index;
}
You do the same thing.
when you call
const Vector Token::getLines() const{
const Vector vec = lines;
return lines;
}
vec = lines uses the copy constructor. You now have vec and lines pointing to the same store.
You return a copy of lines, this will trigger the copy constructor again. A third object now points to store.
When the stack unrolls, locally defined vec is destroyed. ~Vector deletes store. You now have two objects pointing to the same de-allocated store.
Kaboom! as soon as you try to do much of anything else with either of those Vectors. Looks like the destruction of the returned Vector hits first and causes the destructor to re-delete store.
You need to allocate storage for a new store and then copy the contents of source store into the new store in the = operator and the copy constructor.
Vector::Vector(const Vector &v){
capacity = v.capacity;
store=new int[capacity];
for (size_t index; index < capacity; index++)
{
store[index] = v.store[index];
}
next_index = v.next_index;
}
and
Vector & Vector::operator =(const Vector &v){
delete[] store;
capacity = v.capacity;
store=new int[capacity];
for (size_t index; index < capacity; index++)
{
store[index] = v.store[index];
}
next_index = v.next_index;
}
std::copy can be used in place of the for loop in C++11. Hoary old memcpy can also be used, but only because store is a primitive data type.
And while I'm editing, thanks Jarod42, one more little tweak:
const Vector & Token::getLines() const{ //note the return of a reference. This avoids
// making a copy of lines unless the caller really
// wants a copy.
// const Vector vec = lines; don't need to do this. lines is const-ified by the
// const on the return type of the function
return lines;
}
This error has nothing to do with calling a method with constant reference, but rather the function getLines(). For example, should you take hit1 and call the function getLines() directly, it will crash nonetheless. The issue is with how Token has a stack-allocated attribute Vector, which in turn has an int * attribute. This isn't necessarily an issue, but depending on how you implement those classes it can cause memory conflicts.
If you want to keep using your getLine() and can't use the <vector> libraries, you could change your Token's lines attribute to a Vector * and change all other syntax accordingly. Also remember to initialize your pointer lines memory or else it will crash.
However, I'd prefer to use as less dynamic-allocated memory as possible, if unnecessary. And like another user said, before while(temp->next != nullptr) you should have a condition if(temp != nullptr )

how to create a contiguous 2d array in c++?

I want to create a function that returns a contiguous 2D array in C++.
It is not a problem to create the array using the command:
int (*v)[cols] = new (int[rows][cols]);
However, I am not sure how to return this array as a general type for a function. The function is:
NOT_SURE_WHAT_TYPE create_array(int rows, int cols)
{
int (*v)[cols] = new (int[rows][cols]);
return v;
}
I tried double*[] and double** and both don't work. I wouldn't want to use double*, since I want to access this array from outside as a 2D array.
Related question: How do I declare a 2d array in C++ using new?
If you want to create an array where the data is contiguous and you don't want a 1-dimensional array (i.e. you want to use the [][] syntax), then the following should work. It creates an array of pointers, and each pointer points to a position into a pool of memory.
#include <iostream>
#include <exception>
template <typename T>
T** create2DArray(unsigned nrows, unsigned ncols, const T& val = T())
{
if (nrows == 0)
throw std::invalid_argument("number of rows is 0");
if (ncols == 0)
throw std::invalid_argument("number of columns is 0");
T** ptr = nullptr;
T* pool = nullptr;
try
{
ptr = new T*[nrows]; // allocate pointers (can throw here)
pool = new T[nrows*ncols]{val}; // allocate pool (can throw here)
// now point the row pointers to the appropriate positions in
// the memory pool
for (unsigned i = 0; i < nrows; ++i, pool += ncols )
ptr[i] = pool;
// Done.
return ptr;
}
catch (std::bad_alloc& ex)
{
delete [] ptr; // either this is nullptr or it was allocated
throw ex; // memory allocation error
}
}
template <typename T>
void delete2DArray(T** arr)
{
delete [] arr[0]; // remove the pool
delete [] arr; // remove the pointers
}
int main()
{
try
{
double **dPtr = create2DArray<double>(10,10);
dPtr[0][0] = 10; // for example
delete2DArray(dPtr); // free the memory
}
catch(std::bad_alloc& ex)
{
std::cout << "Could not allocate array";
}
}
Note that only 2 allocations are done. Not only is this more efficient due to the lesser amounts of allocations done, we now have a better chance of doing a rollback of the allocated memory if a memory allocation fails, unlike the "traditional" way of allocating a 2D array in non-contiguous memory:
// The "traditional" non-contiguous allocation of a 2D array (assume N x M)
T** ptr;
ptr = new T*[N];
for (int i = 0; i < N; ++i)
ptr[i] = new T [M]; // <<-- What happens if new[] throws at some iteration?
If new[] throws an exception somewhere during the operation of the for loop, you have to roll back all of the successful calls to new[] that happened previously -- that requires more code and adds complexity.
Note how you deallocate the memory in the contiguous version -- just two calls to delete[] when allocated contiguously instead of a loop calling delete[] for each row.
Also, since the data is in contiguous memory, algorithms, functions, etc. that assume that the data is in contiguous memory, just like a one-dimensional array, can now be used by specifying the start and end range for the M*N matrix:
[&array[0][0], &array[M-1][N])
For example:
std::sort(&myArray[0][0], &myArray[M-1][N]);
will sort the entire matrix in ascending order, starting from index [0][0] up until the last index [M-1][N-1].
You can improve on the design by making this a true class instead of having allocation / deallocation as 2 separate functions.
Edit: The class is not RAII-like, just as the comment says. I leave that as an exercise for the reader. One thing missing from the code above is the check that nRows and nCols are > 0 when creating such an array.
Edit 2: Added a try-catch to ensure a proper roll back of the memory allocation is done if a std::bad_alloc exception is thrown attempting to allocate memory.
Edit: For a 3 dimensional array example of code similar to the above see this answer. Included is code to roll back allocations if the allocation fails.
Edit: Rudimentary RAII class added:
template <typename T>
class Array2D
{
T** data_ptr;
unsigned m_rows;
unsigned m_cols;
T** create2DArray(unsigned nrows, unsigned ncols, const T& val = T())
{
T** ptr = nullptr;
T* pool = nullptr;
try
{
ptr = new T*[nrows]; // allocate pointers (can throw here)
pool = new T[nrows*ncols]{ val }; // allocate pool (can throw here)
// now point the row pointers to the appropriate positions in
// the memory pool
for (unsigned i = 0; i < nrows; ++i, pool += ncols)
ptr[i] = pool;
// Done.
return ptr;
}
catch (std::bad_alloc& ex)
{
delete[] ptr; // either this is nullptr or it was allocated
throw ex; // memory allocation error
}
}
public:
typedef T value_type;
T** data() {
return data_ptr;
}
unsigned get_rows() const {
return m_rows;
}
unsigned get_cols() const {
return m_cols;
}
Array2D() : data_ptr(nullptr), m_rows(0), m_cols(0) {}
Array2D(unsigned rows, unsigned cols, const T& val = T())
{
if (rows == 0)
throw std::invalid_argument("number of rows is 0");
if (cols == 0)
throw std::invalid_argument("number of columns is 0");
data_ptr = create2DArray(rows, cols, val);
m_rows = rows;
m_cols = cols;
}
~Array2D()
{
if (data_ptr)
{
delete[] data_ptr[0]; // remove the pool
delete[] data_ptr; // remove the pointers
}
}
Array2D(const Array2D& rhs) : m_rows(rhs.m_rows), m_cols(rhs.m_cols)
{
data_ptr = create2DArray(m_rows, m_cols);
std::copy(&rhs.data_ptr[0][0], &rhs.data_ptr[m_rows-1][m_cols], &data_ptr[0][0]);
}
Array2D(Array2D&& rhs) noexcept
{
data_ptr = rhs.data_ptr;
m_rows = rhs.m_rows;
m_cols = rhs.m_cols;
rhs.data_ptr = nullptr;
}
Array2D& operator=(Array2D&& rhs) noexcept
{
if (&rhs != this)
{
swap(rhs, *this);
rhs.data_ptr = nullptr;
}
return *this;
}
void swap(Array2D& left, Array2D& right)
{
std::swap(left.data_ptr, right.data_ptr);
std::swap(left.m_cols, right.m_cols);
std::swap(left.m_rows, right.m_rows);
}
Array2D& operator = (const Array2D& rhs)
{
if (&rhs != this)
{
Array2D temp(rhs);
swap(*this, temp);
}
return *this;
}
T* operator[](unsigned row)
{
return data_ptr[row];
}
const T* operator[](unsigned row) const
{
return data_ptr[row];
}
void create(unsigned rows, unsigned cols, const T& val = T())
{
*this = Array2D(rows, cols, val);
}
};
int main()
{
try
{
Array2D<double> dPtr(10, 10);
std::cout << dPtr[0][0] << " " << dPtr[1][1] << "\n";
}
catch (std::exception& ex)
{
std::cout << ex.what();
}
}
Unless the size of the two dimensions is known at compile time, your don't have much choice: allocate a single rows*cols array of ints, and roll your own 2D indexing with integer multiplication and addition. Wrapping this in a class can produce a nice-looking syntax for accessing array elements with square bracket operator. Since your array is 2D, you will need to use proxy (AKA "surrogate") objects for the first level of data access.
Here is a small sample code that uses std::vector<T> for maintaining a contiguous memory region in dynamic memory:
template<class T>
class Array2D {
vector<T> data;
size_t cols;
public:
// This is the surrogate object for the second-level indexing
template <class U>
class Array2DIndexer {
size_t offset;
vector<U> &data;
public:
Array2DIndexer(size_t o, vector<U> &dt) : offset(o), data(dt) {}
// Second-level indexing is done in this function
T& operator[](size_t index) {
return data[offset+index];
}
};
Array2D(size_t r, size_t c) : data (r*c), cols(c) {}
// First-level indexing is done in this function.
Array2DIndexer<T> operator[](size_t index) {
return Array2DIndexer<T>(index*cols, data);
}
};
You can now use Array2D<int> as if it were a built-in C++ array:
Array2D<int> a2d(10, 20);
for (int r = 0 ; r != 10 ; r++) {
for (int c = 0 ; c != 20 ; c++) {
a2d[r][c] = r+2*c+1;
}
}
Running demo on ideone.
Since you're using C++ and not C, I would recommend to use one vector instead of messing around with new/delete.
You can define one contiguous block of memory like this:
std::vector<int> my_matrix(rows*cols);
And now you access this vector in a 2d-array-like way with the formula i*n + j, with i being the row index, j the column index and n the length of a row:
my_matrix[i*n + j];
That's the same as accessing a 2d array with array[i][j]. But now you have the advantage of one contiguous block of memory, you don't need to bother about new/delete and you can easily share and return this vector object with functions.
handling raw memory ressources is often icky. Best shot is a simple wrapper as :
struct array2D : private std::vector<int>
{
typedef std::vector<int> base_type;
array2D() : base_type(), height_(0), width_(0) {}
array2D(std::size_t h, std::size_t w) : base_type(h*w), height_(h), width_(w);
int operator()(std::size_t i, std::size_t j) const
{
return base_type::operator[](i+j*height_);
}
int& operator()(std::size_t i, std::size_t j)
{
return base_type::operator[](i+j*height_);
}
std::size_t rows() const { return height_; }
std::size_t cols() const { return width_; }
private:
std::size_t height_, width_;
}
private inheritance let you grab all the goodies from vector, just add your 2D constructor. Ressources management is free as vector ctor/dtor will do their magic. Obviously, the i+h*j can be changed to whateever storage order you want.
vector< vector< int > > is 2D but won't be contiguous in memory.
Your function then become :
array2D create_array(int rows, int cols)
{
return array2D(cols,rows);
}
EDIT:
You can also retrieve other vector interface parts like begin/end or size with the usign clause to make the private inherited member functions public again.
None of the ways of defining a 2D dynamic array in standard C++ are entirely satisfactory in my opinion.
You end up having to roll your own solutions. Luckily there is already a solution in Boost. boost::multi_array:
#include "boost/multi_array.hpp"
template<typename T>
boost::multi_array<T, 2> create_array(int rows, int cols) {
auto dims = boost::extents[rows][cols];
return boost::multi_array<T, 2>(dims);
}
int main() {
auto array = create_array<int>(4, 3);
array[3][2] = 0;
}
Live demo.
The "Rudimentary RAll" class provided by PaulMcKenzie is an excellent solution. In my use of it I did find a memory leak which is fixed in the version shown below.
The memory leak was due to an issue with
Array2D& operator=(Array2D&& rhs) noexcept.
The statement rhs.m_dataPtr = nullPtr needed to be removed in order to allow the rhs destructor to delete the original data (pool and pointers) swapped from lhs.
Here is the corrected code for the "Rudimentary RAll" class provided by PaulMcKenzie
template <typename T>
class Array2D
{
T** data_ptr;
unsigned m_rows;
unsigned m_cols;
T** create2DArray(unsigned nrows, unsigned ncols, const T& val = T())
{
T** ptr = nullptr;
T* pool = nullptr;
try
{
ptr = new T*[nrows]; // allocate pointers (can throw here)
pool = new T[nrows*ncols]{ val }; // allocate pool (can throw here)
// now point the row pointers to the appropriate positions in
// the memory pool
for (unsigned i = 0; i < nrows; ++i, pool += ncols)
ptr[i] = pool;
// Done.
return ptr;
}
catch (std::bad_alloc& ex)
{
delete[] ptr; // either this is nullptr or it was allocated
throw ex; // memory allocation error
}
}
public:
typedef T value_type;
T** data() {
return data_ptr;
}
unsigned get_rows() const {
return m_rows;
}
unsigned get_cols() const {
return m_cols;
}
Array2D() : data_ptr(nullptr), m_rows(0), m_cols(0) {}
Array2D(unsigned rows, unsigned cols, const T& val = T())
{
if (rows == 0)
throw std::invalid_argument("number of rows is 0");
if (cols == 0)
throw std::invalid_argument("number of columns is 0");
data_ptr = create2DArray(rows, cols, val);
m_rows = rows;
m_cols = cols;
}
~Array2D()
{
if (data_ptr)
{
delete[] data_ptr[0]; // remove the pool
delete[] data_ptr; // remove the pointers
}
}
Array2D(const Array2D& rhs) : m_rows(rhs.m_rows), m_cols(rhs.m_cols)
{
data_ptr = create2DArray(m_rows, m_cols);
std::copy(&rhs.data_ptr[0][0], &rhs.data_ptr[m_rows-1][m_cols], &data_ptr[0][0]);
}
Array2D(Array2D&& rhs) noexcept
{
data_ptr = rhs.data_ptr;
m_rows = rhs.m_rows;
m_cols = rhs.m_cols;
rhs.data_ptr = nullptr;
}
Array2D& operator=(Array2D&& rhs) noexcept
{
if (&rhs != this)
{
swap(rhs, *this);
}
return *this;
}
void swap(Array2D& left, Array2D& right)
{
std::swap(left.data_ptr, right.data_ptr);
std::swap(left.m_cols, right.m_cols);
std::swap(left.m_rows, right.m_rows);
}
Array2D& operator = (const Array2D& rhs)
{
if (&rhs != this)
{
Array2D temp(rhs);
swap(*this, temp);
}
return *this;
}
T* operator[](unsigned row)
{
return data_ptr[row];
}
const T* operator[](unsigned row) const
{
return data_ptr[row];
}
void create(unsigned rows, unsigned cols, const T& val = T())
{
*this = Array2D(rows, cols, val);
}
};
int main()
{
try
{
Array2D<double> dPtr(10, 10);
std::cout << dPtr[0][0] << " " << a2[0][0] << "\n";
}
catch (std::exception& ex)
{
std::cout << ex.what();
}
}
I think you should write a simple class to wrap a 1-dim array. Then you can implement a 2-dim array with operator() overloading for getting values and deconstruct func for release the memory. Code as below:
#include <assert.h>
template <typename T>
class Array_2D
{
private:
T *data_inside;
public:
int size[2];
Array_2D(int row, int column);
~Array_2D();
//
T operator()(int index1, int index2){
return data_inside[get_index(index1, index2)];
}
int get_index(int index1, int index2){
if(index1>=0 and index1<size[0] and index2>=0 and index2<=size[1]){
return index1*size[0] + index2;
}else{
assert("wrong index for array!" == "True");
}
}
};
template <typename T>
Array_2D<T>::Array_2D(int row, int column)
{
size[0] = row;
size[1] = column;
data_inside = new T[row*column];
}
template <typename T>
Array_2D<T>::~Array_2D()
{
// 使用析构函数,自动释放资源
delete[] data_inside;
}