Running boost::asio asynchronous server alongside command loop - c++

I'm trying to create a C++ daemon that is capable of asynchronously sending/receiving requests/responses as packets over the network. It should communicate with clients (outwards-facing message API) and other daemons (inter-server messages)
I'm currently looking at boost::asio, specifically http://www.boost.org/doc/libs/1_65_1/doc/html/boost_asio/tutorial/tutdaytime6/src.html as a starting point that seems to be running a server capable of handling async. send and receive.
My question is, could this server be run alongside (in the background) a command loop, such as a process responding to user input (e.g. shell)? The daytime server program provided seems to block on the line io_service.run();
Would this require a forked or separate threaded server?

You simply create a thread member variable, and let the io_service run on the thread. You can process all the process-input in your main-thread, and give your server-class-variable some work to do.
std::thread ioThread;
ioThread = std::thread([this]() { io_service.run(); });
Do not forget to join the thread later and stop the io_service.
io_service.stop();
if (ioThread.joinable())
ioThread.join();

Related

Boost Asio TCP Server Handling multiple clients

I am new to network programming and the usage of Boost Asio library.
I successfully implemented a task for my requirement by modifying the Boost Asio "Blocking TCP Echo Server and Client" which performs transactions of operations between my Client and Server.
Now, I have a requirement where I need to connect multiple Clients with my Server.
I found some relevant links suggesting the usage of async_accept at the Server side.
So, I tried running the Boost Asio example: "Async TCP Echo Server" with the "Blocking TCP Echo client", where the server distinguishes the different clients and addresses them accordingly.
But, my actual requirement should be like, instead of the Server completing the entire process for one Client, it [the server] has to perform same operations for the first client then go to the second client and perform those operations and then again come back to the first client and continue in this order until all operations are complete.
Is there any way or idea which could help me perform this flow using Boost Asio? Also I'm just using the "Blocking TCP Echo Client", which just has a normal connect() and not an async_connect(), now is that a problem?
Also, is it possible to communicate between multiple clients through the server using Boost Asio?
Thanking you very much in advance!
There are 2 models to handling multiple client concurrently on the server.
The one is to spawn a new thread for each client and then each thread handles each client synchronously. The second model is to use asynchronous APIs on a single thread all operating on a single service. When the accept completes, you then create a new worker thread and start the worker off the send and recv required by your protocol. You main thread goes back the accepting new connections.
With async, you prime the pump with an async accept and the call io_service run. When the accept completes, your callback runs. You now prime the pump again with further accepts (for more client) start async send and recv for the newly created client. Since all sends and recvs are non-blocking, the only time your thread sleeps is when it has nothing to do. Otherwise the io_service run method takes care of everything for you.
If you are blocking on sends and recvs, through, you cannot process more than one client concurrently.

ZeroMQ sending many to one

I have implemented a zmq library using push / pull on windows. There is a server and up to 64 clients running over loopback. Each client can send and receive to the server. There is a thread that waits for each client to connect on a pull zmq socket. Clients can go away at any time.
The server is expected to go down at times and when it comes back up the clients need to reconnect to it.
The problem is that when nothing is connected I have 64 receive threads waiting for a connection. This shows up as a lot of connections in tcpview and my colleagues inform me that this is appearing like a performance/d-dos sort of attack.
So in order to get around that issue I'd like the clients to send some sort of heart beat to the server "hey I'm here" on one socket. However I can't see how to do that with zmq.
Any help would be appreciated.
I think the basic design of having 64 threads on the server waiting for external connections is flawed. Why not have a single 'master' thread binding the socket, which the external clients would connect to?
Internal to the server, you could still have 64 worker threads. Work would be distributed to the worker threads by the master thread. The communication between the master and the worker threads would be using zmq messages over the inproc transport.
What I have described are simple fan-in and fan-out patterns which are covered in the zmq guide. If you adopt this, most of the zmq code in the clients and workers would remain unchanged. You would have to write code for the master thread, but the zproxy class of CZMQ may work well for you (if you're using CZMQ).
So my advice is to get the basic design right before trying to add heartbeats. [Actually, I'm not sure how heartbeats would help your current problem.]

Multiple connections on the same port socket C++

I need to accept multiple connections to the same port.
I'm using socket in C++, i want to do something like the SSH do.
I can do an ssh user#machine "ls -lathrR /" and run another command to the same machine, even if the first one still running.
How can i do that?
Thanks.
What you want is a multithreaded socket server.
For this, you need a main thread that opens up a socket to listen to (and waits for incoming client connections). This has to go into a while loop of some sort.
Then, when a client connects to it, the accept() function will unblock and at that point you need to serve the client request by passing on the request to a thread that will deal with it.
The server side will loop back and wait for another connection whilst the previous thread carries on its task.
You can either create threads as you need, or use a thread pool which might be more efficient (saving on time initialising new threads).
Have a look here for some more details.
Look for multithreaded server socket on the web, specifically bind(), listen() and accept() from the server side.
You need to read up on ::listen() and ::accept().
The former will set up your socket for listening. You then need a loop (probably in its own thread) which uses ::accept() which will return each time a new connection arrives.
That loop should then spawn a new thread to which you should pass the file descriptor received from ::accept() and then handles all I/O on that socket from thereon.
Old question is old, but I feel no one who answered understood the OP's question.
You're misunderstanding how ssh works. When you send multiple commands/multiple connections to a server over ssh, there is actually only ONE program on the server you're connecting to that is receiving all those commands.
Sshd (the ssh daemon) runs on the server, and is a multithreaded socket server (see fduff's answer). This is the only program that listens on port 22, and handles all incoming ssh connections by itself.

Signaling all active threads (Windows)

I am faced with a design issue regarding thread synchronization in C++, Windows.
I am writing a server application that starts one listening thread, which should stay active the whole time while the server is up.
When the listening thread gets a connect request, it opens a CONTROL socket and starts a new control thread.
This thread is used to send control data between server and a client, initializing server and all the background software to specific client data and starting data processing.
If the initialization (via control socket) is successful, the control thread will open a new socket, DATA socket, which is then used to pass data from server to client. It will also start two new threads, one which is sending on this new, DATA socket, and the other, which is receiving on the CONTROL socket, waiting if the client wants to terminate connection.
When client terminates connection ungracefully, by terminating application without the call to function which sends the server message to close the connection, here is what should happen:
Any of the threads in execution can detect this event. They will get some sort of error (WSAECONNRESET) while sending or receiving on DATA/CONTROL socket and should then signal all the other threads that they should stop executing (except for the server listening thread).
Which is the most natural way to achieve this type of behavior?
(I am using winsock (winsock2.h) for networking, and standard windows api (windows.h) for threading)
If you're writing a multi-threaded winsock server, you should be looking into IO completion ports. Using an IO completion port is the most scalable way to write a network service on the windows platform.
IO completion port based winsock servers use asynchronous communication, so instead of blocking on a socket, your threadpool receives completion packets when something interesting happens.
In any case, you'll be using WSARecv. When WSARecv returns non zero, call WSAGetLastError(). If you don't have WSA_IO_PENDING, then switch on the error and look for the winsock error code you're interested in.
The winsock error code WSA_OPERATION_ABORTED indicates that a socket has closed, although there are others (e.g. WSAECONNABORTED).
Would suggest a good text on the subject (e.g. Windows via C/C++).
You can use WSAEventSelect() function to associate event object with socket and create one event object for your events, then use these event objects in WaitForMultipleObjects() function, so your thread can wait for socket events and your custom events.

How to get a Win32 Thread to wait on a work queue and a socket?

I need a client networking thread to be able to respond both to new messages to be transmitted, and the receipt of new data on the network. I wish to avoid this thread performing a polling loop, but rather to process only as needed.
The scenario is as follows:
A client application needs to communicate to a server via a protocol that is largely, but not entirely, synchronous. Typically, the client sends a message to the server and blocks until a response is received.
The server may process client requests asynchronously, in which case the response to client
is not a result, but a notification that processing has begun. A result message is sent to to the client at some point in the future, when the server has finish processing the client request.
The asynchronous result notifications can arrive at the client at any time. These notifications need processed when they are received i.e. it is not possible to process a backlog only when the client transmits again.
The clients networking thread receives and processes notifications from the server, and to transmit outgoing messages from the client.
To achieve this, I need to to make a thread wake to perform processing either when network data is received OR when a message to transmit is enqueued into an input queue.
How can a thread wake to perform processing of an enqueued work item OR data from a socket?
I am interested primarily in using the plain Win32 APIs.
A minimal example or relevant tutorial would be very welcome!
An alternative to I/O Completion Ports for sockets is using WSAEventSelect to associate an event with the socket. Then as others have said, you just need to use another event (or some sort of waitable handle) to signal when an item has been added to your input queue, and use WaitForMultipleObjects to wait for either kind of event.
You can set up an I/O Completion Port for the handles and have your thread wait on the completion port:
http://technet.microsoft.com/en-us/sysinternals/bb963891.aspx
Actually, you can have multiple threads wait on the port (one thread per processor usually works well).
Following on from Michael's suggestion, I have some free code that provides a framework for IO Completion Port style socket stuff; and it includes an IOCP based work queue too. You should be able to grab some stuff from it to solve your problem from here.
Well, if both objects have standard Windows handles, you can have your client call WaitForMultipleObjects to wait on them.
You might want to investiate splitting the servicing of the network port off onto its own thread. That might simplify things greatly. However, it won't help if you just end up having to synchonize something else between that new thread and your main one.