Strong union of two lists - sml

I've defined functions:
fun concaten(x,y) =
if (x = [])
then y
else hd(x) :: concaten(tl(x),y);
as well as:
fun existsin(x,L) =
if (L=[])
then false
else if (x = hd(L))
then true
else existsin(x,tl(L));
and am now trying to define a function of type (((list * list) -> list) -> list) that looks vaguely like the following:
fun strongunion(x,y) =
val xy = concaten(x,y);
if xy=[]
then []
if (existsin(hd(xy),tl(xy)) andalso x!= [])
then strongunion(tl(x),y)
else if (existsin(hd(xy),tl(xy)) andalso x = [])
then strongunion(x,tl(y))
else if (x != [])
then hd(xy) :: strongunion(tl(x),y)
else hd(xy) :: strongunion(x,tl(y));
which takes the "strong" union of two lists, i.e. it combats faulty inputs (lists with element duplicates). This code is, of course, syntactically invalid, but the reason I included it was to show what such a function would look like in an imperative language.
The way I started going about doing this was to first concatenate the lists, then remove duplicated elements from that concatenation (well, technically I am adding non-duplicates to an empty list, but these two operations are consequentially equivalent). To do this, I figured I would design the function to take two lists (type list*list), transform them into their concatenation (type list), then do the duplicate removal (type list), which would be of type (((list*list) -> list) -> list).
My issue is that I have no idea how to do this in SML. I'm required to use SML for a class for which I'm a TA, otherwise I wouldn't bother with it, and instead use something like Haskell. If someone can show me how to construct such higher-order functions, I should be able to take care of the rest, but I just haven't come across such constructions in my reading of SML literature.

I'm a bit unsure if strong union means anything other than just union. If you assume that a function union : ''a list * ''a list -> ''a list takes two lists of elements without duplicates as inputs, then you can make it produce the unions without duplicates by conditionally inserting each element from the one list into the other:
(* insert a single element into a list *)
fun insert (x, []) = [x]
| insert (x, xs as (y::ys)) =
if x = y
then xs
else y::insert(x, ys)
(* using manual recursion *)
fun union ([], ys) = ys
| union (x::xs, ys) = union (xs, insert (x, ys))
(* using higher-order list-combinator *)
fun union (xs, ys) = foldl insert ys xs
Trying this:
- val demo = union ([1,2,3,4], [3,4,5,6]);
> val demo = [3, 4, 5, 6, 1, 2] : int list
Note, however, that union wouldn't be a higher-order function, since it doesn't take functions as input or return functions. You could use a slightly stretched definition and make it curried, i.e. union : ''a list -> ''a list -> ''a list, and say that it's higher-order when partially applying it to only one list, e.g. like union [1,2,3]. It wouldn't even be fully polymorphic since it accepts only lists of types that can be compared (e.g. you can't take the union of two sets of functions).

Related

How to use sml to write a function to turn a list of 2-tuples to a flattened list?

I got a problem that needs to turn a list of tuples into a flattened list for example:
[(1,2), (3,4), (5,6)] can be turned into [1,2,3,4,5,6]
I have tried to write a function like this:
fun helper2(nil,b) = []
| helper2(a,nil) = []
| helper2(a::l1,b::l2) =l1::l2
fun flatten2 [] = []
| flatten2 ((a,b)::tl) = helper2(a,b)
It shows:
val flatten2 = fn : ('a list * 'a list list) list -> 'a list list
And when I tried to run it using command flatten2[(1,2),(3,4),(5,6)];
It will give me the following error message:
stdIn:1.2-1.29 Error: operator and operand do not agree [overload conflict]
operator domain: ('Z list * 'Z list list) list
operand: ([int ty] * [int ty]) list
in expression:
flatten2 ((1,2) :: (3,4) :: (<exp>,<exp>) :: nil)
My questions are:
Why SML see the a and b values as lists, not just simply a and b
How can I revise my code so SML can see a and b as 'a and 'b not lists
How to make this code work the way it should be?
Thanks
First question: As to why the type comes out as ('a list * 'a list list) it's because type inference is looking at this part of the code:
| helper2(a::l1,b::l2) =l1::l2
^^
here
Keep in mind that the type of the "cons" (::) operator is 'a -> 'a list -> 'a list, it is gluing a single element onto a list of that same type of element. So SML has concluded that whatever l1 and l2 are, the relationship is that l2 is a list of whatever l1 is.
fun helper2(nil,b) = []
Says that a must be a list because nil has type 'a list. Therefore, l2 has to be a list of lists (of some type 'a).
Question 2 and 3: I'm not quite sure how to correct the code as it is written. I'd probably write something like this:
fun helper2 [] accum = List.rev accum
| helper2 ((a,b)::tl) accum = helper2 tl (b :: a :: accum);
fun flatten2 list = helper2 list [];
helper2 does all of the dirty work. If the input list is empty then we're all done and we can return the reversed accumulator that we've been building up. The second case is where we actually add things to the accumulator. We pattern match on the head and the tail of the list. This pattern match means that the input has type ('a * 'a) list (a list of tuples where both elements are the same type). In the head, we have a tuple and we name the first and second element a and b, respectively. We prepend a then b onto the accumulator and recursively call helper2 on the tail of the list. Eventually, we'll chew through all the elements in the list and then we'll be left with just the accumulator -- which, recall, has all the elements but in the reverse order. Calling List.rev reverses the accumulator and that's our answer.
And when I load and run it I get this:
- flatten2 [(1,2), (3,4), (5,6)];
val it = [1,2,3,4,5,6] : int list
Why SML see the a and b values as lists, not just simply a and b
Chris already answered this in-depth.
You're passing a as the first argument to helper2, which expects a list as its first argument. And you're passing b as the second argument to helper2, which uses its second argument, b::l2, also a list, as the tail of a list where a is the head. So b must be a list of those lists.
This doesn't make any sense, and is most likely a consequence of confusing syntax: You are passing in what you think of single elements a and b in flatten2, but when you deal with them in helper2 they're now lists where the heads are called a and b. Those are not the same a and b.
How can I revise my code so SML can see a and b as 'a and 'b not lists
You could ditch the helper function to begin with:
fun flatten2 [] = []
| flatten2 ((a,b)::pairs) = a :: b :: flatten2 pairs
The purpose of having a helper function is so that it can accumulate the result during recursion, because this version of flatten2 uses a lot of stack space. It can do this with an extra argument so that flatten2 doesn't need to mention it:
This is the version Chris made.
How to make this code work the way it should be?
You can make this code in a lot of ways. Two ways using explicit recursion were mentioned.
Here are some alternatives using higher-order functions:
(* Equivalent to my first version *)
fun flatten2 pairs =
foldr (fn ((a,b), acc) => a :: b :: acc) [] pairs
(* Equivalent to Chris'es version *)
fun flatten2 pairs =
rev (foldl (fn ((a,b), acc) => b :: a :: acc) [] pairs)
(* Yet another alternative *)
fun concatMap f xs =
List.concat (List.map f xs)
fun flatten2 pairs =
concatMap (fn (a,b) => [a,b]) pairs

F# return list of list lengths

I am to use combinators and no for/while loops, recursion or defined library functions from F#'s List module, except constructors :: and []
Ideally I want to implement map
I am trying to write a function called llength that returns the list of the lengths of the sublists. For example llength [[1;2;3];[1;2];[1;2;3]] should return [3;2,3]. I also have function length that returns the length of a list.
let Tuple f = fun a b -> f (a, b)
let length l : int =
List.fold (Tuple (fst >> (+) 1)) 0 l
currently have
let llength l : int list =
List.map (length inner list) list
Not sure how I should try accessing my sublists with my restraints and should I use my other method on each sublist? any help is greatly appreciated, thanks!
Since this is homework, I don't want to just give you a fully coded solution, but here are some hints:
First, since fold is allowed you could implement map via fold. The folding function would take the list accumulated "so far" and prepend the next element transformed with mapping function. The result will come out reversed though (fold traverses forward, but you prepend at every step), so perhaps that wouldn't work for you if you're not allowed List.rev.
Second - the most obvious, fundamental way: naked recursion. Here's the way to think about it: (1) when the argument is an empty list, result should be an empty list; (2) when the argument is a non-empty list, the result should be length of the argument's head prepended to the list of lengths of the argument's tail, which can be calculated recursively. Try to write that down in F#, and there will be your solution.
Since you can use some functions that basically have a loop (fold, filter ...), there might be some "cheated & dirty" ways to implement map. For example, via filter:
let mymap f xs =
let mutable result = []
xs
|> List.filter (fun x ->
result <- f x :: result
true)
|> ignore
result |> List.rev
Note that List.rev is required as explained in the other answer.

How to aggregate over many lists in F#

In F# at some point I have many lists (the actual number of them differs for input data) and I want to make an aggregation over all those lists (let say addition for simplification). So what I want to achieve is the same what List.map2 or List.map3 does but for bigger number of lists.
How can I approach it? I was wondering if this is possible to do with List.scan?
You can use List.reduce and do something like this:
> let lists = [[1;2;3]; [1;2;3]; [1;2;3]]
val lists : int list list = (...)
> lists |> List.reduce (List.map2 (+));;
val it : int list = [3; 6; 9]
What does this do?
List.reduce takes a list of values (here the value is int list) and it aggregates them into a single value using a function that says how to merge two values. So in this case, we need to give it a function int list -> int list -> int list and it will call it on the first and the second list, then on the result and the third list (and so on).
The argument List.map2 (+) is a function of the right type - it takes two lists and performs pairwise sum of the two lists. This is really just a shortcut for writing something like:
lists |> List.reduce (fun list1 list2 ->
List.map2 (fun a b -> a + b) list1 list2)

SML: How can I pass a function a list and return the list with all negative reals removed?

Here's what I've got so far...
fun positive l1 = positive(l1,[],[])
| positive (l1, p, n) =
if hd(l1) < 0
then positive(tl(l1), p, n # [hd(l1])
else if hd(l1) >= 0
then positive(tl(l1), p # [hd(l1)], n)
else if null (h1(l1))
then p
Yes, this is for my educational purposes. I'm taking an ML class in college and we had to write a program that would return the biggest integer in a list and I want to go above and beyond that to see if I can remove the positives from it as well.
Also, if possible, can anyone point me to a decent ML book or primer? Our class text doesn't explain things well at all.
You fail to mention that your code doesn't type.
Your first function clause just has the variable l1, which is used in the recursive. However here it is used as the first element of the triple, which is given as the argument. This doesn't really go hand in hand with the Hindley–Milner type system that SML uses. This is perhaps better seen by the following informal thoughts:
Lets start by assuming that l1 has the type 'a, and thus the function must take arguments of that type and return something unknown 'a -> .... However on the right hand side you create an argument (l1, [], []) which must have the type 'a * 'b list * 'c list. But since it is passed as an argument to the function, that must also mean that 'a is equal to 'a * 'b list * 'c list, which clearly is not the case.
Clearly this was not your original intent. It seems that your intent was to have a function that takes an list as argument, and then at the same time have a recursive helper function, which takes two extra accumulation arguments, namely a list of positive and negative numbers in the original list.
To do this, you at least need to give your helper function another name, such that its definition won't rebind the definition of the original function.
Then you have some options, as to which scope this helper function should be in. In general if it doesn't make any sense to be calling this helper function other than from the "main" function, then it should not be places in a scope outside the "main" function. This can be done using a let binding like this:
fun positive xs =
let
fun positive' ys p n = ...
in
positive' xs [] []
end
This way the helper function positives' can't be called outside of the positive function.
With this take care of there are some more issues with your original code.
Since you are only returning the list of positive integers, there is no need to keep track of the
negative ones.
You should be using pattern matching to decompose the list elements. This way you eliminate the
use of taking the head and tail of the list, and also the need to verify whether there actually is
a head and tail in the list.
fun foo [] = ... (* input list is empty *)
| foo (x::xs) = ... (* x is now the head, and xs is the tail *)
You should not use the append operator (#), whenever you can avoid it (which you always can).
The problem is that it has a terrible running time when you have a huge list on the left hand
side and a small list on the right hand side (which is often the case for the right hand side, as
it is mostly used to append a single element). Thus it should in general be considered bad
practice to use it.
However there exists a very simple solution to this, which is to always concatenate the element
in front of the list (constructing the list in reverse order), and then just reversing the list
when returning it as the last thing (making it in expected order):
fun foo [] acc = rev acc
| foo (x::xs) acc = foo xs (x::acc)
Given these small notes, we end up with a function that looks something like this
fun positive xs =
let
fun positive' [] p = rev p
| positive' (y::ys) p =
if y < 0 then
positive' ys p
else
positive' ys (y :: p)
in
positive' xs []
end
Have you learned about List.filter? It might be appropriate here - it takes a function (which is a predicate) of type 'a -> bool and a list of type 'a list, and returns a list consisting of only the elements for which the predicate evaluates to true. For example:
List.filter (fn x => Real.>= (x, 0.0)) [1.0, 4.5, ~3.4, 42.0, ~9.0]
Your existing code won't work because you're comparing to integers using the intversion of <. The code hd(l1) < 0 will work over a list of int, not a list of real. Numeric literals are not automatically coerced by Standard ML. One must explicitly write 0.0, and use Real.< (hd(l1), 0.0) for your test.
If you don't want to use filter from the standard library, you could consider how one might implement filter yourself. Here's one way:
fun filter f [] = []
| filter f (h::t) =
if f h
then h :: filter f t
else filter f t

creat a tuple by removing first element from another tuple in ML

using ML as a programming language we have list and tuple, in the case of lists we can form a list from another list by removing or appending elements from and to the original list, for example if we have:
val x = [7,8,9] : int list
in REPL we can do some operations like the following:
- hd x;
val it = 7 : int
- tl x;
val it = [8,9] : int list
now if we have a tuple lets say:
val y = (7,8,9) :int*int*int
now the question is that , can we have a smaller tuple by removing the first element from the original tuple ? in other words , how to remove (#1 y) and have new tuple (8,9) in a similar way that we do it in the case of list.
Thanks.
Tuples are very different from lists. With lists, size need not be known at compile time, but with tuples, not only should the number of elements be known at compile time, the type of each element is independent of the others.
Take the type signature of tl:
- tl;
val it = fn : 'a list -> 'a list
It is 'a list -> 'a list - in other words tl takes a list of 'a and returns another one. Why don't we have one for tuples as well? Assume we wanted something like
y = (1,2,3);
tail y; (* returns (2,3) *)
Why does this not make sense? Think of the type signature of tail. What would it be?
In this case, it would clearly be
'a * 'b * 'c -> 'b * 'c
Takes product of an 'a, a 'b and a 'c and returns a product of
a 'b and a 'c. In ML, all functions defined must have a statically determined
type signature. It would be impossible to have a tail function for tuples that
handles all possible tuple sizes, because each tuple size is essentially a different type.
'a list
Can be the type of many kinds of lists: [1,2,3,4], or ["A", "short", "sentence"], or
[true, false, false, true, false]. In all these cases, the value of the type
variable 'a is bound to a different type. (int, string, and bool). And 'a list can be a list of any size.
But take tuples:
(1, true, "yes"); (* (int * bool * string) *)
("two", 2) (* (string, int) *)
("ok", "two", 2) (* (string, string, int) *)
Unlike list, these are all of different types. So while the type signature of all lists is simple ('a list), there is no 'common type' for all tuples - a 2-tuple has a different type from a 3-tuple.
So you'll have to do this instead:
y = (7, 8, 9);
(a, b, c) = y;
and a is your head and you can re-create the tail with (b,c).
Or create your own tail:
fun tail (a,b,c) = (b, c)
This also gives us an intuitive understanding as to why such a function would not make sense: If is impossible to define a single tail for use across all tuple types:
fun tail (a,b) = (b)
| tail (a,b,c) = (b, c) (* won't compile *)
You can also use the # shorthand to get at certain elements of the tuple:
#1 y; (* returns 7 *)
But note that #1 is not a function but a compile time shorthand.
Lists and tuples are immutable so there is no such thing like removing elements from them.
You can construct a new tuple by decomposing the original tuple. In SML, the preferred way is to use pattern matching:
fun getLastTwo (x, y, z) = (y, z)
If you like #n functions, you can use them as well:
val xyz = (7, 8, 9)
val yz = (#2 xyz, #3 xyz) (* (8, 9) *)