How to save a model in Tensorflow by using c++? I have searched on google and baidu but not find any solutions for it. I then reading the api document of tensorflow, and the introduce is fewer introduction about C++
Model saving is implemented in Python only. There is currently no way to save a model using C++ APIs. C++ APIs allow you to load and use the models, not to train or save them.
Assume you have basic understanding of tensorflow C++ API and know how to construct a graph using the C++ API. You can make use of the 2 functions :
tensorflow::WriteTextProto() : your can get tensorflow::GraphDef (that represents all the operations you defined e.g. Add, multiply, Mean .... etc ) from tensorflow::Scope::ToGraphDef(), save the tensorflow::GraphDef to text protobuf file
tensorflow::checkpoint::TensorSliceWriter saves the current state of parameter matrices to external file (checkpoint), it's little complicated but it works well for me
firstly you'll have to get trained parameter to by calling tensorflow::Session::Run, which will return a list of parameter matrices to output_tensor (see sample below) :
std::vector<tensorflow::Tensor> output_tensor;
tensorflow::Session::Run({}, {"name_of_param_mtx_1", "name_of_param_mtx_2",}, {}, &output_tensor);
where the name_of_param_mtx_1 and name_of_param_mtx_2 above should be the name of your parameter matrices in tensorflow::Variable, e.g.
auto name_of_param_mtx_1 = tensorflow::ops::Variable (root.WithOpName("name_of_param_mtx_1"), {7, 17}, tensorflow::DT_FLOAT);
then you need to prepare following for tensorflow::checkpoint::TensorSliceWriter:
base address of the parameter raw data by calling tensorflow::Tensor.tensor_data().data()
shape of each tensorflow::Tensor , by calling tensorflow::Tensor::dim_size(NUM_DIMENSION). For eaxmple a 7x17 2D parameter matrix, NUM_DIMENSION can be 0 and 1, where tensorflow::Tensor::dim_size(0) is 7 and tensorflow::Tensor::dim_size(1) is 17.
name of this checkpoint, the name must be unique from other checkpoints in one file
create tensorflow::TensorSlice by calling tensorflow::TensorSlice::ParseOrDie("-:-"), it seems that the only argument of tensorflow::TensorSlice::ParseOrDie will be internally analyzed e.g. -:- means taking all items of a matrix. if users only want part of trained parameter matrix e.g. to only take 2nd column of all rows, then the string argument would be likely -:2 , I haven't figured out such advanced usage of tensorflow::TensorSlice::ParseOrDie.
Hope that helps.
Related
I'm currently trying to implement YOLOv3 object detection model in C(only detection, not training).
I have tested my convolution method with arbitrary values and it seems to be working as I expected.
Before stacking up multiple method calls to do forward propagation, I thought it would be safe to test with the actual pretrained weight file data.
When I look up Darknet's pre-trained weight file, it was a huge chunk of binary files. I tried to convert it to hex and decimals, but it still doesn't look simple to pinpoint what part of values to use.
So, my question is, what should I do to extract the decimal numbers of the weights or the filter values so that I can use them in the same order of the forward propagation happening in YOLOv3?
*I'm currently trying to build my c version of YOLOv3 using the structure image shown in https://www.itread01.com/content/1541167345.html
*My c code will be run on an FPGA board called MicroZed, along with other HDL code.
*I tried to plug some printf functions into some places of Darknet code to see what kinds of data are moving around when YOLOv3 runs, however, when I ran it on in Linux terminal, it didn't show anything new and kept outputting the same results.
Any help or advice will be really appreciated. Thank you!
I am not too sure if there is a direct way to read darknet weights, but you can convert it into .h5 format and obtain the weight values from it
You can convert the darknet yolov3 weights into .h5 format (used by keras) by using the appropriate command from this repository.
You can choose the command based on your Yolo version from the list shown in the ReadMe of the linked repo. For the standard yolov3, the command for converting is
python tools/model_converter/convert.py cfg/yolov3.cfg weights/yolov3.weights weights/yolov3.h5
Once you have the .h5weights, you can use the below code snippet for obtaining the
values from the weights. credit/source
import h5py
path = "<path to weights>.h5"
weights = {}
keys = []
with h5py.File(path, 'r') as f: # open file
f.visit(keys.append) # append all keys to list
for key in keys:
if ':' in key: # contains data if ':' in key
param_name = f[key].name
weights[f[key].name] = f[key].value
print(param_name,weights[f[key].name])
I am currently training a convolutional neural network using Mxnet, with the C++ Symbol API. This network contains some Batchnormalization layers, which contains the four parameter NDArray. Two of them, the moving_mean and moving_variance parameter are supposed to be updated at every batch during the training.
I was guessing that, since the boolean for the forward pass of the executor is set to true, it would update automatically the new parameters. However, for some reasons, these two NDArray remains still, without any update of the parameter. How so? Besides, since there are no gradients computed for these two NDArray, because it is not "learnable" parameters, I have no way to update the values through the regular optimizer update function. How to tell Mxnet, using the symbol API, to update the moving_mean and moving_variance NDArrays?
moving_mean and moving_variance are updated during the backward pass of training, rather than during the optimization step like other parameters. One other reason these parameters could remain fixed during training is if you've set use_global_stats=True on the BatchNorm layer.
I am trying to use a function of C++ TensorFlow (Machine Learning Framework). This function is "SoftmaxCrossEntropyWithLogits" (https://www.tensorflow.org/api_docs/cc/class/tensorflow/ops/softmax-cross-entropy-with-logits).
As per the official document of this function: this function returns two output values: "loss" and "backprop". "loss" is of vector type and "backprop" is a matrix.
I don't the correct syntax and way so that I can store both the values. Currently, I am trying with this:
std::vector<std::pair<vector<float>, vector<float>>> cost = SoftmaxCrossEntropyWithLogits(args);
What is the correct way of writing above line in C++.
Thanks.
I'm trying to do binary LSTM classification using theano.
I have gone through the example code however I want to build my own.
I have a small set of "Hello" & "Goodbye" recordings that I am using. I preprocess these by extracting the MFCC features for them and saving these features in a text file. I have 20 speech files(10 each) and I am generating a text file for each word, so 20 text files that contains the MFCC features. Each file is a 13x56 matrix.
My problem now is: How do I use this text file to train the LSTM?
I am relatively new to this. I have gone through some literature on it as well but not found really good understanding of the concept.
Any simpler way using LSTM's would also be welcome.
There are many existing implementation for example Tensorflow Implementation, Kaldi-focused implementation with all the scripts, it is better to check them first.
Theano is too low-level, you might try with keras instead, as described in tutorial. You can run tutorial "as is" to understand how things goes.
Then, you need to prepare a dataset. You need to turn your data into sequences of data frames and for every data frame in sequence you need to assign an output label.
Keras supports two types of RNNs - layers returning sequences and layers returning simple values. You can experiment with both, in code you just use return_sequences=True or return_sequences=False
To train with sequences you can assign dummy label for all frames except the last one where you can assign the label of the word you want to recognize. You need to place input and output labels to arrays. So it will be:
X = [[word1frame1, word1frame2, ..., word1framen],[word2frame1, word2frame2,...word2framen]]
Y = [[0,0,...,1], [0,0,....,2]]
In X every element is a vector of 13 floats. In Y every element is just a number - 0 for intermediate frames and word ID for final frame.
To train with just labels you need to place input and output labels to arrays and output array is simpler. So the data will be:
X = [[word1frame1, word1frame2, ..., word1framen],[word2frame1, word2frame2,...word2framen]]
Y = [[0,0,1], [0,1,0]]
Note that output is vectorized (np_utils.to_categorical) to turn it to vectors instead of just numbers.
Then you create network architecture. You can have 13 floats for input, a vector for output. In the middle you might have one fully connected layer followed by one lstm layer. Do not use too big layers, start with small ones.
Then you feed this dataset into model.fit and it trains you the model. You can estimate model quality on heldout set after training.
You will have a problem with convergence since you have just 20 examples. You need way more examples, preferably thousands to train LSTM, you will only be able to use very small models.
Most machine learning algorithms implemented in OpenCV 2.4 built upon a CvStatModel which comes with a CvStatModel::train method.
There it says:
By default, the input feature vectors are stored as train_data rows, that is, all the components (features) of a training vector are stored continuously.
and
Usually, the previous model state is cleared by CvStatModel::clear() before running the training procedure. However, some algorithms may optionally update the model state with the new training data, instead of resetting it.
How do I know which ml algorithm isn't resetting the current model state. Since I wanted to use CvGBTrees::train which has a update parameter declared as being only a dummy parameter, I guess the model is discarded after every training call. Can I take it that if there is no such update parameter the current model state will always be discarded?
I need a machine learning algorithm which continuously trains one model and doesn't start with an initial model every training call.
Is this doable with the current ml implementations in OpenCV? and if so with which ones? Furthermore, if not are there other c++ libraries that would do so?