How to appropriately cache userData that is generated from user's callbackBegin() and send it to user's callbackEnd().
Simple version (No userData - demo)
I want to create a complex database that support callback. For MCVE, let's say it is MyArray.
Here is a simple array class that supports callback but no userData.
#include <iostream>
template<class Derived>class MyArray{ //library - I design it.
public: void push_back(int s){
static_cast<Derived*>(this)->callbackBegin(s);
//do something about array
static_cast<Derived*>(this)->callbackEnd(s);
}
//other fields / functions
};
class Callback : public MyArray<Callback>{ //user's class
public: void callbackBegin(int s){
std::cout<<"callbackBegin"<<std::endl;
}
public: void callbackEnd(int s){
std::cout<<"callbackEnd"<<std::endl;
}
};
int main() {
Callback c;
c.push_back(5); //print: callbackBegin callbackEnd
return 0;
}
It works correctly.
The next step : I want to pass some userData from Callback::callbackBegin() to Callback::callbackEnd().
For example, userData is a clock time when Callback::callbackBegin() is called.
My poor solution (void*& userdata : demo)
Here is my attempt to implement it :-
#include <iostream>
#include <time.h>
template<class Derived>class MyArray{
public: void push_back(int s){
void* userData=nullptr; //#
static_cast<Derived*>(this)->callbackBegin(s,userData); //# ugly
//do something about array
static_cast<Derived*>(this)->callbackEnd(s,userData); //# ugly
}
};
class Callback : public MyArray<Callback>{
public: void callbackBegin(int s,void*& userData){ //#
userData=new clock_t(clock()); //# danger
std::cout<<"callbackBegin"<<std::endl;
}
public: void callbackEnd(int s,void*& userData){ //#
clock_t* userDataTyped=static_cast<clock_t*>(userData);
clock_t clock2=clock();
clock_t different=clock2 - (*userDataTyped);
std::cout<<"callbackEnd time(second)="
<<((float)different)/CLOCKS_PER_SEC<<std::endl;
delete userDataTyped; //# danger
}
};
int main() {
Callback c;
c.push_back(5); //print: callbackBegin callbackEnd time(second)=8.5e-05
return 0;
}
It also works correctly, but I believe it is a bad design (at various #) :-
new/delete in 2 places : potential memory leaking.
Strong pointer is preferred, but I don't know how to.
static_cast<clock_t*>(userData) is code-smell, at least for me.
(minor issue) an extra ugly parameter void*&
Question: What are design patterns / C++ magic to avoid such issues, while make MyArray concise, easy to use, maintainable (i.e. not much worse than the Simple version)?
Other notes:
In real cases, <5% of user's callback classes need userData.
Thus, I feel very reluctant to add void&* as an extra parameter.
Clarify: (edited) The minority cases usually need different types of userData e.g. Callback1 need clock_t, Callback2 need std::string, etc.
Proposed solution should restrain from using std::function<> or virtual function, because the performance is a major concern here.
Thank.
Pass data through a void pointer is a good C solution but (IMHO) not a C++ (specially: not a C++11/c++14/C++17, with auto and std::tuple) good one.
So I suggest to return a value from callbackBegin() and pass the value as first argument to `callbackEnd(); something like
auto r = static_cast<Derived*>(this)->callbackBegin(s);
static_cast<Derived*>(this)->callbackEnd(r, s);
Observe (C++11 and newer magic) that using auto as type of the value returned by callbackBegin(), you can return different types from different `callbackBegin().
Bonus suggestion: be more generic in MyArray::push_back(): using variadic templates, there is no need of fix the number and the types of arguments received by callbackBack() and callbackEnd().
Using variadic templates you can modify push_back() as follows
template <typename ... Args>
void push_back (Args const & ... args)
{
auto r = static_cast<Derived*>(this)->callbackBegin(args...);
static_cast<Derived*>(this)->callbackEnd(r, args...);
}
The following is a full working example with two different callback classes (with different number of arguments and different return types)
#include <tuple>
#include <iostream>
template <typename derT>
struct myA
{
template <typename ... Args>
void push_back (Args const & ... args)
{
auto r = static_cast<derT*>(this)->callbackBegin(args...);
static_cast<derT*>(this)->callbackEnd(r, args...);
}
};
struct cb1 : public myA<cb1>
{
int callbackBegin (int s)
{ std::cout << "cb1 b" << std::endl; return s+5; }
void callbackEnd (int r, int s)
{ std::cout << "cb1 e -" << r << ", " << s << std::endl; }
};
struct cb2 : public myA<cb2>
{
std::tuple<std::string, int> callbackBegin (std::string const & name,
int num)
{ std::cout << "cb2 b" << std::endl; return {name+";", num+1}; }
void callbackEnd (std::tuple<std::string, int> const &,
std::string const & name, int num)
{ std::cout << "cb2 e -" << name << ", " << num << std::endl; }
};
int main ()
{
cb1 c1;
c1.push_back(5);
cb2 c2;
c2.push_back("string arg", 7);
return 0;
}
std::any would allow you to hold clock_t (or any other) object and do away with the void* pointers, however that's a C++17 concept and not yet widely available (although there are implementations such as boost::any).
In the meantime, your code may benefit from a little composition over inheritance, as array and callback are conceptually pretty different and don't seem to belong in the same inheritance hierarchy. So, preferring composition, the code might look something like:
template<class T> struct ICallback
{
virtual void callbackBegin(int s, std::unique_ptr<T>& p) = 0;
virtual void callbackEnd(int s, std::unique_ptr<T>& p) = 0;
};
template<class T> class MyArray
{
public:
MyArray(std::shared_ptr<ICallback<T>> cb) { callback = cb; }
void push_back(int s)
{
callback->callbackBegin(s, usrDataPtr);
//do something about array
callback->callbackEnd(s, usrDataPtr);
}
protected:
std::shared_ptr<ICallback<T>> callback;
std::unique_ptr<T> usrDataPtr;
};
class ClockCallback : public ICallback<clock_t>
{
public:
void callbackBegin(int s, std::unique_ptr<clock_t>& c){
c = std::make_unique<clock_t>(clock());
std::cout << "callbackBegin" << std::endl;
}
void callbackEnd(int s, std::unique_ptr<clock_t>& c){
clock_t clock2 = clock();
clock_t different = clock2 - (*c);
std::cout << "callbackEnd time(second)="
<< ((float)different) / CLOCKS_PER_SEC << std::endl;
}
};
int main() {
std::shared_ptr<ClockCallback> c = std::make_shared<ClockCallback>();
MyArray<clock_t> ma(c);
ma.push_back(7);
return 0;
}
You can use a smart pointer to avoid manually deleting your userData
std::unique_ptr<clock_t> userData;
pass it as a reference to your callbacks
void callbackBegin(int s, std::unique_ptr<clock_t> &userData)
and initialize it this way
userData = std::make_unique<clock_t>(clock())
The C++ magic you're asking about is a known as a virtual method. Virtual method is one of the C++ native ways to implement the callback:
class MyArray{
public:
void push_back(int s) {
const auto userData = callbackBegin(s); //# beautiful
//do something about array
callbackEnd(s, userData); //# beautiful
}
private:
virtual clock_t callbackBegin(int) const = 0;
virtual void callbackEnd(int, const clock_t&) const = 0;
};
class Callback : public MyArray{
clock_t callbackBegin(int s) const final {
std::cout<<"callbackBegin"<<std::endl;
return clock(); //# safe
}
void callbackEnd(int s,const clock_t& userData) const final { //#
const auto different = clock() - userDataTyped;
std::cout << "callbackEnd time(second)=";
std::cout << different/CLOCKS_PER_SEC << std::endl;
//# safe
}
};
Another way is to pass two callable objects to the MyArray ctor and using those objects in the push_back method. The callable objects shall store calls to the relevant class Callback methods. Use std::function to implement those callable objects.
Related
I have a question on callbacks. Previously, I am associating my callbacks to a class Q
class Q{
using Callback = std::function<void(char*, int)>;
Q:Q();
Q:~Q();
void Q::RegisterCB(Callback callbackfunc)
{
callback_func = callbackfunc;
}
void Q:someEvent()
{
callback_func();
}
};
void handleCallback( char*, int)
{
// perform some routine
}
// from my main file
int main()
{
Q q;
q.RegisterCB(&handleCallback);
}
It works well for me. However, when I need to transfer the handleCallback function to another class for cleaner code. I have problem with using same code
class R{
void R::handleCallback( char*, int)
{
// perform some routine
}
void R::someOp()
{
// q is some member variables of R
q.RegisterCB(&R::handleCallback, this);
}
};
However, i run into some problems of saying there is a "no matching function for call to .....". I thought it was just simply assigning from function name to class function name
May I have a hint to where I might go wrong?
Regards
&R::handleCallback has the type void (R::*)(char*, int), which is not convertible to std::function<void(char*, int)>.
Also, RegisterCB takes one argument, not two.
The most straightforward fix is to wrap the call in a lambda function,
q.RegisterCB([this](char* p, int x) { handleCallback(p, x); });
Example on how to use a lambda function to register a member function of an instance of R as event handler. (I replaced char* with string_view out of habit, it's not essential for this example). The use of "const" wherever you can is a recommendation.
#include <functional>
#include <string_view>
#include <iostream>
class Q
{
public:
// use const arguments, the callback is not supposed to change them
// just passing information on to callback
using callback_t = std::function<void(const std::string_view&, const int)>;
// initialize callback with a (lambda) function that does nothing
// this prevents the need for a check if callback has been set or not
// (Pattern : Null Strategy)
Q() :
m_callback_func( [](const std::string_view&,const int) {} )
{
}
~Q() = default;
void RegisterCallback(callback_t fn)
{
m_callback_func = fn;
}
void Event(const std::string_view& string, const int value)
{
m_callback_func(string,value);
}
private:
callback_t m_callback_func;
};
void handleCallback(const std::string_view& string, const int value)
{
std::cout << string << ", " << value << "\n";
}
class R
{
public:
void handleCallback(const std::string_view& string, const int value)
{
std::cout << string << ", " << value << "\n";
}
};
// from my main file
int main()
{
Q q1;
q1.RegisterCallback(handleCallback);
q1.Event("Hello", 42);
// to pass a callback to an instance of a class
// you can use a lambda function https://en.cppreference.com/w/cpp/language/lambda
R r;
Q q2;
q2.RegisterCallback([&r](const std::string_view& string, const int value)
{
r.handleCallback(string,value);
});
q2.Event("World",21);
return 0;
}
I'm trying to refactor some code. Basically is a state machine based with enum.
There are a lot of switch statements and functions that got called with different names and ambiguations.
Since they force me to keep the enum, I would like to refactor it using template. Basically I would like to use template to implement polymorphism. Since the states are limited there should be a way but I cannot find the best one.
#include <iostream>
enum class AnimalType
{
Dog,
Cat
};
template<AnimalType T>
void Foo()
{
std::cout << "Unknown animal\n";
}
template<>
void Foo<AnimalType::Dog>()
{
std::cout << "I'm a dog\n";
}
template<>
void Foo<AnimalType::Cat>()
{
std::cout << "I'm a cat\n";
}
int main()
{
AnimalType CurrentAnimal = AnimalType::Dog;
// Foo<CurrentAnimal>(); Won't compile
return 0;
}
You need a compile time evaluatable constant, this will work
int main()
{
constexpr auto CurrentAnimal = AnimalType::Dog;
Foo<CurrentAnimal>();
return 0;
}
or directly use
Foo<AnimalType::Dog>();
Note : you can't use your construct to make decissions at runtime.
Templates only lead to compile time polymorphism
As mentioned by #P Kramer's answer:
Note : you can't use your construct to make decissions at runtime. Templates only lead to compile time polymorphism.
You can't do that, but you can use the Compile-Time Dispatch and runtime parameter by passing the desired value as parameter while they are separated by Function Template Specialization. For example turn your enumerations value into actual types:
struct animal_t
{
std::string const name;
explicit animal_t(std::string const& name_)
: name(name_)
{
}
auto operator()() const
{
return name;
}
};
struct dog_t final : animal_t
{
using animal_t::animal_t;
};
struct cat_t final : animal_t
{
using animal_t::animal_t;
};
They you are able to specialize the function template:
/*!
*
* Other Programmer(s) interface
*
*/
template<typename Animal>
auto function(Animal const&)
{
assert(false);
}
/*!
*
* Implementation
*
*/
template<>
auto function(cat_t const& animal)
{
return animal();
}
template<>
auto function(dog_t const& animal)
{
return animal();
}
Now user (other programmer) of your library could easily interact with it for example by a GUI library:
QObject::connect(button1, &QPushButton::clicked, &application, [] {
cat_t cat("Some Cat");
auto const message = QString::fromStdString(function(cat));
QMessageBox::information(nullptr, " ", message);
});
QObject::connect(button2, &QPushButton::clicked, &application, [] {
dog_t dog("Some Dog");
auto const message = QString::fromStdString(function(dog));
QMessageBox::information(nullptr, " ", message);
});
Result: just for copy/past: runtime_dispatch_v1
C++ has limited ability to use pointer-to-member functions. I need something that will allow me to dynamically choose a callback member function, in order to use the Visitor pattern of the XMLNode::Accept(XMLVisitor *visitor) method from the TinyXML2 library.
To use XMLNode::Accept(), I must call it with a class which implements the XMLVisitor interface. Hence:
typedef bool (*Callback)(string, string);
class MyVisitor : public tinyxml2::XMLVisitor {
public:
bool VisitExit(const tinyxml2::XMLElement &e) {
callback(e.Name(), e.GetText());
}
Callback callback;
}
This works fine if my caller is NOT an object which wants to use one of its own methods as a callback function (so that it can access class variables). For example, this works:
bool myCallBackFunc(string e, string v) {
cout << "Element " << e << " has value " << v << endl;
return true;
}
int main(...) {
tinyxml2::XMLDocument doc;
doc.LoadFile("somefile.xml");
MyVisitor visit;
visit.callback = myCallBackFunc;
doc.Accept(&visit);
}
However, in my use case, the parsing is done inside a method in a class. I have multiple applications which have similar but unique such classes. I'd like to use only one generic MyVisitor class, rather than have the visitor class have unique knowledge of the internals of each class which will call it.
Thus, it would be convenient if the callback function were a method in each calling class so that I can affect the internal state of the object instantiated from that calling class.
Top level: I have 5 server applications which talk to 5 different trading partners, who all send XML responses, but each is enough different that each server app has a class which is unique to that trading partner. I'm trying to follow good OO and DRY design, and avoid extra classes having unique knowledge while still doing basically the same work.
Here's the class method I want Accept() to call back.
ServiceClass::changeState(string elem, string value) {
// Logic which sets member vars based on element found and its value.
}
Here's the class method which will call Accept() to walk the XML:
ServiceClass::processResponse(string xml) {
// Parse XML and do something only if certain elements present.
tinyxml2::XMLDocument doc;
doc.Parse(xml.c_str(), xml.length());
MyVisitor visit;
visit.callback = &changeState; // ERROR. Does not work.
visit.callback = &ServiceClass::changeState; // ERROR. Does not work.
doc.Accept(&visit);
}
What's a simple way to get what I want? I can imagine more classes with derived classes unique to each situation, but that seems extremely verbose and clumsy.
Note: In the interest of brevity, my sample code above has no error checking, no null checking and may even have minor errors (e.g. treating const char * as a string ;-).
Below is the std::bind(..) example for what you're trying to do in C++11. For earlier C++ versions you could use the boost::bind utilities.
Fix your MyVisitor::VisitExit(...) method to return a boolean, by the way.
The code is converting const char * to std::string. tinyxml2 does not guarantee that the char * arguments from Name() or GetText() are not null. In fact in my experience they will be null at some point. You should guard against this. For the sake of not modifying your example too much I've not protected against this possibility everywhere in the example.
typedef bool(*Callback)(string, string);
using namespace std;
class MyVisitor : public tinyxml2::XMLVisitor {
public:
bool VisitExit(const tinyxml2::XMLElement &e) {
// return callback(e.Name(), e.GetText());
return true;
}
Callback callback;
};
/** Typedef to hopefully save on confusing syntax later */
typedef std::function< bool(const char * element_name, const char * element_text) > visitor_fn;
class MyBoundVisitor : public tinyxml2::XMLVisitor {
public:
MyBoundVisitor(visitor_fn fn) : callback(fn) {}
bool VisitExit(const tinyxml2::XMLElement &e) {
return callback(e.Name() == nullptr ? "\0" : e.Name(), e.GetText() == nullptr ? "\0": e.GetText());
}
visitor_fn callback;
};
bool
myCallBackFunc(string e, string v) {
cout << "Element " << e << " has value " << v << endl;
return true;
}
int
main()
{
tinyxml2::XMLDocument doc;
doc.LoadFile("somefile.xml");
MyVisitor visit;
visit.callback = myCallBackFunc;
doc.Accept(&visit);
visitor_fn fn = myCallBackFunc; // copy your function pointer into the std::function<> type
MyBoundVisitor visit2(fn); // note: declare this outside the Accept(..) , do not use a temporary
doc.Accept(&visit2);
}
So from within the ServiceClass method you'd do:
ServiceClass::processResponse(string xml) {
// Parse XML and do something only if certain elements present.
tinyxml2::XMLDocument doc;
doc.Parse(xml.c_str(), xml.length());
// presuming changeState(const char *, const char *) here
visitor_fn fn = std::bind(&ServiceClass::changeState,this,std::placeholders::_1,std::placeholders::_2);
MyBoundVisitor visit2(fn); // the method pointer is in the fn argument, together with the instance (*this) it is a method for.
doc.Accept(&visit);
}
You can use generics in order to support whichever callback you'd like.
I've tried to mock the classes of the library in order to give you a fully runnable example:
#include <string>
#include <iostream>
#include <functional>
class XmlNode {
public:
XmlNode(const std::string& n, const std::string t) : name(n), txt(t) {}
const std::string& Name() const { return name; }
const std::string& GetText() const { return txt; }
private:
std::string name;
std::string txt;
};
class XMLVisitor {
public:
virtual void VisitExit(const XmlNode& node) = 0;
virtual ~XMLVisitor() {}
};
template<typename T>
class MyVisitor : XMLVisitor {
public:
MyVisitor() {}
void myInnerPrint(const XmlNode& node) {
std::cout << "MyVisitor::myInnerPrint" << std::endl;
std::cout << "node.Name(): " << node.Name() << std::endl;
std::cout << "node.GetText(): " << node.GetText() << std::endl;
}
void SetCallback(T newCallback) {
callback = newCallback;
}
virtual void VisitExit(const XmlNode& node) {
callback(node);
}
T callback;
};
int main() {
XmlNode node("In", "Member");
MyVisitor<std::function<void(const XmlNode&)>> myVisitor;
auto boundCall =
[&myVisitor](const XmlNode& node) -> void {
myVisitor.myInnerPrint(node);
};
myVisitor.SetCallback(boundCall);
myVisitor.VisitExit(node);
return 0;
}
First define a template and a helper function:
namespace detail {
template<typename F>
struct xml_visitor : tinyxml2::XMLVisitor {
xml_visitor(F&& f) : f_(std::move(f)) {}
virtual void VisitExit(const tinyxml2::XMLElement &e) {
f_(e);
}
private:
F f_;
};
}
template<class F>
auto make_xml_visitor(F&& f)
{
return detail::xml_visitor<std::decay_t<F>>(std::forward<F>(f));
}
Then use the helper function to construct a custom visitor from a lambda which captures this:
void ServiceClass::processResponse(std::string xml) {
// Parse XML and do something only if certain elements present.
tinyxml2::XMLDocument doc;
doc.Parse(xml.c_str(), xml.length());
auto visit = make_xml_visitor([this](const auto& elem)
{
this->changeState(elem.Name(), elem.GetText);
});
doc.Accept(std::addressof(visit));
}
The rule is that a function pointer must always accept a void * which is passed in to the module which calls it, and passed back. Or use a lambda which is the same thing with some of the machinery automated for you. (The void * is the "closure").
So
typedef bool (*Callback)(string, string, void *context);
class MyVisitor : public tinyxml2::XMLVisitor {
public:
bool VisitExit(const tinyxml2::XMLElement &e) {
callback(e.Name(), e.GetText(), contextptr);
}
Callback callback;
void *contextptr;
}
bool myCallBackFunc(string e, string v, void *context) {
ServiceClass *service = (ServiceClass *) context;
cout << "Element " << e << " has value " << v << endl;
service->ChangeState(e, v);
return true;
}
I want to write a class that can monitor a bunch of different values for easy debugging. Imagine setting "watches" in a visual debugger. I'm picturing something like this:
struct Foo {
int x = 0;
std::string s = "bar";
};
int main() {
Foo f;
ValueMonitor::watch("number", &f.x);
ValueMonitor::watch("string", &f.s);
for (int i = 0; i < 10; ++i) {
++f.x;
if (i > 5) {
f.s = "new string";
}
// print the current value of the variable with the given key
// these should change as the loop goes on
ValueMonitor::print("number");
ValueMonitor::print("string");
// or
ValueMonitor::printAll();
// obviously this would be unnecessary in this example since I
// have easy access to f, but imagine monitoring different
// values from all over a much larger code base
}
}
Then these could be easily monitored somewhere in the application's GUI or whatever.
However, I don't know how to handle the different types that would be stored in this class. Ideally, I should be able to store anything that has a string representation. I have a few ideas but none of them really seem right:
Store pointers to a superclass that defines a toString function or operator<<, like Java's Object. But this would require me to make wrappers for any primitives I want to monitor.
Something like boost::any or boost::spirit::hold_any. I think any needs to be type casted before I can print it... I guess I could try/catch casting to a bunch of different types, but that would be slow. hold_any requires defined stream operators, which would be perfect... but I can't get it to work with pointers.
Anyone have any ideas?
I found a solution somewhere else. I was pretty blown away, so might as well post it here for future reference. It looks something like this:
class Stringable
{
public:
virtual ~Stringable() {};
virtual std::string str() const = 0;
using Ptr = std::shared_ptr<Stringable>;
};
template <typename T>
class StringableRef : public Stringable
{
private:
T* _ptr;
public:
StringableRef(T& ref)
: _ptr(&ref) {}
virtual ~StringableRef() {}
virtual std::string str() const
{
std::ostringstream ss;
ss << *_ptr;
return ss.str();
}
};
class ValueMonitor
{
private:
static std::map<std::string, Stringable::Ptr> _values;
public:
ValueMonitor() {}
~ValueMonitor() {}
template <typename T>
static void watch(const std::string& label, T& ref)
{
_values[label] = std::make_shared<StringableRef<T>>(ref);
}
static void printAll()
{
for (const auto& valueItr : _values)
{
const String& name = valueItr.first;
const std::shared_ptr<Stringable>& value = valueItr.second;
std::cout << name << ": " << value->str() << std::endl;
}
}
static void clear()
{
_values.clear();
}
};
std::map<std::string, Stringable::Ptr> ValueMonitor::_values;
.
int main()
{
int i = 5;
std::string s = "test"
ValueMonitor::watch("number", i);
ValueMonitor::watch("string", s);
ValueMonitor::printAll();
i = 10;
s = "new string";
ValueMonitor::printAll();
return 0;
}
How can I write a wrapper that can wrap any function and can be called just like the function itself?
The reason I need this: I want a Timer object that can wrap a function and behave just like the function itself, plus it logs the accumulated time of all its calls.
The scenario would look like this:
// a function whose runtime should be logged
double foo(int x) {
// do something that takes some time ...
}
Timer timed_foo(&foo); // timed_foo is a wrapping fct obj
double a = timed_foo(3);
double b = timed_foo(2);
double c = timed_foo(5);
std::cout << "Elapsed: " << timed_foo.GetElapsedTime();
How can I write this Timer class?
I am trying something like this:
#include <tr1/functional>
using std::tr1::function;
template<class Function>
class Timer {
public:
Timer(Function& fct)
: fct_(fct) {}
??? operator()(???){
// call the fct_,
// measure runtime and add to elapsed_time_
}
long GetElapsedTime() { return elapsed_time_; }
private:
Function& fct_;
long elapsed_time_;
};
int main(int argc, char** argv){
typedef function<double(int)> MyFct;
MyFct fct = &foo;
Timer<MyFct> timed_foo(fct);
double a = timed_foo(3);
double b = timed_foo(2);
double c = timed_foo(5);
std::cout << "Elapsed: " << timed_foo.GetElapsedTime();
}
(BTW, I know of gprof and other tools for profiling runtime, but having such a Timer object to log the runtime of a few selected functions is more convenient for my purposes.)
Basically, what you want to do is impossible in current C++. For any number of arity of function you want to wrap, you need to overload by
const reference
non-const reference
But then it's still not perfectly forwarding (some edge cases still stand), but it should work reasonable well. If you limit yourself to const references, you can go with this one (not tested):
template<class Function>
class Timer {
typedef typename boost::function_types
::result_type<Function>::type return_type;
public:
Timer(Function fct)
: fct_(fct) {}
// macro generating one overload
#define FN(Z, N, D) \
BOOST_PP_EXPR_IF(N, template<BOOST_PP_ENUM_PARAMS(N, typename T)>) \
return_type operator()(BOOST_PP_ENUM_BINARY_PARAMS(N, T, const& t)) { \
/* some stuff here */ \
fct_(ENUM_PARAMS(N, t)); \
}
// generate overloads for up to 10 parameters
BOOST_PP_REPEAT(10, FN, ~)
#undef FN
long GetElapsedTime() { return elapsed_time_; }
private:
// void() -> void(*)()
typename boost::decay<Function>::type fct_;
long elapsed_time_;
};
Note that for the return type, you can use boost's function types library. Then
Timer<void(int)> t(&foo);
t(10);
You can also overload using pure value parameters, and then if you want to pass something by reference, use boost::ref. That's actually a pretty common technique, especially when such parameters are going to be saved (this technique is also used for boost::bind):
// if you want to have reference parameters:
void bar(int &i) { i = 10; }
Timer<void(int&)> f(&bar);
int a;
f(boost::ref(a));
assert(a == 10);
Or you can go and add those overloads for both const and non-const versions as explained above. Look into Boost.Preprocessor for how to write the proper macros.
You should be aware that the whole thing will become more difficult if you want to be able to pass arbitrary callables (not only functions), since you will need a way then to get their result type (that's not all that easy). C++1x will make this sort of stuff way easier.
Here is an easy way to wrap functions.
template<typename T>
class Functor {
T f;
public:
Functor(T t){
f = t;
}
T& operator()(){
return f;
}
};
int add(int a, int b)
{
return a+b;
}
void testing()
{
Functor<int (*)(int, int)> f(add);
cout << f()(2,3);
}
I assume you need this for test purpose and aren't going to use them as a real proxies or decorators. So you won't need to use operator() and can use any other more-less convenient method of call.
template <typename TFunction>
class TimerWrapper
{
public:
TimerWrapper(TFunction function, clock_t& elapsedTime):
call(function),
startTime_(::clock()),
elapsedTime_(elapsedTime)
{
}
~TimerWrapper()
{
const clock_t endTime_ = ::clock();
const clock_t diff = (endTime_ - startTime_);
elapsedTime_ += diff;
}
TFunction call;
private:
const clock_t startTime_;
clock_t& elapsedTime_;
};
template <typename TFunction>
TimerWrapper<TFunction> test_time(TFunction function, clock_t& elapsedTime)
{
return TimerWrapper<TFunction>(function, elapsedTime);
}
So to test some of yours function you should use only test_time function and not the direct TimerWrapper structure
int test1()
{
std::cout << "test1\n";
return 0;
}
void test2(int parameter)
{
std::cout << "test2 with parameter " << parameter << "\n";
}
int main()
{
clock_t elapsedTime = 0;
test_time(test1, elapsedTime).call();
test_time(test2, elapsedTime).call(20);
double result = test_time(sqrt, elapsedTime).call(9.0);
std::cout << "result = " << result << std::endl;
std::cout << elapsedTime << std::endl;
return 0;
}
You may probably find an answer if you look at the implementation of std::tr1::function that you include.
In c++11, std:: function is implemented with variadic templates. Using such templates your timer class can look like
template<typename>
class Timer;
template<typename R, typename... T>
class Timer<R(T...)>
{
typedef R (*function_type)(T...);
function_type function;
public:
Timer(function_type f)
{
function = f;
}
R operator() (T&&... a)
{
// timer starts here
R r = function(std::forward<T>(a)...);
// timer ends here
return r;
}
};
float some_function(int x, double y)
{
return static_cast<float>( static_cast<double>(x) * y );
}
Timer<float(int,double)> timed_function(some_function); // create a timed function
float r = timed_function(3,6.0); // call the timed function
Stroustrup had demonstrated a function wrapper(injaction) skill with overloading the operator->. The key idea is: operator-> will repeatly called until it meets a native pointer type, so let Timer::operator-> return a temp object, and the temp object return its pointer. Then following will happen:
temp obj created (ctor called).
target function called.
temp obj destructed (dtor called).
And you can inject any code within the ctor and the dtor. Like this.
template < class F >
class Holder {
public:
Holder (F v) : f(v) { std::cout << "Start!" << std::endl ; }
~Holder () { std::cout << "Stop!" << std::endl ; }
Holder* operator->() { return this ; }
F f ;
} ;
template < class F >
class Timer {
public:
Timer ( F v ) : f(v) {}
Holder<F> operator->() { Holder<F> h(f) ; return h ; }
F f ;
} ;
int foo ( int a, int b ) { std::cout << "foo()" << std::endl ; }
int main ()
{
Timer<int(*)(int,int)> timer(foo) ;
timer->f(1,2) ;
}
The implementation and the usage are both easy.
A solution using macros and templates: For example you want to wrap
double foo( double i ) { printf("foo %f\n",i); return i; }
double r = WRAP( foo( 10.1 ) );
Before and after calling foo() the wrapper functions beginWrap() and endWrap() should be called. (With endWrap() being a template function.)
void beginWrap() { printf("beginWrap()\n"); }
template <class T> T endWrap(const T& t) { printf("endWrap()\n"); return t; }
The macro
#define WRAP(f) endWrap( (beginWrap(), f) );
uses the precedence of the comma-operator to assure beginWrap() is called first. The result of f is passed to endWrap() which just returns it.
So the output is:
beginWrap()
foo 10.100000
endWrap()
And the result r contains 10.1.
You're out for a big challenge if you are looking to create a generic class that can wrap and call an arbitrary function. In this case you'd have to make the functor (the operator()) to return double and take an int as a parameter. Then you have created a family of classes that can call all functions with that same signature. As soon as you want to add more types of functions, you need more functors of that signature, e.g.
MyClass goo(double a, double b)
{
// ..
}
template<class Function>
class Timer {
public:
Timer(Function& fct)
: fct_(fct) {}
MyClass operator()(double a, double b){
}
};
EDIT: Some spelling errors
It's not really clear to me for what you are looking.. However, for the given example, it's simply:
void operator() (int x)
{
clock_t start_time = ::clock(); // time before calling
fct_(x); // call function
clock_t end_time = ::clock(); // time when done
elapsed_time_ += (end_time - start_time) / CLOCKS_PER_SEC;
}
Note: This will measure the time in seconds. If you want to have high-precision timers, you probably have to check OS specific functionality (like GetTickCount or QueryPerformanceCounter on Windows).
If you want to have a generic function wrapper, you should have a look on Boost.Bind that will help tremendeously.
If your compiler supports variadic macros, I'd try this:
class Timer {
Timer();// when created notes start time
~ Timer();// when destroyed notes end time, computes elapsed time
}
#define TIME_MACRO(fn, ...) { Timer t; fn(_VA_ARGS_); }
So, to use it, you'd do this:
void test_me(int a, float b);
TIME_MACRO(test_me(a,b));
That's off the cuff, and you'd need to play around to get return types to work (I think you'd have to add a type name to the TIME_MACRO call and then have it generate a temp variable).
Here's how I'd do it, using a function pointer instead of a template:
// pointer to a function of the form: double foo(int x);
typedef double (*MyFunc) (int);
// your function
double foo (int x) {
// do something
return 1.5 * x;
}
class Timer {
public:
Timer (MyFunc ptr)
: m_ptr (ptr)
{ }
double operator() (int x) {
return m_ptr (x);
}
private:
MyFunc m_ptr;
};
I changed it to not take a reference to the function, but just a plain function pointer. Usage remains the same:
Timer t(&foo);
// call function directly
foo(i);
// call it through the wrapper
t(i);
In C++ functions are first class citizens, you can literally pass a function as a value.
Since you want it to take an int and return a double:
Timer(double (*pt2Function)(int input)) {...